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Trading Volume: Implications of an
Intertemporal Capital Asset Pricing Model

ANDREW W. LO and JIANG WANG∗

ABSTRACT

We derive an intertemporal asset pricing model and explore its implications for trading

volume and asset returns. We show that investors trade in only two portfolios: the

market portfolio, and a hedging portfolio that is used to hedge the risk of changing

market conditions. We empirically identify the hedging portfolio using weekly volume

and returns data for U.S. stocks, and then test two of its properties implied by the

theory: Its return should be an additional risk factor in explaining the cross section

of asset returns, and should also be the best predictor of future market returns.

FUNDAMENTAL SHOCKS TO THE ECONOMY DRIVE BOTH THE SUPPLY and demand of finan-
cial assets and their prices. Therefore, any asset pricing model that attempts
to establish a structural link between asset prices and underlying economic
factors also establishes links between prices and quantities such as trading
volume since economic fundamentals such as the investors’ preferences and
the assets’ future payoffs determine the joint behavior of prices and quanti-
ties.1 The construction and empirical implementation of any asset pricing model
should therefore involve both price and quantity as key elements. Indeed, from
a purely empirical perspective, the joint behavior of price and quantity reveals
more information about the relation between asset prices and economic factors
than do prices alone. The asset pricing literature, however, has focused more
on prices and much less on quantities. For example, empirical investigations
of well known asset pricing models such as the Capital Asset Pricing Model
(CAPM) and its intertemporal (ICAPM) extensions focus exclusively on prices
and returns, completely ignoring the information contained in quantities. In
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this paper, we hope to show that even if our main interest is the behavior of
prices, valuable information about price dynamics can be extracted from trad-
ing volume.

We begin by developing an intertemporal capital asset pricing model of multi-
ple assets in the spirit of Merton’s ICAPM (Merton, 1973). In our model, assets
are exposed to market risk and the risk of changes in market conditions.2 As a
result, investors wish to hold two distinct portfolios of risky assets, namely, the
market portfolio and a hedging portfolio. The market portfolio allows investors
to adjust their exposure to market risk, and the hedging portfolio allows them
to hedge the risk of changes in market conditions. In equilibrium, a two-factor
linear pricing model holds, where the two factors are the returns on the market
portfolio and the hedging portfolio, respectively.

We then explore the implications of this model on the joint behavior of vol-
ume and returns. Since investors hold only two portfolios, trading volume also
exhibits a two-factor structure. The first factor arises from trades in the market
portfolio and the second from trades in the hedging portfolio. More importantly,
the factor loading of each asset’s trading volume on the hedging portfolio factor
is proportional to that asset’s portfolio weight in the hedging portfolio. This
remarkable property of the trading volume of individual assets suggests a way
to identify the hedging portfolio from a rather unexpected source: volume data.

Using weekly returns and trading volume for NYSE and AMEX stocks from
1962 to 2004, we implement the model empirically. From the trading volume of
individual stocks, we construct the hedging portfolio and its returns. We find
that the hedging portfolio return consistently outperforms other predictors in
forecasting future returns to the market portfolio. We then use the returns to
the hedging and market portfolios as two risk-factors in a cross-sectional test
along the lines of Fama and MacBeth (1973), and find that the hedging port-
folio is comparable to other factors in explaining the cross-sectional variation
of expected returns. Collectively, these results provide concrete economic foun-
dations for determining risk factors beyond the market portfolio for dynamic
equilibrium asset pricing models.

In Section I, we present our intertemporal equilibrium model of asset-pricing
and trading volume. In Section II, we explore the model’s implications for vol-
ume and returns. Section III contains a description of the data used in our
empirical implementation of the model, as well as an outline of the construc-
tion of the hedging portfolio. In Section IV, we compare the forecast power of
the hedging portfolio with other factors, and we perform cross-sectional tests of
the hedging portfolio as a risk factor in Section V. We conclude in Section VI.

I. The Model

In this section, we develop an intertemporal equilibrium asset pricing model
with multiple assets and heterogeneous investors. Since our purpose is to derive

2 One example of changes in market conditions is that of changes in the investment opportunity

set considered by Merton (1971, 1973).
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qualitative implications for the joint behavior of return and volume, the model
in subsection A is kept as parsimonious as possible. We discuss several gener-
alizations of the model in subsection B.

A. The Economy

We consider an economy defined on a set of discrete dates t = 0, 1, 2, . . . . There
are J risky assets, or “stocks, ” in the economy. Let Djt denote the date t dividend
for each share of stock j, j = 1, . . . , J, and Dt ≡ (D1t; . . . ; DJt) denote the column
vector of dividends.3 Without loss of generality, we normalize the number of
shares outstanding for each stock to be one.

A stock portfolio can be expressed in terms of its shares of each stock, denoted
by S ≡ (S1; . . . ; SJ), where Sj is the number of stock-j shares in the portfolio
( j = 1, . . . , J ). A portfolio of particular importance is the market portfolio, de-
noted by SM, which is given by

SM = (1; . . . ; 1) (1)

under our normalization. The dividend on the market portfolio is then given by
DMt ≡ S′

MDt, which is the aggregate dividend.
In addition to stocks, there is also a risk-free bond that yields a constant,

positive rate of interest, r, per time period.
There are I investors in the economy, each endowed with equal shares of

the stocks and no bonds. Every period, investor i, i = 1, . . . , I, maximizes his
expected utility of the following form:

Et

[
−e−W i

t+1−
(
λX X t+λY Y i

t

)
DMt+1−λZ

(
1+Z i

t

)
X t+1

]
, (2)

where Wi
t+1 is investor i’s next-period wealth, Xt, Yi

t , and Zi
t are three one-

dimensional state variables, and λX , λY , and λZ are nonnegative constants. The
utility function specified in (2) is state-dependent.4 We further assume

I∑
i=1

Y i
t =

I∑
i=1

Z i
t = 0, (3)

where t = 0, 1, . . . .

3 Throughout this paper, we adopt the following convention: For a set of elements

e1, . . . , en, (e1; . . . ; en) denotes the column vector and (e1, . . . , en) denotes the row vector from these

elements.
4 Using a multiasset extension of the setting in Wang (1994)—which is similar to our setting

here except that, in addition to traded assets, investors also hold nontraded assets whose payoffs

are driven by exogenous state variables, denoted by Xt and Yi
t—we can show that the resulting

value function takes the form that is qualitatively identical to the utility function given in (2). For

brevity, we directly assume the form of the (indirect) utility function here because our purpose is

to capture the trading behavior of investors under the given risk structure.
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For simplicity, we assume that all the exogenous shocks—Dt, Xt, {Yi
t , Zi

t, i =
1, . . . , I }—are independently and identically distributed (I.I.D.) over time with
zero means. For tractability, we further assume that Dt and Xt are jointly nor-
mally distributed:

ut ≡
(

Dt

X t

)
d∼ N (·, σ ) , where σ =

(
σDD σDX

σX D σX X

)
. (4)

Without loss of generality, σDD is assumed to be positive definite.

B. Discussion

Our model has several features that might seem unusual. Most importantly,
the specification in (2) assumes investors have a myopic but state-dependent
utility function. We use this utility function to capture the dynamic nature of
the investment problem without having to explicitly solve a dynamic optimiza-
tion problem. This utility function should be interpreted as the equivalent of a
value function from an appropriately specified dynamic optimization problem
(see, e.g., Wang (1994) and Lo and Wang (2003)). In particular, it is possible to
specify a canonical dynamic optimization problem for investors in which they
have state-independent utility over their lifetime consumption such that the
resulting value function—a function of wealth and the state variables—has a
form similar to the state-dependent utility function in (2).5 Therefore, for expo-
sitional simplicity, we start with (2).

The state dependence of the utility function has the following properties. The
marginal utility of wealth depends on the dividend of the market portfolio (the
aggregate dividend), as reflected in the second term in the exponential of
the utility function. When the aggregate dividend increases, the marginal util-
ity of wealth declines. There are many ways to motivate this type of utility
function. For example, utility can be derived from wealth relative to the mar-
ket, rather than the level of wealth itself (see, e.g., Abel (1990), Campbell
and Cochrane (1999)). Alternatively, in addition to their stock investments,
investors can be exposed to other risks that are correlated with the market
(see, e.g., Wang (1994)). The marginal utility of wealth also depends on fu-
ture state variables, and in particular Xt+1, as reflected in the third term in
the exponential of the utility function. The motivation for allowing such de-
pendence is as follows. Since the state variables determine stock returns in
equilibrium, the value function (or indirect utility function) of an investor who
optimizes dynamically would depend on these state variables. Without model-
ing the dynamic optimization problem explicitly, we impose such dependence
on the (myopic) utility function. This dependence introduces dynamic hedging
motives in investors’ portfolio choices (see Merton (1971) for a discussion of
dynamic hedging).

5 As Wang (1994) shows, under CARA and time-separable preferences over lifetime consumption

and Gaussian processes for asset returns and income, an investor’s value function has a similar

form to (2).
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Another simplification in the model is the I.I.D. assumption for the state
variables. This might leave the impression that the model is effectively static.
However, this is not the case since the state-dependence of the utility function
introduces important dynamics over time, allowing for richer state-variable
dynamics in particular without changing the main properties of the model.

The particular form of the utility function and normality of the state variables
are assumed for tractability, and such assumptions are restrictive. We hope that
the qualitative predictions of our model are not sensitive to these assumptions.

We also assume an exogenous interest rate for the bond, and do not require
the bond market to clear. This modeling choice allows us to simplify our analysis
and focus squarely on the stock market. It will become clear later that changes
in the interest rate are not important for the issues we consider in this paper.
Moreover, from an empirical point of view, at the frequency of interest here
(weekly), changes in interest rates are usually small.

C. Equilibrium

Let Pt ≡ (P1t; . . . ; PJt) and Si
t ≡ (Si

1t; . . . ; Si
Jt) be the column vectors of ex-

dividend stock prices and investor i’s stock holdings, respectively. We now derive
the equilibrium of the economy.

DEFINITION 1: An equilibrium is given by a price process {Pt : t = 0, 1, . . . } and
the investors’ stock positions {Si

t : i = 1, . . . , I; t = 0, 1, . . . } such that:

1. Si
t solves investor i’s optimization problem

Si
t = arg max E

[
−e−W i

t+1−
(
λX X t+λY Y i

t

)
DMt+1−λZ

(
1+Z i

t

)
X t+1

]
(5)

s. t. W i
t+1 = W i

t + Si′
t [Dt+1 + Pt+1 − (1+r)Pt]. (6)

2. The stock market clears:

i∑
i=1

Si
t = SM . (7)

This definition of equilibrium is standard except that here the bond market
does not clear. As we discussed earlier, the interest rate is given exogenously
and there is an infinitely elastic supply of bonds at that rate.

