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ABSTRACT

Milton Friedman argued that irrational traders will consistently lose money, will not

survive, and, therefore, cannot influence long-run asset prices. Since his work, sur-

vival and price impact have been assumed to be the same. In this paper, we demon-

strate that survival and price impact are two independent concepts. The price impact

of irrational traders does not rely on their long-run survival, and they can have a

significant impact on asset prices even when their wealth becomes negligible. We also

show that irrational traders’ portfolio policies can deviate from their limits long after

the price process approaches its long-run limit.

MOST NEOCLASSICAL ASSET PRICING MODELS RELY on the assumption that market
participants (traders) are rational in the sense that they behave in ways that
are consistent with the objective probabilities of the states of the economy (e.g.,
Radner (1972) and Lucas (1978)). In particular, they maximize expected utili-
ties using the true probabilities of uncertain economic states. This approach is
firmly rooted in the tradition of going from the normative to the positive in eco-
nomics, yet there is mounting evidence that it is not descriptive of the observed
behavior of the average market participant (see, e. g., Alpert and Raiffa (1982),
Benartzi and Thaler (2001), Black (1986), Kahneman and Tversky (1979), and
Odean (1998)). How the presence of traders with incorrect beliefs may affect
the behavior of financial markets remains an open question.

It has long been argued (see, e. g., Friedman (1953)) that irrational traders
who use wrong beliefs cannot survive in a competitive market. Trading under
the wrong beliefs causes them to lose their wealth. In the long run, it is the
rational traders who control most of the wealth and determine asset prices.
Using a partial equilibrium model, De Long et al. (1991) suggest that traders
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with wrong beliefs may survive in the long run because they may hold portfolios
with higher growth rates and, therefore, can eventually outgrow the rational
traders.1 In contrast, in a general equilibrium setting, Sandroni (2000) and
Blume and Easley (2001) show that with intermediate consumption, irrational
traders do not survive in the long run.

The efficiency of financial markets is the principal motivation behind the
interest in the survival of irrational traders. If irrational traders impact as-
set prices, then markets will not be efficient, either informationally or alloca-
tionally. Implicitly, the discussion on survival is based on the assumption that
survival is a necessary condition for long-run price impact. It is thought that
irrational traders have to control a significant amount of wealth in order to
affect—or “infect”—prices with their irrational beliefs. In this paper, we show
that this assumption is false and that irrational traders can maintain a large
price impact even as their relative wealth diminishes toward zero over time.

Our analysis is conducted with a parsimonious general equilibrium model
inhabited by both rational and irrational traders. Traders only care about their
terminal consumption. We are able to derive an explicit solution to the model
and obtain conditions under which the irrational traders can survive in the
long run in the sense that their share of the total wealth does not go to zero
over time. However, we show that even when irrational traders do not survive,
with a negligible amount of wealth they can still exert significant influence on
the asset price over a long period of time.

Underlying this initially counterintuitive result is a solid economic intuition.
Under incorrect beliefs, irrational traders express their views by taking posi-
tions (bets) on extremely unlikely states of the economy. As a result, the state
prices of these extreme states can be significantly affected by the beliefs of
the irrational traders, even with negligible wealth. In turn, these states, even
though highly unlikely, can have a large contribution to current asset prices.
This is especially true for states associated with extremely low levels of aggre-
gate consumption in which the traders’ marginal utilities, and thus state prices,
are very high. The beliefs of the irrational traders on these low probability but
high marginal utility states can influence current asset prices and their dynam-
ics. Furthermore, irrational traders need not take extreme positions in order
to influence prices. Our formal analysis clearly verifies this conceptual distinc-
tion between the long-run price impact and the long-run survival of irrational
traders.

The possibility that irrational traders may have a significant price impact
with a negligible share of wealth also has important implications for their sur-
vival. In the partial equilibrium analysis of De Long et al. (1991), it is assumed
that when the irrational traders control only a negligible fraction of the total
wealth, they have no impact on asset prices. That is, asset prices behave as if
the irrational traders are absent. Given the rationally determined prices, De
Long et al. then show that the wealth of irrational traders can grow at a faster
rate than the wealth of the rational traders, allowing the irrational traders to

1 See also Figlewski (1978) for a discussion on the notion of long-run survival.
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recover from their losses and survive in the long run. Although such an argu-
ment is illuminating, it is based on unreliable premises. As we argue, irrational
traders may still influence prices with diminishing wealth. Moreover, such a
possibility can significantly affect the irrational traders’ portfolio policies in
ways that make recovery from losses difficult.