For t = 0, 1, . . . , let Qt+1 denote the vector of excess dollar returns on the
stock, that is,

Qt+1 ≡ Dt+1 + Pt+1 − (1+r)Pt . (8)

Thus, Qjt+1 = Djt+1 + Pjt+1 − (1 + r)Pjt gives the dollar return on one share of
stock j in excess of its financing cost for period t + 1. For the remainder of
the paper, we simply refer to Qjt+1 as the dollar return of stock j, omitting
the qualifier “excess.” The dollar return Qjt+1 differs from the conventional
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return measure Rjt+1, which is the dollar return normalized by the share price:
Rjt+1 ≡ Qjt+1/Pjt. We refer to Rjt+1 simply as the return on stock j in period
t + 1.

We can now state the solution to the equilibrium in the following theorem:

THEOREM 1: The economy defined above has a unique linear equilibrium in
which

Pt = − a − bX t (9)

and

Si
t = (

1/I − λY Y i
t

)
SM − [

λY (b′ι)Y i
t + λZ Z i

t

]
(σQQ)−1σQX , (10)

where ι is a vector of ones,

σQQ = σDD − (bσXD + σDXb′) + σ 2
X bb′, (11a)

σQX = σDX − σ 2
X b, (11b)

a = 1

r

(
ᾱσQQSM + λZ σQX

)
, (11c)

b = λX
[
(1 + r) + (λZ σXDSM )

]−1
σDDSM , (11d)

and ᾱ = 1/I .

The nature of the equilibrium is intuitive. In our model, an investor’s utility
function depends not only on his wealth, but also on the stock payoffs directly. In
other words, even if he holds no stocks, his utility fluctuates with the stocks’ pay-
offs. Such “market spirits ”—as opposed to “animal spirits ”—affect his demand
for stocks, in addition to the usual factors such as the stocks’ expected returns.
We measure the market spirits of investor i by (λXXt + λYYi

t ). If (λXXt + λZYi
t )

is positive, investor i extracts positive utility when the aggregate stock payoff
is high. Such a positive “attachment ” to the market makes holding stocks less
attractive to him. If (λXXt + λYYi

t ) is negative, he has a negative attachment
to the market, which makes holding stocks more attractive. At the aggregate
level, such market spirits, which are captured by Xt, affect aggregate stock de-
mand, which in turn affect equilibrium stock prices. Given the particular form
of the utility function, Xt affects equilibrium stock prices linearly. In contrast,
idiosyncratic differences among investors in the magnitudes of their market
spirits, which are captured by Yi

t , offset each other at the aggregate level, and
thus they do not affect equilibrium stock prices. However, they do affect indi-
vidual investors’ stock holdings. As the first term of (10) shows, investors with
positive Yi

ts hold less stocks (that is, they gain utility by merely observing stock
payoffs).

Since the aggregate utility variable Xt drives stock prices, it also drives stock
returns. In fact, the expected return of stocks changes with Xt (see the discussion
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in the next section). The form of the utility function also implies that the in-
vestors’ utility functions depend directly on Xt, which fully characterizes the
market conditions that investors face, that is, the investment opportunities.
Such a dependence arises endogenously when investors optimize dynamically.
In our setting, however, we assume that investors optimize myopically, so we
insert such a dependence directly into the utility function. This dependence
induces investors to care about future market conditions when choosing their
portfolios. In particular, they prefer those portfolios whose returns can help
them to smooth fluctuations in their utility that are due to changes in market
conditions. Such a preference gives rise to the hedging component in their asset
demand, which is captured by the second term in (10).

II. The Behavior of Returns and Volume

Given the intertemporal CAPM defined above, we can derive its implications
for the behavior of returns and volume. For stocks, their dollar return vector
can be reexpressed as

Qt+1 = ra + (1 + r)bXt + Q̃ t+1, (12)

where Q̃ t+1 ≡ Dt+1 − bX t+1 denotes the vector of unexpected dollar returns on
the stocks, which are I.I.D. over time with zero mean. Equation (12) shows that
the expected returns on stocks change over time. In particular, they are driven
by a single state variable, Xt.

The investors’ stock holdings can be expressed in the following form:

Si
t = hi

MtSM + hi
HtSH ∀ i = 1, 2, . . . , I , (13)

where hi
Mt ≡ (1/I ) − λYYi

t , hi
Ht ≡ λY (b′SM)Yi

t − λZZi
t, and

SH ≡ (
σQ Q

)−1
σQ X . (14)

Equation (13) states that two-fund separation holds for the investors’ stock
investments. That is, the stock investments of all investors can be viewed as
investments in two common funds: the market portfolio SM and the hedging
portfolio SH.6 In our model, these two portfolios, expressed in terms of stock
shares, are constant over time.

The particular structure of the returns and the investors’ portfolios lead to
several interesting predictions about the behavior of volume and returns, which
we summarize in Propositions 1–4.

6 Note that the investors’ total portfolios satisfy three-fund monetary separation—the risk-free

bond and the two stock funds. For our discussion here, we restrict our attention to investors’ stock

investments and always focus on the two stock funds.



2812 The Journal of Finance

A. The Cross-Section of Volume

Given heterogeneity in preferences, which change over time, investors trade
among themselves to achieve their optimal stock holdings. The volume of trade
can be measured by the turnover ratio (see Lo and Wang (2000)). Since we
normalize the total number of shares outstanding to be one for all stocks, the
turnover of a stock, say, stock j, is given by

τ j t ≡ 1

2

I∑
i=1

∣∣ (hi
Mt − hi

Mt−1

)
+

(
hi

Ht − hi
Ht−1

)
SH j

∣∣, ∀ j = 1, . . . , J . (15)

Let τ t denote the vector of turnover for all stocks. We have the following propo-
sition for the cross-section of volume:

PROPOSITION 1: When trading in the hedging portfolio is small relative to trading
in the market portfolio,7 the two-fund separation in investors’ stock holdings
leads to a two-factor structure for stock turnover

τt ≈ SM FMt + SH FHt, (16)

where

FMt = 1

2

I∑
i=1

∣∣hi
Mt − hi

Mt−1

∣∣ and FHt = 1

2

I∑
i=1

(
hi

Ht − hi
Ht−1

)
Sign

(
hi

Mt − hi
Mt−1

)
.

(17)

In the special case where one-fund separation holds for stock holdings (when
Xt = 0, ∀ t), turnover has an exact one-factor structure, τt = SMFMt. Moreover,
the loadings of individual turnover on the common factor are identical across
all stocks, hence turnover is identical across all stocks. This is not surprising—
in the case of one-fund separation for stock investments, investors trade in one
stock portfolio, which has to be the market portfolio, and thus they must trade
all the stocks in the same proportions (in shares). Consequently, the turnover
must be the same for all stocks.8

In the general case where two-fund separation holds for stock investments,
and assuming that the trading in the market portfolio dominates the trading
in the hedging portfolio, turnover has a two-factor structure (after a linear ap-
proximation) as given in (16). Although parameter restrictions can be imposed
in the theoretical model to satisfy the condition that trading in the hedging
portfolio be small (see the Appendix), it is an empirical question as to whether
this and the two-factor model are plausible, which we address in the empirical
analysis of Section III.

It is important to note that the loading of stock j’s turnover on the second
factor is proportional to its share weight in the hedging portfolio. Therefore,

7 This imposes certain restrictions on the λ coefficients and the other model parameters. See the

proof in the Appendix for more details.
8 For a discussion on the implications of mutual fund separation on the cross-sectional behavior

of volume, see Lo and Wang (2000). See also Tkac (1996).
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if we can empirically identify the two common factors FMt and FHt, the stocks’
loadings on the second factor will allow us to identify the hedging portfolio.
In our empirical analysis, we explore the information that the cross section
of volume contains. As we discuss below, the hedging portfolio has important
properties that allow us to better understand the behavior of returns. Merton
(1971, 1973) considers the properties of hedging portfolios in a continuous-time
framework as a characterization of equilibrium. Our discussion here follows
Merton in spirit, but is set in a discrete-time, equilibrium environment.

B. Time Series Implications for the Hedging Portfolio

By the definition of the hedging portfolio in (14), it is easy to show that its
current return gives the best forecast of future market returns.

Let QMt+1 denote the dollar return on the market portfolio in period t + 1,
and QHt+1 denote the dollar return on the hedging portfolio. Then,

Q Mt+1 = S′
M Qt+1 and Q Ht+1 = S′

H Qt+1. (18)

For an arbitrary portfolio S, its dollar return in period t, which is QSt ≡ S′Qt,
can serve as a predictor for the next-period dollar return of the market:

Q Mt+1 = δ0 + δ1 QSt + εMt+1. (19)

The predictive power of S is measured by the R2 of the above regression. We
can solve for the portfolio that maximizes the R2. The solution, up to a scaling
constant, is the hedging portfolio. Thus, we have the following result:

PROPOSITION 2: Among the returns of all portfolios, the dollar return of the hedg-
ing portfolio, SH, provides the best forecast for the future dollar return of the
market.

In other words, if we regress the market dollar return on the lagged dollar-
return of any set of portfolios, the hedging portfolio must yield the highest R2.

C. Cross-Sectional Implications for the Hedging Portfolio

We now turn to the predictions of our model for the cross section of re-
turns. Let Qp t+1 denote the dollar return of a stock portfolio, Q̄ p t+1 ≡ Et[Q p t+1]

its conditional expectation at time t, Q̄ p its unconditional expectation, and

Q̃ p t+1 ≡ Q p t+1 − Q̄ p t+1 its unexpected dollar return in period t + 1. Then,

Q̃ Mt+1 and Q̃ Ht+1 denote the unexpected dollar returns on the market port-
folio and the hedging portfolio, respectively, and

σ 2
M ≡ Var[Q̃ Mt+1], σ 2

H ≡ Var[Q̃ Ht+1], and σMH ≡ Cov[Q̃ Mt+1, Q̃ Ht+1] (20)

denote their conditional variances and covariances. From Theorem 1, we have

Q̄ = ᾱσQQι + λZ σQX (21a)
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Q̄ M = ᾱσ 2
M + λZ σMH (21b)

Q̄ H = ᾱσMH + λZ σ 2
H , (21c)

where σ 2
M = S′

MσQQSM, σ 2
H = σXQ(σQQ)−1σQX , σMH = ι′σQX , σQQ, and σQX are

given in Theorem 1. Equation (21) characterizes the cross-sectional variation
in the stocks’ expected dollar returns.

To develop more intuition about (21), we first consider the special case in
which Xt = 0, ∀ t. In this case, returns are I.I.D. over time. The risk of a stock is
measured by its covariability with the market portfolio. We have the following
result:

PROPOSITION 3: When Xt = 0, ∀ t, we have

E[Q̃ t+1|Q̃ Mt+1] = βM Q̃ Mt+1, (22)

where

βM ≡ Cov[Q̃ t+1, Q̃ Mt+1]
/

Var[Q̃ Mt+1] = σDDι/(ι′σDDι) (23)

is the vector of the stocks’ market betas. Moreover,

Q̄ = βM Q̄ M , (24)

where Q̄ M = ᾱσ 2
M ≥ 0.

Obviously in this case, the CAPM holds for dollar returns; it can be shown that
it also holds for returns.

In the general case where Xt changes over time, there is additional risk due to
changing market conditions (dynamic risk). Moreover, this risk is represented
by the dollar return of the hedging portfolio, which is denoted by QHt ≡ S′

HQt.
In this case, the risk of a stock is measured by its risk with respect to the
market portfolio and its risk with respect to the hedging portfolio. In other
words, there are two risk-factors, the (contemporaneous) market risk and the
(dynamic) risk of changing market conditions. The expected returns of stocks
are then determined by their exposures to these two risks and the associated
risk premia. The result is summarized in the following proposition:

PROPOSITION 4: When Xt changes over time, we have

E[Q̃ t+1 | Q̃ Mt+1, Q̃ Ht+1] = βM Q̃ Mt+1 + βH Q̃ Ht+1, (25)

where

(βM , βH ) = Cov[Q̃ t+1, (Q̃ Mt+1, Q̃ Ht+1)]{Var[(Q̃ Mt+1, Q̃ Ht+1)]}−1 (26)

= (σQM, σQH)

(
σ 2

M σMH

σMH σ 2
H

)−1

(27)
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is the vector of the stocks’ market betas and hedging betas. Moreover, the stocks’
expected dollar returns satisfy

Q̄ = βM Q̄ M + βH Q̄ H , (28)

where
Q̄ M = ᾱσ 2

M + λZ σMH

and
Q̄ H = ᾱσMH + λZ σ 2

H .

Therefore, a stock’s risk is measured by its beta with respect to the market
portfolio and its beta with respect to the hedging portfolio. The expected dollar-
return on the market portfolio is the market risk premium and the expected
dollar-return on the hedging portfolio is the dynamic risk premium. Equa-
tion (28) states that the premium on a stock is then given by the sum of the
product of its exposure to each risk with the corresponding risk premium.

Under constant market conditions (Xt = 0, ∀ t), the market risk premium, Q̄ ,
is always positive. However, under changing market conditions, the market risk
premium need not be positive. In particular, when σMH is significantly negative
(λZ is assumed to be positive), Q̄ can be negative. This is simply because the
premium is determined by the covariance between the market return and in-
vestors’ marginal utility, which depends on both their wealth and the other state
variables. In particular, the positive covariance between market returns and
investors’ wealth yields a positive premium to the market portfolio, whereas
the negative covariance between market returns and the state variable Xt that
drives the utility function yields a negative premium. The total premium on
the market portfolio is the sum of these two components, which can be negative
if the second component dominates.

The pricing relation we obtain in Proposition 4 is in the spirit of Merton’s
Intertemporal CAPM in a continuous-time framework (Merton (1971)). How-
ever, it is important to note that Merton’s result is a characterization of the
pricing relation under a class of proposed price processes, and no equilibrium
is provided to support these price processes. In contrast, our pricing relation is
derived from a dynamic equilibrium model—in this sense, our model provides
a specific equilibrium model for which Merton’s characterization holds.

If we can identify the hedging portfolio empirically, its return should provide
the second risk-factor. Cross-sectional differences among the stocks’ expected
returns can then be fully explained by their exposures to the two risks—market
risk and dynamic risk—and can be measured by their market and hedging
betas.

D. Further Discussion

We have derived the joint behavior of returns and volume, both in the cross
section and over time, from a specific intertemporal CAPM in which time vari-
ation in the total risk tolerance of the economy causes the market risk pre-
mium to change over time, which gives rise to dynamic risk in addition to static
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market risk. However, it should be clear from the discussion above that the
return/volume implications do not rely on the particular source of dynamic
risk. Any model in which dynamic risk is captured by the time variation in the
market risk premium will lead to similar return/volume implications. In par-
ticular, investors will trade only in two portfolios, the market portfolio and the
hedging portfolio, to allocate market and dynamic risks, and the return on the
hedging portfolio is an additional risk-factor in explaining the cross section of
returns and it also gives the best forecast for future market returns. The actual
source of dynamic risk, that is, time variation in the market premium, is not
crucial to these results. For example, time variation in the market premium can
be easily driven by time-varying market sentiment or, in models more general
than that considered here, time variation in the total risk level of the market.

Our version of the intertemporal CAPM can also incorporate other types of
dynamic risks. For example, if market liquidity is time-varying, as Chordia,
Roll, and Subrahmanyam (2000) and Pastor and Stambaugh (2003) suggest,
this can be viewed as dynamic risk. In particular, the pricing implications ex-
amined by Pastor and Stambaugh (2003) fall within our ICAPM framework.
What is less clear in models based on liquidity considerations is the predic-
tions for volume behavior and the return/volume relation. In these models,
volume is used heuristically to empirically gauge the liquidity of an asset. For
example, Brennan and Subrahmanyam (1996) use volume as proxy for liquid-
ity and examine how liquidity may help to explain the cross section of asset
returns. In this case, liquidity is treated as an asset-specific factor that need
not be directly related to risks. Acharya and Pedersen (2002) explicitly model
the liquidity cost as correlated with market risk, and then show that even when
liquidity-adjusted returns satisfy the CAPM, raw returns do not. In particular,
expected returns depend on the market risks of the assets’ payoffs as well as
their liquidity adjustments.

Despite the common focus on the cross-sectional properties of returns, the
approach in liquidity-based models is quite different from ours. The former
models rely primarily on empirically motivated models of liquidity or liquid-
ity risk, and test the cross-sectional properties of returns. Our approach is to
develop the implications for both volume and returns using an intertemporal
equilibrium model, and then test these implications jointly. Although our spec-
ification may be less flexible from an empirical perspective, this is due to the
fact that we are imposing more structure to guide empirical analysis.

III. An Empirical Implementation

Our empirical analysis of the implications of the model outlined in Sections I
and II consists of three parts. In this section, we exploit the model’s cross-
sectional implications to construct the hedging portfolio from volume data. In
Section IV, we examine the ability of the hedging portfolio to forecast future
market portfolio returns. Finally in Section V, we investigate the role of the
hedging portfolio return as a risk factor in explaining the cross-sectional vari-
ation of expected returns.
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A. The Data

We use an extract of the CRSP Daily Master File called the “MiniCRSP Re-
turns and Turnover ” database described in Lo and Wang (2000) (see also Lim
et al. (1998)). This extract consists of weekly return and turnover series for
individual stocks traded on NYSE and AMEX from July 1962 to December
2004 (2,217 weeks). The weekly turnover of a stock is simply the sum of its
daily turnover, which is the number of shares traded each day normalized by
the total number of shares outstanding. We choose weekly periods as a com-
promise between maximizing the sample size and minimizing the impact of
high-frequency return and turnover fluctuations that are likely to be of less di-
rect economic consequence. We also limit our focus to ordinary common shares
(CRSP sharecodes 10 and 11 only).

As documented in Lo and Wang (2000) and in many other studies, aggre-
gate turnover seems to be nonstationary, exhibiting a significant time trend
and time-varying volatility. For example, the average weekly equal-weighted
turnover in the period from 1962 to 1966 is 0.57%, but grows to 2.07% in the pe-
riod from 1997 to 2004, and the volatilities during these two periods are 0.21%
and 0.51%, respectively. Detrending has been advocated by several other au-
thors (e.g., Andersen (1996), Gallant, Rossi, and Tauchen (1992)), and there is
no doubt that such procedures may help to induce more desirable time series
properties for turnover. However, Lo and Wang (2000) show that the differ-
ent types of detrending methods, for example, linear, logarithmic, or quadratic,
yield detrended time series with markedly different statistical properties. Since
we do not have any specific priors or theoretical justification for the kinds of
nonstationarities in aggregate turnover, we use the raw data in our empirical
analysis. To address the issue of nonstationarities, we conduct our empirical
analysis on 5-year subperiods only.9 For notational convenience, we shall some-
times refer to these subperiods by the following numbering scheme:

Subperiod 1: July 1962 to December 1966
Subperiod 2: January 1967 to December 1971
Subperiod 3: January 1972 to December 1976
Subperiod 4: January 1977 to December 1981
Subperiod 5: January 1982 to December 1986
Subperiod 6: January 1987 to December 1991
Subperiod 7: January 1992 to December 1996
Subperiod 8: January 1997 to December 2001
Subperiod 9: January 2002 to December 2004

9 Obviously, from a purely statistical perspective, using shorter subperiods does not render a

nonstationary time series stationary. However, if the sources of nonstationarity are institutional

changes and shifts in general business conditions, confining our attention to shorter time spans

does improve the quality of statistical inference. See Lo and Wang (2000) for further discussion.
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B. Construction of the Hedging Portfolio

Our first step in empirically implementing the intertemporal model of Sec-
tions I and II is to construct the hedging portfolio from turnover data. From
(16), we know that in the two-factor model for turnover in Proposition 1, stock
j’s loading on the second factor FHt yields the number of shares (as a fraction
of its total number of shares outstanding) of stock j in the hedging portfolio. In
principle, this identifies the hedging portfolio. However, we face two challenges
in practice. First, the two-factor specification (16) is, at best, an approximation
for the true data generating process of turnover (even within the context of the
model as Proposition 1 states). Second, the two common factors are generally
not observable. We address both of these issues in turn.

A more realistic starting point for modeling turnover is the two-factor model

τjt = FMt + θHj FHt + εjt, j = 1, . . . , J , (29)

where FMt and FHt are the two factors associated with trading in the market
portfolio and the hedging portfolio, respectively, θHj is the percentage of shares
of stock j in the hedging portfolio (as a percentage of its total number of shares
outstanding), and εjt is the error term, which is assumed to be independent
across stocks.

Cross-sectional independence of the errors is a restrictive assumption. If, for
example, there are other common factors in addition to FMt and FHt, then εjt is
likely to be correlated across stocks. The appropriateness of the independence
assumption is an empirical matter, and in Lo and Wang (2000), we find evi-
dence supporting a two-factor structure. In particular, the covariance matrices
of turnover for a collection of turnover-beta-sorted portfolios generally exhibit
two large eigenvalues that dominate the rest. This provides limited justification
for assuming that εjt is independent across stocks.

Since we do not have sufficient theoretical foundation to identify the two com-
mon factors FMt and FHt, we use two turnover indexes as their proxies, namely,
the equal-weighted and share-weighted turnover of the market. Specifically,
let Nj denote the total number of trading units, each as a fraction of the total
share, for stock j and let N ≡ ∑

j N j denote the total number of trading units

of all stocks.10 The two turnover indexes are

τEW
t ≡ 1

J

J∑
j=1

τjt = FMt + nEW FHt + εEW
t (30a)

τSW
t ≡

J∑
j=1

N j

N
τjt = FMt + nSW FHt + εSW

t , (30b)

10 By standard terminology, Nj should be the number of shares outstanding for stock j. Given our

convention that the total number of shares outstanding is always normalized to one, Nj becomes

the number of subunits used in trading stock j.
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where

nEW = 1

J

J∑
j=1

θHj and nSW =
J∑

j=1

N j

N
θHj (31)

are the average fraction of trading units of each stock in the hedging portfolio
and the fraction of all trading units (of all stocks) in the hedging portfolio,
respectively, and εEW

t and εSW
t are the error terms for the two indexes.11 Since

the error terms in (29) are assumed to be independent across stocks, the error
terms of the two indexes, which are weighted averages of the error terms of
individual stocks, become negligible when the number of stocks is large. For
the remainder of our analysis, we shall ignore them.