The paper proceeds as follows. In Section I, we provide a simple example to
illustrate the possibility for an agent to affect asset prices with a negligible
wealth. Section II describes a canonical economy similar to that of Black and
Scholes (1973), but in the presence of irrational traders who have persistently
wrong beliefs about the economy; Section III describes the general equilibrium
of this economy. Section IV treats the special case of logarithmic preferences
and demonstrates that even though irrational traders never survive in this
case, they nevertheless can influence long-run asset prices. Sections V, VI, and
VII analyze the survival of irrational traders, their price impact, and their port-
folio policies, respectively. Section VIII discusses the importance of equilibrium
effects on the survival of irrational traders. Section IX concludes the paper with
a short summary and some suggestions for future research. All proofs are given
in the Appendix.

I. An Example

We begin our analysis by considering a simple, static Arrow–Debreu economy
and show that an agent with only a negligible amount of wealth can have a
significant impact on asset prices by using certain trading policies.

The economy has two dates, 0 and 1. It is endowed with one unit of a risky
asset, which pays dividend D only at date 1. The realization of D falls in [0, 1]
with probability density p(D) = 2D, which is plotted in Figure 1(a).

There is a complete set of Arrow–Debreu securities traded in a competitive
financial market at date 0. Shares of the stock and a risk-free bond with a
sure payoff of one at date 1, both of which are baskets of the Arrow–Debreu

Figure 1. Probability distribution of the stock dividend (the left panel), both the aggregate con-

sumption level (D) and the noise trader consumption (Cn) when the noise trader is present (the

middle panel), and the relative consumption of the noise trader (Cn/D, right panel). The upper

bound on the noise trader’s consumption, δ, is set to 0.2.
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securities, are also traded. We use the bond as the numeraire for the security
prices at date 0. Thus, the bond price is always one.

We first consider the economy when it is populated by a representative agent,
with a logarithmic utility function over consumption at date 1, u(C) = log C. It
immediately follows that C = D and the state price density (SPD), denoted by
φ∗, is

φ∗(D) = a∗u′(D) = a∗

D
,

where a∗ is a constant. The price of any payoff X is then given by

P = E[ X · φ∗ ].

In particular, the price of the bond is

B = E[ 1 · φ∗ ] =
∫ 1

0

a∗

D
p(D) dD =

∫ 1

0

2a∗ dD = 2a∗ = 1,

which gives a∗ = 1
2
. The price of the stock is then given by

S∗ = E[ D · φ∗] =
∫ 1

0

D · 1

2D
p(D) dD =

∫ 1

0

D dD = 1

2
.

Now we introduce to the economy another trader who has a negligible amount
of wealth and who desires a particular consumption bundle. We denote this
trader by “N” and call him a noise trader. The noise trader demands consump-
tion bundle

Cn = (1 − δ) min(δ, D), 0 < δ < 1

which is plotted in Figure 1(b). Figure 1(c) plots Cn as a fraction of the total
consumption D. Since Cn ≤ δ(1 − δ), the wealth the noise trader needs to acquire
the consumption bundle, is

Wn = E[ Cn · φ ] ≤ E[ δ(1 − δ) · φ ] = δ(1 − δ) < δ,

where we use the fact that the bond price is one. The consumption for the
representative agent (excluding the noise trade) is then C = D − Cn, also shown
in Figure 1(b). The SPD in this case is

φ = au′(C) = a
D − (1 − δ) min(δ, D)

.

Since the price of the bond is one, we have

B = E[ 1 · φ ] =
∫ δ

0

a
δD

(2D) dD +
∫ 1

δ

a
D − δ(1 − δ)

(2D) dD = 1,
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which gives

a = 1

4

{
1 − δ

2
+ 1

2
δ(1 − δ)[ln(1 − δ + δ2) − 2 ln(δ)]

}−1

.