Simple algebra then yields the following relation between individual turnover
and the two indexes:

τjt = βSW
τ j τSW

t + βEW
τ j τEW

t + εjt, (32)

where

βEW
τ j = θHj − nSW

nEW − nSW
and βSW

τ j = nEW − θHj

nEW − nSW
. (33)

These expressions imply that the following relations for βEW
τ j and βSW

τ j must hold

βEW
τ j + βSW

τ j = 1, ∀ j (34a)

1

J

J∑
j=1

βEW
τ j = 1. (34b)

These relations should come as no surprise since the two-factor specification for
turnover, (29), has only J parameters {θHj}, whereas the transformed two-factor
model, (32), has two sets of parameters, {βEW

τ j } and {βSW
τ j }. The first relation,

(34a), exactly reflects the dependence between the parameters and the second
relation, (34b), comes from the fact that the coefficients in (32) are independent
of the scale of {θHj}.

Using the MiniCRSP volume database, we can empirically estimate {βEW
τ j }

and {βSW
τ j } by estimating the following constrained regression:

τjt = βSW
τ j τSW

t + βEW
τ j τEW

t + εjt, j = 1, . . . , J (35a)

s.t. ρβEW
τ j + βSW

τ j = 1 (35b)

J∑
j=1

βEW
τ j = J . (35c)

11 To avoid degeneracy, we need Nj 	= Nk for some j 	= k, which is surely valid empirically.
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From the estimates {β̂EW
τ j }, we can construct estimates of the portfolio weights

of the hedging portfolio in the following manner:

θ̂Hj = (nEW − nSW)β̂EW
τ j + nSW . (36)

However, there are two remaining parameters, nEW and nSW , that need to be es-
timated. It should be emphasized that these two remaining degrees of freedom
are inherent in the model (see equation (29)). When the two common factors
are not observed, the parameters {θHj} are only identified up to a scaling con-
stant and a rotation. Clearly, equation (29) is invariant when FHt is rescaled as
long as {θHj} is also rescaled appropriately. In addition, when the two factors
are replaced by their linear combinations, equation (29) remains the same as
long as {θHj} is also adjusted with an additive constant.12 Since the hedging
portfolio {θHj} is defined only up to a scaling constant, we let

nSW = 1 (37a)

nEW − nSW = φ, (37b)

where φ is a parameter that we calibrate to the data (see Section IV). This
yields the final expression for the J components of the hedging portfolio:

θ̂Hj = φ β̂EW
τ j + 1. (38)

The normalization nSW = 1 sets the total number of shares in the portfolio to a
positive value. If φ = 0, the portfolio has an equal percentage of all the shares
of each company, implying that it is the market portfolio. Nonzero values of φ

represent deviations from the market portfolio.
To estimate {βEW

τ j } and {βSW
τ j }, we first construct the two turnover indexes.

Figure 1 plots their time series over the entire sample period from 1962 to
2004. We estimate (35a)–(35b) for each of the seven 5-year subperiods, ig-
noring the global constraint (35c).13 Therefore, we estimate both constrained
and unconstrained linear regressions of the weekly turnover for each stock
on equal- and share-weighted turnover indexes in each of the seven 5-year
subperiods of our sample. Table I reports summary statistics for the uncon-
strained regressions (see Lo and Wang (2005) for the constrained regression
results). To provide a clearer sense of the dispersion of these regressions, we

12 For example, for any a, we have ∀j:

τjt = FMt + θHj FHt + εjt = (FMt + aFHt) + (θHj − a)FHt + εjt = F̃Mt + θ̃Hj FHt + εjt, (47)

where F̃Mt = FMt + aFHt and θ̃Hj = θHj − a.
13 We ignore this constraint for two reasons. First, given the large number of stocks in our sample,

imposing a global constraint such as (35c) requires a prohibitive amount of random access memory

in standard regression packages. Second, because of the large number of individual regressions

involved, neglecting the reduction of one dimension should not significantly affect any of the final

results.



Trading Volume 2821

(a)

(b)

Equal-Weighted Turnover

Year

W
e
e
k
ly

 T
u
rn

o
v
e
r(

%
)

0
1

2
3

4

1962 1967 1972 1977 1982 1987 1992 1997 2002

Share-Weighted Turnover

Year

W
e
e
k
ly

 T
u
rn

o
v
e
r(

%
)

0
1

2
3

4

1962 1967 1972 1977 1982 1986 1992 1996 2002

Figure 1. Time series of equal- and share-weighted turnover indices from 1962 to 2004.
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Table I
Summary statistics for the unrestricted volume betas using weekly returns and volume data for

NYSE and AMEX stocks for three subperiods: January 1967 – December 1971, January 1997 –

December 2001, and January 2002 – December 2004. Turnover over individual stocks is regressed

on the equal-weighted and share-weighted turnover indices, giving two regression coefficients, βEW
τ

and βSW
τ . The stocks are then sorted into 10 deciles by the estimates β̂EW

τ , and summary statistics

are reported for deciles 1, 4, 7, and 10. The last two columns report the test statistic for the condition

that βEW
τ and βSW

τ add up to one.

β̂EW
τ t(β̂EW

τ ) β̂SW
τ t(β̂SW

τ ) R
2

(%) p-value (%)
Sample

Decile Size Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

January 1967 – December 1971 (261 Weeks)

1 242 −5.11 17.10 −4.31 2.69 12.97 35.91 6.28 3.30 52.1 16.3 1.0 4.3

4 243 −0.18 0.07 −2.30 2.61 1.13 0.73 5.22 3.64 60.6 15.5 16.3 27.9

7 243 1.10 0.20 3.38 1.89 −0.38 0.93 −1.10 1.62 56.0 12.0 20.6 28.1

10 242 7.50 3.60 6.83 2.63 −9.67 5.56 −4.64 2.05 55.6 11.7 10.1 21.8

January 1997 – December 2001 (261 Weeks)

1 326 −7.06 21.11 −2.63 1.64 8.37 20.48 3.76 2.25 58.8 19.4 17.5 28.2

4 327 0.09 0.09 0.45 0.69 0.41 0.50 0.74 1.11 53.4 23.1 4.8 17.2

7 327 1.31 0.16 2.28 1.37 −0.48 0.53 −1.20 1.26 54.0 18.3 6.9 19.4

10 326 12.11 32.64 2.95 1.52 −9.41 29.10 −2.28 1.28 46.6 19.0 8.8 20.9

January 2002 – December 2004 (156 Weeks)

1 233 −3.80 3.71 −3.32 2.50 5.68 4.75 5.16 3.69 64.2 22.3 13.6 24.9

4 234 0.10 0.07 0.86 0.94 0.32 0.45 1.23 1.83 59.2 24.3 3.8 15.4

7 234 1.06 0.16 3.02 1.90 −0.17 0.73 −1.06 1.89 63.9 21.0 8.3 20.8

10 233 10.46 12.23 4.68 2.93 −8.26 10.94 −3.46 2.35 54.5 22.4 17.0 26.9

first sort them into deciles based on {β̂EW
τ j }, and then compute the means and

standard deviations of the estimated coefficients {β̂EW
τ j } and {β̂SW

τ j }, their t-
statistics, and the R̄2s within each decile. To conserve space, we report results
for only deciles 1, 4, 7, and 10, and only for subperiods 1, 8, and 9 (see Lo
and Wang (2005) for a more complete set of empirical results). The t-statistics
indicate that the estimated coefficients are generally significant, even in the
fourth and seventh deciles, the average t-statistics for {β̂EW

τ j } are −2.30 and

3.38, respectively in the first subperiod (of course, we would expect signifi-
cant t-statistics in the extreme deciles even if the true coefficients were zero,
purely from sampling variation). The average R̄2s also look impressive, ranging
from 40% to 60% across deciles and subperiods. Clearly, the two-factor model of
turnover accounts for a significant amount of variation in the weekly turnover
of individual stocks.

Despite the fact that the results in Table I are derived from unconstrained
regressions, the constraint seems to be reasonably consistent with the data,
with average p-values well above 5% for all but the first decile in the first
two subperiods (decile 1 in subperiod 1 has a p-value of 4.0%, and decile 1 in
subperiod 2 has a p-value of 4.3%).
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IV. The Forecast Power of the Hedging Portfolio

Having constructed the hedging portfolio up to a parameter φ, to be deter-
mined, we can examine its time-series properties as predicted by the model of
Sections I and II. In particular, in this section we focus on the degree to which
the hedging portfolio can predict future stock returns, especially the return on
the market portfolio. We first construct the returns of the hedging portfolio in
Subsection A by calibrating φ, and then compare its forecast power with other
factors in Subsections B and C.

A. Hedging Portfolio Returns

To construct the return on the hedging portfolio, we begin by calculating its
dollar value and dollar returns. Let k denote subperiod k, k = 2, . . . , 7, Vjt(k)
denote the time-t (end-of-week-t) total market capitalization of stock j in sub-
period k, Qjt(k) denote its dividend-adjusted excess dollar return for the same
period, Rjt(k) denote the dividend-adjusted excess return, and θ j(k) denote the
estimated share (as a fraction of its total shares outstanding) in the hedging
portfolio in subperiod k.

For stock j to be included in the hedging portfolio in subperiod k, which we
shall refer to as the “testing period,” we require that it has volume data for at
least one-third of the sample in the previous subperiod (k − 1), which we refer
to as the “estimation period.” Among the stocks that satisfy this criteria, we
eliminate those ranked in the top and bottom 0.5% according to their volume
betas (or their share weights in the hedging portfolio) to limit the potential
impact of outliers. We let Jt(k) denote the set of stocks that survive these two
filters and that have price and return data for week t of subperiod k. The hedging
portfolio in week t of subperiod k is then given by

θHjt(k) =
⎧⎨⎩θ̂Hj, j ∈ Jt(k)

0, j /∈ Jt(k).

(39)

The dollar return of the hedging portfolio for week t follows

QHt(k) ≡
∑

j

θHjt(k)Vjt−1(k) Rjt(k), (40)

and the (rate of) return of the hedging portfolio is given by

RHt(k) ≡ QHt(k)

VHt−1(k)
, (41)

where

VHt−1(k) ≡
∑

j

θHjt(k)Vjt−1(k) (42)

is the value of the hedging portfolio at the beginning of the week.
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The procedure outlined above yields the return and the dollar return of the
hedging portfolio up to the parameter φ, which must be calibrated. To do so, we
exploit a key property of the hedging portfolio: Its return is the best forecaster
of future market returns (see Section II). Therefore, for a given value of φ, we
can estimate the regression

RMt+1 = δ0 + δ1{RHt or QHt} + εMt+1, (43)

where the single regressor is either the return of the hedging portfolio RHt or
its dollar return for a given choice of φ, and then vary φ to maximize the R̄2.14

The R̄2 from the regression of RMt on the lagged return and dollar return,
respectively, of the hedging portfolio varies with the value of φ in each of the
subperiods, and in all cases, there is a unique global maximum, from which
we obtain φ. However, for some values of φ, the value of the hedging portfolio
changes sign, and in these cases, defining the return on the portfolio becomes
problematic. Thus, we eliminate these values from consideration, and for all
subperiods except subperiods 4 and 7 (i.e., subperiods 2, 3, 5, 6, 8, and 9), the
omitted values of φ do not consistently affect the choice of φ for the maximum
R2.15

For subperiods 2 to 9, the values for φ that give the maximum R2 are 1.25,
4.75, 1.75, 47, 38, 0.25, 25, and −1.25, respectively, using RHt as the predictor.
Using QHt, the values of φ are 1.5, 4.25, 2, 20, 27, 0.75, 13, and 12, respectively.
With these values of φ in hand, we have fully specified the hedging portfolio,
its return and its dollar return. Table II reports the summary statistics for the
return and dollar return on the hedging portfolio.

B. Optimal Forecasting Portfolios (OFPs)

Having constructed the return of the hedging portfolio in Subsection A, we
wish to compare its forecast power to those of other forecasters. According to
Proposition 2, the returns of the hedging portfolio should outperform the re-
turns of any other portfolio in predicting future market returns. Specifically, if
we regress RMt on the lagged return of any arbitrary portfolio p, the R̄2 should
be no greater than that of (43).

It is impractical to compare (43) against all possible portfolios, and uninfor-
mative to compare it against random portfolios. Instead, we need only make
comparisons against “optimal forecast portfolios,” portfolios that are optimal

14 This approach ignores the impact of statistical variation on the “optimal” φ, which is beyond

the scope of this paper but is explored further in related contexts by Foster, Smith, and Whaley

(1997) and Lo and MacKinlay (1997).
15 There is no restriction on the value of φ if we use dollar returns. We do consider wider ranges

of φ, but we do not find better candidates for the hedging portfolio in most cases. Even if we did,

the identified hedging portfolio would involve large short positions in certain stocks, which may be

deemed unrealistic. In any case, limiting ourselves to a smaller range of φ biases against our finding

supporting evidence for the model. The empirical results presented in the paper can therefore be

viewed as a “lower bound.” See Lo and Wang (2005) for more details.
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Table II
Summary statistics for the returns and dollar returns of the hedging portfolio constructed from

individual stocks’ volume data using weekly returns and volume data for NYSE and AMEX stocks

from 1962 to 2004 and for subperiods. Autocorrelation of lag k is denoted by ρk.

Sample Period

Statistic Entire 67–71 72–76 77–81 82–86 87–91 92–96 97–01 02–04

Hedging Portfolio Return, RHt
Mean (%) 1.2 0.1 0.5 0.7 1.1 5.2 0.3 0.6 0.5

S.D. (%) 18.0 2.9 3.9 4.5 4.6 47.7 1.3 8.0 9.4

Skewness 25.2 0.6 0.5 −0.3 0.3 10.2 −0.2 −0.2 0.0

Kurtosis 860.8 1.5 7.6 0.7 1.3 130.5 0.9 0.0 6.2

ρ1 (%) 1.3 19.9 14.1 19.6 12.5 0.4 −16.5 −10.4 −4.2

ρ2 (%) −5.8 1.8 0.6 7.1 3.6 −7.0 −2.8 −3.3 −9.4

ρ3 (%) 10.4 −2.8 −3.6 −1.0 7.3 9.9 −0.3 8.3 9.2

ρ4 (%) 17.0 7.0 4.3 4.5 −11.3 18.2 −1.0 −4.5 −21.6

ρ5 (%) −7.9 11.4 14.4 −2.6 −10.3 −9.9 −2.5 −0.8 13.2

Hedging Portfolio Dollar Return, QHt
Mean 1.8 0.1 1.2 2.3 5.6 3.2 0.3 0.7 0.0

S.D. 20.0 3.6 11.1 21.5 25.4 20.9 1.8 35.9 10.5

Skewness 0.0 0.2 −0.1 −0.5 −0.1 2.1 0.2 −0.3 0.5

Kurtosis 10.5 −0.1 0.5 2.3 6.5 13.3 2.0 2.0 1.0

ρ1 (%) 2.8 21.9 25.1 20.0 9.8 15.7 −12.2 −15.2 −3.8

ρ2 (%) 4.4 1.4 14.8 5.2 12.5 −1.5 −9.5 −0.7 −4.3

ρ3 (%) 6.5 0.3 7.7 1.0 7.1 −4.1 3.7 9.9 0.8

ρ4 (%) −0.8 6.1 8.4 12.7 −3.7 −6.6 1.4 −5.1 4.6

ρ5 (%) 1.2 11.6 10.2 −0.2 5.1 −1.6 −2.7 −2.0 −1.2

forecasters of RMt, since by construction, no other portfolios can have higher
levels of predictability than these. The following proposition shows how to con-
struct optimal forecasting portfolios (OFPs):

PROPOSITION 5: Let 0 and 1 denote the contemporaneous and first-order auto-
covariance matrix of the vector of all returns. For any arbitrary target portfolio q
with weights wq = (wq1; . . . ; wqN), define A ≡ −1

0 1wqw′
q

′
1. The optimal fore-

cast portfolio of wq is given by the normalized eigenvector of A that corresponds
to its largest eigenvalue.16

Since 0 and 1 are unobservable, they must be estimated using histori-
cal data. Given the large number of stocks in our sample (over 2,000 in each
subperiod) and the relatively short time series in each subperiod (261 weekly
observations), the standard estimators for 0 and 1 become singular. How-
ever, it is possible to construct OFPs from a much smaller number of “basis
portfolios,” and then compare the predictive power of these OFPs to the hedg-
ing portfolio. As long as the basis portfolios are not too specialized, the R̄2s
are likely to be similar to those obtained from the entire universe of all stocks.

16 When returns are driven by the process given in (12), the OFP given here is exactly the hedging

portfolio, as shown earlier. See the proof of this proposition in the Appendix.
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Our general approach is to evaluate the forecast power of the hedging port-
folio in 5-year subperiods (testing periods), using preceding 5-year subperiods
(estimation periods) to estimate the OFPs.

We form several sets of basis portfolios by sorting all the J stocks into K
groups of equal numbers (K ≤ J) according to market capitalization, market
beta, and SIC codes, and then construct value-weighted portfolios within each
group.17 This procedure yields K basis portfolios for which the corresponding
0 and 1 can be estimated using the portfolios’ weekly returns within each
subperiod. Based on the estimated autocovariance matrices, the OFP can be
computed easily according to Proposition 5.

In selecting the number of basis portfolios K, we face the following trade-off:
Fewer portfolios yields better sampling properties for the covariance matrix
estimators, but less desirable properties for the OFP since the predictive power
of the OFP is obviously maximized when K = J. As a compromise, for the OFPs
based on market capitalization and market betas, we choose K to be 10, 15, 20,
and 25. For the OFP based on SIC codes, we choose 13 industry groupings that
we describe in more detail below.

Specifically, for each 5-year test period in which we wish to evaluate the
forecast power of the hedging portfolio, we use the previous 5-year estima-
tion subperiod to estimate the OFPs. For the OFP based on 10 market-
capitalization-sorted portfolios, which we call “CAP10,” we construct 10 value-
weighted portfolios each week, one for each market-capitalization decile.
Market-capitalization deciles are recomputed each week, and the time series
of decile returns form the 10 basis portfolio returns of CAP10, with which we
can estimate 0 and 1. To compute the OFP, we also require the weights ωq of
the target portfolio, in this case the market portfolio. Since the testing period
follows the estimation period, we use the market capitalization of each group
in the last week of the estimation period to map the weights of the market port-
folio into a 10 × 1 vector of weights for the 10 basis portfolios. The weights of
the OFP for the CAP10 basis portfolios follow immediately from Proposition 5.
The same procedure is used to form OFPs for CAP15, CAP20, and CAP25 basis
portfolios.

The OFPs of market-beta-sorted basis portfolios are constructed in a similar
manner. We first estimate the market betas of individual stocks in the esti-
mation period, sorting them according to their estimated betas, and then form
small groups of basis portfolios, calculating value-weighted returns for each
group. We consider 10, 15, 20, and 25 groups, denoted by “BETA10,” “BETA15,”
and so on. The same procedure is then followed to construct the OFPs for each
of these sets of basis portfolios.

Finally, the industry portfolios are based on SIC-code groupings. The first
two digits of the SIC code yield 60 to 80 industry categories, depending on the

17 It is important that we use value-weighted portfolios here so that the market portfolio, whose

return we wish to predict, is a portfolio of these basic portfolios (recall that the target portfolio ωq

that we wish to forecast is a linear combination of the vector of returns for which k is the kth-order

autocovariance matrix).
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sample period, and some of the categories contain only one or two stocks. On
the other hand, the first digit yields only 8 broad industry categories. As a
compromise, we use a slightly more disaggregated grouping of 13 industries,
given by the following correspondence:18

no. SIC Codes Description

1 1–14 Agriculture, forest, fishing, mining
2 15–19, 30, 32–34 Construction, basic materials (steel, glass,

concrete, etc.)
3 20–21 Food and tobacco
4 22, 23, 25, 31, 39 Textiles, clothing, consumer products
5 24, 26–27 Logging, paper, printing, publishing
6 28 Chemicals
7 29 Petroleum
8 35–36, 38 Machinery and equipment supply, including computers
9 37, 40–47 Transportation-related

10 48–49 Utilities and telecommunications
11 50–59 Wholesale distributors, retail
12 60–69 Financial
13 70–89, 98–99 Recreation, entertainment, services, conglomerates, etc.

Each week, stocks are sorted according to their SIC codes into the 13 cat-
egories defined above, and value-weighted returns are computed for each
group, yielding the 13 basis portfolios that we denote by “SIC13.” The auto-
covariance matrices are then estimated and the OFP constructed according to
Proposition 5.