As noted above, the wealth needed to acquire the consumption bundle Cn, Wn,
is less than δ, so it is small if δ is small. The stock price in the presence of the
noise trader is given by

S = E[ D · φ ] =
∫ δ

0

D
a

δD
(2D) dD +

∫ 1

δ

D
a

(1 − δ)δ
(2D) dD

= a{1 + 3δ − 5δ2 + 2δ3 + 2δ2(1 − δ)2[ln(1 − δ + δ2) − 2 ln(δ)]} = 1

4
+ O(δ),

where O(δ) denotes terms of order δ or higher. Thus, S/S∗ = 1
2

+ O(δ). We can
measure the impact of the noise trade on the stock price by

1 − S
S∗ = 1

2
+ O(δ),

which remains nonnegligible even when δ, and therefore the amount of wealth
controlled by the noise trader, approaches zero.

This is a stark result: A price-taking trader with negligible wealth can exert
finite influence on asset prices. The noise trader spends most of his wealth
on consumption in low-dividend states. Given that the marginal utility of the
other traders in these states is very high, the state prices for these states are
also high and, more importantly, a small change in the consumption level can
change the state prices significantly. As we show above, the wealth required
for the noise traders to finance their desired consumption profile is small, even
though most of their consumption occurs in states with relatively high prices.

While the above example is rather simple, its intuition holds more generally.
In the case of logarithmic preferences, the SPD is proportional to the ratio-
nal trader’s marginal utility u′(C): φ = au′(C), where a is the proportionality
constant. When the irrational trader is introduced into the economy and he
purchases ε units of state-contingent claims that pay off only when the aggre-
gate consumption is C, the SPD will change by �φ ≈ −au′′(C)ε. The total cost
for the purchase is w ≡ φε ≈ au′(C)ε when ε is small. Divided by the wealth
spent by the irrational trader, we obtain the marginal change in the SPD,

�φ

w
= u′′(C)

u′(C)
= 1

C
,

which is independent of ε. Clearly, in “bad” states, in which C is low (close to
zero), irrational traders can have a large impact on the SPD with little wealth
if they decide to bet on these states. Through their impact on the SPD in bad
states, irrational traders can influence asset prices such as the prices of the
stock and the bond. Given that the bond is used as a numeraire and its price is
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always one, this influence is captured in the stock price, S = E[ D · φ], as shown
above.

Our example clearly demonstrates the possibility of influencing asset prices
with little wealth. The remaining question is whether such a situation can
arise in more realistic settings. In particular, for our purpose in this paper,
can the irrational traders with incorrect beliefs maintain a significant price
impact even as their relative wealth diminishes from investment losses in the
market? In the remainder of the paper, we use a canonical model to address
these questions.

II. The Model

We consider a standard setting similar to that of Black and Scholes (1973).
For simplicity, we make the model parsimonious.

A. Information Structure

The economy has a finite horizon and evolves in continuous time. Uncertainty
is described by a one-dimensional, standard Brownian motion Bt for 0 ≤ t ≤ T,
defined on a complete probability space (�, F, P), where F is the augmented
filtration generated by Bt.

B. The Financial Market

There is a single share of a risky asset in the economy, the stock, which pays
a terminal dividend payment DT at time T, determined by the process

dDt = Dt(μ dt + σ dBt), (1)

where D0 = 1 and σ > 0. There is also a zero-coupon bond available in zero net
supply. Each unit of the bond makes a sure payment of one at time T. We use
the risk-free bond as the numeraire and denote the price of the stock at time
t by St.

C. Endowments

There are two competitive traders in the economy, each endowed with a half
share of the stock (and none of the bond) at time zero.

D. Trading Strategies

The financial market is frictionless and has no constraints on lending and
borrowing. Traders’ trading strategies satisfy the standard integrability condi-
tion used to avoid pathologies,

E0

[∫ T

0

θ2
t d 〈S〉t

]
< ∞, (2)
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where θt is the number of stock shares held in the portfolio at time t and 〈S〉t
is the quadratic variation process of St (see, e. g., Duffie and Huang (1985) and
Harrison and Kreps (1979)).

E. Preferences and Beliefs

Both traders have constant relative-risk aversion utility over their consump-
tion at time T,

1

1 − γ
C1−γ

T , γ ≥ 1.

For ease of exposition, we only consider the cases in which γ ≥ 1. The cases
when 0 < γ < 1 can be analyzed similarly and the results are similar in spirit.