C. Hedging Portfolio Return as a Predictor of Market Returns

Table III reports the results of the regressions of RMt on various lagged OFP
returns and on the lagged return and dollar return on the hedging portfolio,
RHt−1 and QHt−1. For each subperiod, we use the hedging portfolio with the φ

value determined in Subsection A. For completeness, we also include four addi-
tional regressions, with lagged value- and equal-weighted CRSP index returns,
the logarithm of the reciprocal of lagged market capitalization, and the lagged
3-month constant-maturity Treasury bill return as predictors.19 Table III shows

18 We are grateful to Jonathan Lewellen for sharing his industry classification scheme.
19 We also consider nine other interest-rate predictors (6-month and 1-year Treasury bill rates,

3-month, 6-month, and 1-year off-the-run Treasury bill rates, 1-month and 3-month CD and Eu-

rodollar rates, and the Fed Funds rate, all obtained from the Federal Reserve Bank of St. Louis,

http://www.stls.frb.org/fred/data/wkly.html. Each of these variables produces results similar to

those for the 3-month constant-maturity Treasury bill return, hence we omit those regressions

from Table III.
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Table III
R2s of linear forecasts of weekly market portfolio returns by lagged weekly returns of the opti-

mal forecast portfolios (OFPs) for the set of 10, 15, 20, and 25 beta-sorted portfolios (BETA10,

BETA15, BETA20, and BETA25, respectively), the OFPs for the set of 10, 15, 20, and 25 market-

capitalization-sorted portfolios (CAP10, CAP15, CAP20, and CAP25, respectively), the SIC-sorted

OFP (SIC13), the return and dollar return on the hedging portfolio (RH and QH , respectively), minus

log market capitalization (log(Cap−1)), the lagged returns on the CRSP value- and equal-weighted

portfolios (VW and EW, respectively) for subperiods from 1962 to 2004, and lagged constant-

maturity (3-month) Treasury bill rates (TBill) for sub-periods from 1982 to 2004, in percentage. The

values of φ for the return RH and dollar return QH on the hedging portfolio are selected optimally

for each subperiod.

Sample Period

Forecaster 67–71 72–76 77–81 82–86 87–91 92–96 97–01 02–04

BETA10 1.3 0.0 0.0 0.0 1.0 0.4 0.4 2.2

BETA15 0.1 0.5 0.3 0.3 1.5 0.0 0.4 1.0

BETA20 1.4 2.6 0.1 1.5 0.2 0.3 0.1 2.6

BETA25 1.2 0.1 0.1 0.5 0.3 0.3 0.4 1.6

CAP10 1.4 1.1 0.0 0.1 2.1 0.5 0.1 0.7

CAP15 0.5 0.2 0.0 0.0 0.0 0.0 0.3 0.3

CAP20 0.0 0.5 0.3 0.2 0.0 0.0 0.0 2.5

CAP25 0.5 0.1 0.4 0.1 0.0 0.1 1.2 0.9

SIC13 3.1 0.1 0.5 1.4 2.1 0.2 0.2 3.4

RH 4.5 0.8 1.3 1.2 7.3 3.2 3.9 5.1

QH 5.6 1.4 1.2 0.9 2.4 2.2 4.1 1.7

log(Cap−1) 2.1 0.8 0.2 0.5 0.8 0.3 1.9 0.9

VW 3.7 0.0 0.5 0.5 0.3 2.8 0.6 2.1

EW 1.6 0.3 0.7 0.3 0.1 4.1 0.7 4.6

TBill 0.6 0.3 1.1 0.0 0.4

that the hedging portfolios outperform all of the other competing portfolios in
forecasting future market returns in 5 of the 8 subperiods (subperiods 2, 4, 6, 8,
and 9). In subperiod 3, only one OFP (BETA20) outperforms the hedging port-
folio, and in subperiod 5, BETA20 and SIC13’s OFPs outperform the hedging
portfolio, but only marginally. In subperiod 7, the equal-weighted CRSP index
return outperforms the hedging portfolio.

However, several caveats should be kept in mind with regard to the three sub-
periods in which the hedging portfolios are surpassed by one or two competing
portfolios. First, in these three subperiods, the hedging portfolio still outper-
forms most of the other competing portfolios. Second, there is no consistent
winner in these subperiods. Third, the performance of the hedging portfolios is
often close to the best performer. Moreover, the best performers in these sub-
periods performed poorly in the other subperiods, raising the possibility that
their performance might be due to sampling variation. In contrast, the hedging
portfolios forecasted the market return consistently in every subperiod. Indeed,
among all of the regressors, the hedging portfolios are the most consistent across
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all 8 subperiods, a remarkable confirmation of the properties of the model of
Sections I and II.20

V. The Hedging-Portfolio Return as a Risk Factor

To evaluate the success of the hedging portfolio return as a risk factor in
the cross section of expected returns, we implement a slightly modified ver-
sion of the well known regression tests outlined in Fama and MacBeth (1973).
The basic approach is the same: Form portfolios sorted by an estimated pa-
rameter such as market beta coefficients in one time period (the “portfolio-
formation period”), estimate betas for those same portfolios in a second nonover-
lapping time period (the “estimation period”), and perform a cross-sectional re-
gression test for the explanatory power of those betas using the returns of
a third nonoverlapping time period (the “testing period”). However, in con-
trast to Fama and MacBeth (1973), we use weekly instead of monthly re-
turns, and our portfolio formation, estimation, and testing periods are 5 years
each.21

Specifically, we run the following bivariate regression for each security in
the portfolio formation period, using only those securities that exist in all three
periods:22

Rjt = α j + βM
j RMt + βH

j RHt + εit, (44)

where RMt is the return on the CRSP value-weighted index and RHt is the
return on the hedging portfolio. Using the estimated coefficients {β̂M

i } and {β̂H
i },

we perform a double sort among the individual securities in the estimation
period, creating 100 portfolios corresponding to the deciles of the estimated
market and hedging portfolio betas. We re-estimate the two betas for each of
these 100 portfolios in the estimation period, and use these estimated betas
as regressors in the testing period, for which we estimate the following cross-
sectional regression:

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H
p + ηpt, (45)

20 On the other hand, the results in Table III must be tempered by the fact that the OFPs are

only as good as the basis portfolios from which they are constructed. Increasing the number of basis

portfolios should, in principle, increase the predictive power of the OFP. However, as the number

of basis portfolios increases, the estimation errors in the autocovariance estimators γ̂0 and γ̂1 also

increase for a fixed set of time-series observations, thus the impact on the predictive power of the

OFP is not clear.
21 Our first portfolio formation period, from 1962 to 1966, is only 41/2 years because the CRSP

Daily Master file begins in July 1962. Fama and MacBeth’s (1973) original procedure uses a 7-year

portfolio formation period, a 5-year estimation period, and a 4-year testing period.
22 This induces a certain degree of survivorship bias since our sample requires that stocks be

listed for at least 15 years. While survivorship bias has a clear impact on expected returns and on

the size effect, its implications for the cross-sectional explanatory power of the hedging portfolio

are less obvious, hence we proceed cautiously with this selection criterion.
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where Rpt is the equal-weighted portfolio return for securities in portfolio p,
p = 1, . . . , 100, which we construct from the double-sorted rankings of the port-
folio estimation period, and β̂M

pt and β̂H
pt are the market and hedging-portfolio

returns, respectively, of portfolio p that we obtain from the estimation period.
This cross-sectional regression is estimated for each of the 261 weeks in the
5-year testing period, yielding a time series of coefficients {γ̂0t}, {γ̂1t}, and {γ̂2t}.
This entire procedure is repeated by incrementing the portfolio formation, esti-
mation, and testing periods by 5 years. We then perform the same analysis for
the hedge portfolio dollar return series {QHt}.

Because we use weekly instead of monthly data, it may be difficult to compare
our results to other cross-sectional tests in the extant literature, for example,
Fama and French (1992). Therefore, we apply our procedure to four other bench-
mark models: The standard CAPM in which RMt is the only regressor in (44);
a two-factor model in which the hedging portfolio return factor is replaced by
a “small-minus-big capitalization” or “SMB” portfolio return factor as in Fama
and French (1992); a two-factor model in which the hedging-portfolio return
factor is replaced by the OFP return factor described in Subsection B;23 and
a three-factor model in which both SMB and high-minus-low book-to-market
(HML) factors are included along with the market factor, that is

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SMB
p + γ3t β̂

HML
p + ηpt. (46)

Table IV reports correlations in subperiods 1, 8, and 9 among the different
portfolio return factors, returns on CRSP value- and equal-weighted portfolios,
the return and dollar return on the hedging portfolio, returns on the SMB
portfolio, the return on OFP BETA20, and the two turnover indices (see Lo and
Wang (2005) for summary statistics for the return betas from the six linear
factor models).

Table V summarizes the results of all of these cross-sectional regression tests
for each of the seven testing periods from 1972 to 2004. In the first subpanel,
which corresponds to the first testing period from 1972 to 1976, there is little
evidence in support of the CAPM or any of the other linear models we esti-
mate.24 For example, the first three rows show that the time-series average
of the market beta coefficients, {γ̂1t}, is 0.0%, with a t-statistic of 0.35 and an
average R̄2 of 10.0%.25 When the hedging portfolio beta β̂H

t is added to the

23 Specifically, the SMB portfolio return is constructed by taking the difference of the value-

weighted returns of securities with market capitalization below and above the median market

capitalization at the start of the 5-year subperiod.
24 The two-factor model with OFP as the second factor is not estimated until the second testing

period because we use the 1962 to 1966 period to estimate the covariances from which the OFP

returns in the 1967 to 1971 period are constructed. Therefore, the OFP returns are not available

in the first portfolio formation period.
25 The t-statistic is computed under the assumption of independently and identically distributed

coefficients {γ 1t}, which may not be appropriate. However, since this has become the standard

method for reporting the results of these cross-sectional regression tests, we follow this convention

to make our results comparable to those in the literature.
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Table IV
Correlation matrix for weekly returns on the CRSP value-weighted index (RVWt), the CRSP equal-

weighted index (REWt), the hedging portfolio return (RHt), the hedging portfolio dollar return (QHt),

the return of the small-minus-big capitalization stocks portfolio (RSMBt), the return of the high-

minus-low book-to-market stocks portfolio (RHMLt), the return ROFPt of the optimal forecast portfolio

(OFP) for the set of 20 market-beta-sorted basis portfolios, and the equal-weighted and share-

weighted turnover indices (τEW
t and τSW

t ), using CRSP weekly returns and volume data for NYSE

and AMEX stocks for three subperiods: January 1967 – December 1971, January 1997 – December

2001, and January 2002 – December 2004.

RVWt REWt RHt QHt RSMBt RHMLt ROFPt τEW
t τSW

t

January 1967 – December 1971 (261 Weeks)

RVWt 100.0 92.6 95.6 91.5 62.7 −44.1 −76.2 19.1 26.3

REWt 92.6 100.0 92.3 88.4 84.5 −40.8 −71.9 32.8 36.9

RHt 95.6 92.3 100.0 97.4 70.7 −52.4 −65.0 22.0 29.6

QHt 91.5 88.4 97.4 100.0 69.8 −49.4 −60.1 22.9 29.8

RSMBt 62.7 84.5 70.7 69.8 100.0 −40.6 −46.6 39.7 38.2

RHMLt −44.1 −40.8 −52.4 −49.4 −40.6 100.0 14.5 −9.0 −15.0

ROFPt −76.2 −71.9 −65.0 −60.1 −46.6 14.5 100.0 −7.5 −10.4

τEW
t 19.1 32.8 22.0 22.9 39.7 −9.0 −7.5 100.0 93.1

τSW
t 26.3 36.9 29.6 29.8 38.2 −15.0 −10.4 93.1 100.0

January 1997 – December 2001 (261 Weeks)

RVWt 100.0 80.4 57.9 43.4 −20.7 −48.7 −45.7 3.3 −0.9

REWt 80.4 100.0 54.8 42.6 24.9 −46.7 −33.1 7.9 −1.4

RHt 57.9 54.8 100.0 89.2 17.0 −71.0 −15.5 0.0 −2.2

QHt 43.4 42.6 89.2 100.0 25.3 −70.0 −1.2 3.8 0.4

RSMBt −20.7 24.9 17.0 25.3 100.0 −41.8 25.8 7.0 0.1

RHMLt −48.7 −46.7 −71.0 −70.0 −41.8 100.0 2.5 −0.1 4.4

ROFPt −45.7 −33.1 −15.5 −1.2 25.8 2.5 100.0 −0.9 1.8

τEW
t 3.3 7.9 0.0 3.8 7.0 −0.1 −0.9 100.0 92.4

τSW
t −0.9 −1.4 −2.2 0.4 0.1 4.4 1.8 92.4 100.0

January 2002 – December 2004 (156 Weeks)

RVWt 100.0 91.8 68.6 −11.5 −17.1 −6.6 55.0 9.3 4.1

REWt 91.8 100.0 76.3 −32.7 15.8 10.2 50.3 5.5 −3.1

RHt 68.6 76.3 100.0 −60.4 14.1 −2.0 31.5 5.4 −0.4

QHt −11.5 −32.7 −60.4 100.0 −56.5 −2.4 −2.5 −3.9 3.3

RSMBt −17.1 15.8 14.1 −56.5 100.0 9.4 −7.2 −5.6 −9.1

RHMLt −6.6 10.2 −2.0 −2.4 9.4 100.0 −17.2 −18.3 −27.9

ROFPt 55.0 50.3 31.5 −2.5 −7.2 −17.2 100.0 12.1 3.7

τEW
t 9.3 5.5 5.4 −3.9 −5.6 −18.3 12.1 100.0 77.8

τSW
t 4.1 −3.1 −0.4 3.3 −9.1 −27.9 3.7 77.8 100.0

regression, the R̄2 increases to 14.3% but the average of the coefficients {γ̂2t}
is −0.2% with a t-statistic of −0.82. The average market beta coefficient is still
insignificant, but it has now switched sign. The results for the two-factor model
with the hedging portfolio dollar return factor and the two-factor model with
the SMB factor are similar. The three-factor model is even less successful, with
statistically insignificant coefficients close to 0.0% and an average R̄2 of 8.8%.

In the second testing period, both specifications with the hedging portfolio
factor exhibit statistically significant means for the hedging portfolio betas,
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Table V
Cross-sectional regression tests of six linear factor models along the lines of Fama and MacBeth

(1973), using weekly returns for NYSE and AMEX stocks from 1962 to 2004 in 5-year subperiods

for the portfolio formation, estimation, and testing periods, and 100 portfolios in the cross-sectional

regressions each week. The six linear factor models are: the standard CAPM (β̂M
p ); four two-factor

models in which the first factor is the market beta and the second factors are, respectively, the

hedging portfolio return beta (β̂HR
p ), the hedging portfolio dollar return beta (β̂

HQ
p ), the beta of a

small-minus-big cap portfolio return (β̂SMB
p ), the beta of the Fama and French (1992) high-minus-

low book-to-market portfolio return (β̂HML
p ), and the beta of the optimal forecast portfolio based on

a set of 25 market-beta-sorted basis portfolios (β̂OFP
p ); and a three-factor model with β̂M

p , β̂SMB
p , and

β̂HML
p as the three factors.

Model Statistic γ̂0t γ̂1t γ̂2t γ̂3t R
2
(%)

January 1972 – December 1976 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.2 0.0 10.0

S.D. (%): 1.5 2.1 10.9

t-stat: 1.64 0.35

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.4 −0.2 −0.2 14.3

(φ = 1.25) S.D. (%): 3.5 3.5 3.7 10.9

t-stat: 2.04 −1.05 −0.82

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.4 −0.2 −10.4 15.5

(φ = 1.50) S.D. (%): 3.2 3.4 379.7 10.9

t-stat: 2.16 −1.08 −0.44

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.1 0.0 6.3 12.1

S.D. (%): 1.4 2.4 114.2 10.8

t-stat: 1.42 0.22 0.90

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.0 0.1 0.2 7.8

S.D. (%): 1.8 1.9 1.5 7.8

t-stat: 0.40 1.08 1.66

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.0 0.1 0.0 0.1 8.8

S.D. (%): 1.8 2.1 1.2 1.5 7.6

t-stat: 0.28 0.80 0.50 1.27

January 1977 – December 1981 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.1 0.3 11.7

S.D. (%): 1.1 2.2 12.8

t-stat: 1.17 2.57

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.3 −0.1 −1.2 13.1

(φ = 4.75) S.D. (%): 1.4 2.0 5.1 12.4

t-stat: 3.75 −0.90 −3.71

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.3 −0.1 −156.4 12.5

(φ = 4.25) S.D. (%): 1.3 2.0 610.4 12.2

t-stat: 3.91 −0.75 −4.14

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.1 0.0 29.9 14.9

S.D. (%): 1.1 1.7 108.8 13.4

t-stat: 2.25 −0.16 4.43

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.2 0.2 0.1 9.3

S.D. (%): 1.3 1.9 0.9 9.2

t-stat: 2.15 1.52 1.58

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.3 0.1 0.1 14.1

S.D. (%): 1.8 2.3 3.6 11.6

t-stat: 2.74 0.84 0.63

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.2 −0.0 0.3 −0.1 11.5

S.D. (%): 1.2 1.7 1.0 1.0 10.0

t-stat: 2.72 −0.07 4.61 −0.85

(continued)
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Table V—Continued

January 1982 – December 1986 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.6 −0.1 9.4

S.D. (%): 1.1 1.9 11.1

t-stat: 8.17 −1.04

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.6 −0.1 −0.6 9.6

(φ = 1.75) S.D. (%): 1.1 2.0 5.5 9.4

t-stat: 8.39 −0.78 −1.73

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.6 −0.2 −74.0 10.4

(φ = 2.00) S.D. (%): 1.1 1.9 1987.4 9.5

t-stat: 8.36 −1.30 −0.60

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.5 −0.2 3.8 10.0

S.D. (%): 1.2 1.9 115.4 8.4

t-stat: 7.45 −1.26 0.53

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.5 −0.1 0.2 9.2

S.D. (%): 1.4 1.9 1.5 8.5

t-stat: 5.57 −0.83 1.81

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.5 −0.1 0.0 11.7

S.D. (%): 1.1 2.0 2.1 10.8

t-stat: 7.55 −0.82 0.20

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.4 −0.0 0.0 0.1 10.0

S.D. (%): 1.4 2.2 1.0 1.1 8.5

t-stat: 4.49 −0.24 0.55 1.97

January 1987 – December 1991 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.2 5.9

S.D. (%): 1.3 2.3 8.7

t-stat: 2.65 0.20

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.2 0.0 0.0 5.4

(φ = 47) S.D. (%): 1.6 1.9 6.0 6.1

t-stat: 2.25 0.11 0.13

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.2 0.0 18.9 6.0

(φ = 20) S.D. (%): 1.6 1.9 1819.4 6.7

t-stat: 2.43 −0.15 0.17

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.3 0.0 −7.5 7.8

S.D. (%): 1.4 2.0 123.5 8.2

t-stat: 3.10 0.16 −0.98

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.2 0.0 0.0 6.3

S.D. (%): 1.6 2.0 1.8 7.6

t-stat: 2.11 0.03 −0.38

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.3 −0.1 0.0 6.4

S.D. (%): 1.5 2.1 2.1 7.3

t-stat: 2.73 −0.39 −0.23

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.3 0.0 −0.1 −0.1 7.8

S.D. (%): 1.9 2.1 1.2 1.5 6.8

t-stat: 2.21 0.16 −0.97 −1.10

(continued)

with average coefficients and t-statistics of −1.2% and −3.71 for the hedging-
portfolio return factor and −1.56 and −4.14 for the hedging portfolio dollar
return factor, respectively. In contrast, the market beta coefficients are not
significant in either of these specifications, and are also of the wrong sign. The
only other specifications with a significant mean coefficient are the two-factor
model with SMB as the second factor (with an average coefficient of 29.9% for
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Table V—Continued

January 1992 – December 1996 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.2 0.1 5.7

S.D. (%): 1.3 2.0 7.7

t-stat: 2.68 1.18

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.2 0.1 −0.4 6.9

(φ = 38) S.D. (%): 1.3 2.0 9.1 6.8

t-stat: 2.79 1.16 −0.65

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.3 0.0 −158.4 6.2

(φ = 27) S.D. (%): 1.5 2.2 1299.2 6.6

t-stat: 3.28 −0.18 −1.97

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.2 0.1 15.4 6.7

S.D. (%): 1.5 1.9 115.7 7.0

t-stat: 1.65 0.86 2.15

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.3 0.1 0.0 7.7

S.D. (%): 1.4 1.9 1.0 7.9

t-stat: 3.19 0.78 −0.43

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.1 0.2 0.2 7.9

S.D. (%): 1.6 2.0 1.5 7.4

t-stat: 0.90 1.24 2.41

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.3 0.0 0.2 −0.0 6.6

S.D. (%): 1.5 2.0 1.1 1.1 5.8

t-stat: 2.76 0.08 2.21 −0.27

January 1997 – December 2001 (261 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.3 0.0 8.1

S.D. (%): 1.4 2.5 9.9

t-stat: 2.98 0.27

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.3 0.0 0.0 10.3

(φ = 1.75) S.D. (%): 1.4 2.2 2.0 10.4

t-stat: 3.35 −0.05 −0.21

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.3 0.0 −17.9 9.4

(φ = 2.00) S.D. (%): 1.7 2.3 307.4 8.5

t-stat: 2.86 −0.23 −0.94

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.3 −0.1 0.1 9.3

S.D. (%): 1.6 2.4 1.3 8.3

t-stat: 3.58 −0.97 1.76

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.3 0.0 −0.1 8.8

S.D. (%): 1.5 2.5 1.8 8.4

t-stat: 3.35 −0.05 −0.78

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.3 0.0 0.1 6.4

S.D. (%): 1.5 2.2 1.6 7.5

t-stat: 2.91 0.26 0.71

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.4 −0.2 0.2 −0.0 9.3

S.D. (%): 1.7 2.8 1.5 1.8 7.3

t-stat: 4.31 −1.39 1.8 −0.37

(continued)

the SMB factor and a t-statistic of 4.43) and the three-factor model in which the
SMB factor is also significant (an average coefficient of 0.3% and a t-statistic
of 4.61).

For the five remaining test periods, the only specifications with any sta-
tistically significant factors are the SMB and OFP two-factor models in the



Trading Volume 2835

Table V—Continued

January 2002 – December 2004 (156 Weeks)

Rpt = γ0t + γ1t β̂
M
p + εpt Mean (%): 0.4 0.0 3.9

S.D. (%): 1.7 1.3 4.2

t-stat: 3.26 −0.27

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H R
p + εpt Mean (%): 0.6 −0.2 0.6 9.3

(φ = 1.75) S.D. (%): 1.7 2.5 8.0 9.6

t-stat: 4.54 −0.94 0.94

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H Q
p + εpt Mean (%): 0.7 −0.3 −106.5 5.8

(φ = 2.00) S.D. (%): 2.2 2.2 699.7 6.2

t-stat: 4.29 −1.71 −1.90

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + εpt Mean (%): 0.5 −0.1 0.1 4.2

S.D. (%): 2.2 0.7 0.6 4.9

t-stat: 2.71 −1.43 1.59

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

H M L
p + εpt Mean (%): 0.5 −0.1 0.0 6.1

S.D. (%): 2.0 1.4 1.0 5.4

t-stat: 3.17 −0.86 −0.55

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

O F P
p + εpt Mean (%): 0.4 0.0 0.0 4.1

S.D. (%): 1.7 1.3 0.4 4.0

t-stat: 3.15 0.01 −0.19

Rpt = γ0t + γ1t β̂
M
p + γ2t β̂

SM B
p + γ3t β̂

H M L
p + εpt Mean (%): 0.4 0.0 0.0 0.1 5.8

S.D. (%): 2.4 0.5 0.4 1.1 5.3

t-stat: 2.03 0.03 1.57 0.75

1992–1996 testing period though the hedging portfolio dollar return factor is
close to significant in the 1997–2001 subperiod. However, the R̄2s in the last
four testing periods are substantially lower than in the earlier periods, perhaps
reflecting the greater volatility of equity returns in recent years.

Overall, the results do not provide overwhelming support for any factor in
explaining the cross-sectional variation of expected returns. There is, of course,
the ubiquitous problem of lack of power in these cross-sectional regression tests,
hence we should not be surprised that no single factor stands out (see e.g.,
MacKinlay (1987, 1994)). However, the point estimates of the cross-sectional
regressions show that the hedging portfolio factor is comparable both in mag-
nitude and in performance to other commonly proposed factors, and yields a
promising new direction for intertemporal asset pricing research.

VI. Conclusion

By deriving an explicit link between economic fundamentals and the dynamic
properties of asset returns and volume, we have shown that interactions be-
tween prices and quantities in equilibrium yield a rich set of implications for
any asset-pricing model. Indeed, by exploiting the relation between prices and
volume in our dynamic equilibrium model, we are able to identify and construct
the hedging portfolio that all investors use to hedge against changes in market
conditions. Moreover, our empirical analysis shows that this hedging portfo-
lio has considerable forecast power in predicting future returns of the market
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portfolio—a property of the true hedging portfolio—and its abilities to explain
cross-sectional variation in expected returns is comparable to other popular
risk factors such as market betas, the Fama and French (1992) SMB and HML
factors, and optimal forecast portfolios.

Although, our model is purposefully parsimonious so as to focus attention on
the essential features of risk-sharing and trading activity, it underscores the
general point that quantities, together with prices, should be an integral part of
any analysis of asset markets, both theoretically and empirically, as our results
clearly indicate.

Appendix: Proofs

Proof of Theorem 1: We prove Theorem 1 by first deriving investor asset
demand under the price function (9) and then solving the coefficient vectors a
and b to clear the stock market.

For simplicity in notation, let ut ≡ (Dt; Xt), where (· ; ·) denotes a column vector
and (· , ·) denotes a row vector. From (9), we have

Qt+1 = Q̄ t + Q̃ t+1, (A1)

where Q̄ t = ra + (1+r)bX t , Q̃ t+1 = (1, −b)ut+1, and 1 is an (j × j) identity
matrix.

We now consider investor i’s optimal portfolio choice. Let St be the vector of
his stock holding in period t. His next period wealth is Wt+1 = Wt + St

′ Q̄ t+1 +
St

′(1, −b)ut+1, where we have omitted superscript i for brevity. We also let λ1t ≡
λXXt + λYYt and λ2t ≡ λZ(1 + Zt). Then,

Et

[
e−Wt+1−λ1t DMt+1−λ2t X t+1

] = Et

[
e−Wt−St

′ Q̄ t+(St+λ1t ι;−b′St+λ2t )
′ut+1

]
(A2)

= e
−Wt−St

′ Q̄ t+
1

2

(
St + λ1t ι; −b′St + λ2t

)′
σ
(
St + λ1t ι; −b′St + λ2t

)
, (A3)

where σ is the covariance matrix of ut. The investor’s optimization problem
then reduces to

max
St

S′
t Q̄ t − 1

2

(
St + λ1t ι; −b′St + λ2t

)′
σ
(
St + λ1t ι; −b′St + λ2t

)
. (A4)

The first-order condition is

0 = Q̄ t − (
σDD − bσDX

′ − σDXb′ + σXXbb′)St

−λ1t(σDD − bσXD)ι − λ2t(σDX − bσXX ).
(A5)

The solution gives the investor’s stock demand

St = (
σDD − bσDX

′ − σDXb′ + σXXbb′)−1[Q̄ t − λ1t(σDD − bσDZ)ι − λ2t(σXD − bσXX )
]
.

(A6)
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Summing (A5) over all investors and imposing the market-clearing condition,∑
i Si

t = SM , we have

0 = [ra + (1 + r)bXt] − (1/I )σQQSM − λX σQDιX t − λZ σQX . (A7)

It follows that

ra = (1/I )σQQ SM + λZ σQX (A8)

(1 + r)b = λX σQD SM , (A9)

which uniquely determine the equilibrium a and b. Substituting (A7) into (A6),
we obtain investor i’s equilibrium stock holding

Si
t = (

I−1 − λY Y i
t

)
SM − [

λY (b′SM )Y i
t + λZ Z i

t

]
(σQ Q )−1σQ X , (A10)

which is (10). Q.E.D.

Proof of Proposition 1: Let x = �hMt, y = θH�hHt (we omit superscripts i and
j for notational simplicity), x′ = x/σx, y′ = y/σy, and η = σy/σx. We can write
|x + y| = σx|x′ + ηy′|. Without loss of generality, we let σ x = 1. Since Yt and
Zt are normal, x′ and y′ are also jointly normal with unit standard deviations.
We can write

|x + y | = |x ′ + η y ′| = |x ′| + η Sign(x ′) y ′ + 1D(x ′,η y ′)δ(x ′, η y ′), (A11)

where the last term is defined by the functions D(z1, z2) = {z1z2 < 0, >

|z1| < |z2|} and δ(z1, z2) = −2|z1| + 2|z2|. To assess the statistical error of the
approximation

|x ′ + η y | ≈ |x| + η Sign(x) y , (A12)

we compute the expected approximation error using any loss function L(|.|)
that is nonnegative, nondecreasing on R+, and of order α > 0, that is,
limε→0L(|ε|)/εα = A exists and is finite. Loss functions satisfying these con-
ditions include the mean absolute error (L(z) = |z|, α = 1) and mean squared
error (L(z) = z2, α = 2) loss functions. We then have

E[L(|1D(x,η y)δ(x, η y)|)] = P (D)E[L(|δ(x, η y)|)|D], (A13)

where P (D) = ∫ ∞
0

∫ η y ′

0
[ f (−x ′, y ′) + f (x ′, − y ′)] dx′ dy′. Let ρ denote the correla-

tion between x′ and y ′. On D, we have f (−x ′, y ′) ≤ 1
2π

e−(1−ρ2) y ′2/2. It immediately
follows that P(D)/η ≤ c, where c is a positive constant. We then have

E[L(|1D(x ′,η y ′)δ(x ′, η y ′)|)] < Aηα+1 + o(ηα+1), (A14)

where A is a constant. Thus, even though the point-wise properties of the ap-
proximation are not satisfactory, the approximation error is small in a statisti-
cal sense for small η, that is, the expected loss decreases faster than ηα+1. The
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definition of η shows that it depends the ratio of volatility of �hHt to �hMt. A
sufficient condition is λX , λZ/λY � 1. Q.E.D.

Proof of Proposition 2: Suppose we use the (dollar) return of portfolio S to
predict future market returns. The resulting R2 is

R2 = (
Cov[(S′Qt)Q Mt+1]

)2
/
(
Var[S′Qt]Var[Q Mt+1]

)
. (A15)

To choose the S to maximize R2, we solve the following problem

max
S

S′σQX (b′SM ) (A16)

s.t. S′σQQS = v. (A17)

Up to a scaling constant, the solution is SH = (σQQ)−1σQX . Q.E.D.

Proof of Proposition 3: When X t = 0, ∀ t, Qt = ra + Q̃ t = (SM , −b)ut . Then,
Cov[Q̃ t , Q̃ Mt] = Cov[Q̃ t , S′

M Q̃t] = σDD SM , Var[Q̃ Mt] = S′
M σDD SM , and (22)

follows. Since σQX = 0 in this case, σMH = 0 and Q̄ M = (1/I )σ 2
M . Thus,

Q̄ = βM Q̄ M which is (24). Q.E.D.

Proof of Proposition 4: Equation (25) simply follows from the joint normality
of Q̃ t+1, Q̃ Mt+1, and Q̃ Ht+1. Equation (28) can be verified by substituting in the
expressions for βM , βM , Q̄ M , and Q̄ H , which gives (21c). Q.E.D.

Proof of Proposition 5: Let Qt denote the (dollar) return vector of a set of as-
sets, 0 ≡ Cov[QtQt

′] and 1 ≡ Cov[Qt+1Qt
′]. Suppose that Sa is a target port-

folio and Sb is a forecasting portfolio whose return is used as a forecast for the
return on Sa next period. Then, the R2 from the forecast is

R2 = (Cov[S′
bQt , S′

a Qt+1])2

Var[S′
bQt]Var[S′

a Qt+1]
= (S′

b1Sa)2

(S′
a0Sa)(S′

b1Sb)
. (A18)

The OFP for a given Sa is the portfolio that gives the highest R2. In other words,

SOFP = arg max R2 = arg max
(S′

b1Sa)2

(S′
a0Sa)(S′

b0Sb)
. (A19)

The optimality condition becomes(
−1

0 1SaS′
a′

1

)
SOFP = R2(S′

a0Sa) SOFP. (A20)

It then immediately follows that SOFP is the eigenvector corresponding to the
largest eigenvalue of matrix −1

0 1SaSa
′
′

1, which should equal R2(Sa
′
0Sa).

Although, we derive the result in Proposition 5 using dollar returns and
asset shares in defining portfolios, the same result holds if we use rates of
return and dollar weights in defining portfolios, which is what the proposition
states. Q.E.D.
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The set of assets considered above does not have to be the entire universe of
assets. In the event it is and expected asset returns are driven by a single state
variable, as in (12), we have

1 = (1 + r) σX bb′ = σQXσ ′
QX . (A21)

It then follows that SOFP = SH up to a scaling coefficient, as Proposition 2
shows.
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