Standard aggregation results imply that each trader in our model can actu-
ally represent a collection of traders with the same preferences. This provides
a justification for our competitive assumption for each of the traders. The first
trader, the rational trader, knows the true probability measure P and maxi-
mizes expected utility

EP
0

[
1

1 − γ
C1−γ

r,T

]
, (3)

where the subscript r denotes quantities associated with the rational trader.
The second trader, the irrational trader, believes incorrectly that the probability
measure is Q, under which

dBt = (ση) dt + dBQ
t (4)

and, hence

dDt = Dt
[(

μ + σ 2η
)

dt + σdBQ
t

]
, (5)

where BQ
t is the standard Brownian motion under the measure Q and η is a

constant, parameterizing the degree of irrationality of the irrational trader.
When η is positive, the irrational trader is optimistic about the prospects of the
economy and thus overestimates the rate of growth of the aggregate endow-
ment. Conversely, a negative η corresponds to a pessimistic irrational trader.
The irrational trader maximizes expected utility using belief Q:

E
Q
0

[
1

1 − γ
C1−γ

n,T

]
, (6)

where the subscript n denotes quantities associated with the irrational trader.
Because η is assumed to be constant, the probability measure of the irrational

trader Q is absolutely continuous with respect to the objective measure P, that
is, both traders agree on zero-probability events. Let ξt ≡ (dQ/dP)t denote the
density (Radon–Nikodym derivative) of the probability measure Q with respect
to P,
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ξt = e− 1
2
η2σ 2t+ησ Bt . (7)

The irrational trader maximizes

E
Q
0

[
1

1 − γ
C1−γ

n,T

]
= EP

0

[
ξT

1

1 − γ
C1−γ

n,T

]
. (8)

This permits us to interpret the objective of the irrational trader as the ex-

pected value of a state-dependent utility function, ξT
1

1−γ
C1−γ

n,T , under the true

probability measure P.
The equivalence between incorrect beliefs and state-dependent preferences

raises a conceptual question about the precise definition of irrationality. It is
beyond the scope of this paper to address this question, and our analysis of this
form of irrationality is primarily motivated by the fact that it is widely adopted
in the recent literature on behavioral models of asset prices.

III. The Equilibrium

The competitive equilibrium of the economy defined above can be solved ana-
lytically. Since there is only one source of uncertainty in the economy, the finan-
cial market is dynamically complete as long as the volatility of stock returns
remains nonzero almost surely. Consequently, the equilibrium allocation is ef-
ficient and can be characterized as the solution to a central planner’s problem

max

[
1

1 − γ
C1−γ

r,T + b ξT
1

1 − γ
C1−γ

n,T

]
(9a)

s.t. Cr,T + Cn,T = DT , (9b)

where b is the ratio of the utility weights for the two traders. The equilibrium
allocation is characterized in the following proposition.

PROPOSITION 1: For the economy defined in Section II, the equilibrium allocation
between the two traders is

Cr,T = 1

1 + (b ξT )1/γ
DT , (10a)

Cn,T = (b ξT )1/γ

1 + (b ξT )1/γ
DT , (10b)

where

b = e(γ−1)ησ 2T . (11)

The price of a financial security with the terminal payoff ZT is given by

Pt = Et
[
(1 + (

b ξT )1/γ
)γ D−γ

T Z T
]

Et
[(

1 + (b ξT )1/γ
)γ D−γ

T

] . (12)
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For the stock, ZT = DT and its return volatility is bounded between σ and
σ (1 + |η|).

Since the instantaneous volatility of stock returns is bounded below by σ , the
stock and the bond dynamically complete the financial market. In the limiting
cases in which only the rational or the irrational trader is present, the stock
prices, denoted by S∗

t and S∗∗
t , respectively, are given by

S∗
t = e(μ/σ 2−γ )σ 2T+ 1

2
(2γ−1)σ 2t+σ Bt (13a)

S∗∗
t = e(μ/σ 2−γ+η)σ 2T+ 1

2
[(2γ−1)−2η]σ 2t+σ Bt = S∗

t eησ 2(T−t). (13b)

We will use this equilibrium model to analyze the survival and extinction
of the traders. We employ the following common definition of extinction, and,
conversely, of survival.

DEFINITION 1: The irrational trader is said to experience relative extinction in
the long run if

lim
T→∞

Cn,T

Cr,T
= 0 a.s. (14)

The relative extinction of the rational trader can be defined symmetrically. A
trader is said to survive relatively in the long run if relative extinction does not
occur.

In the above definition and throughout the paper, all limits are understood to
be almost sure (under the true probability measure P) unless specifically stated
otherwise.

In our model, the final wealth of each trader equals their terminal consump-
tion. Thus, the definition of survival and extinction is equivalent to a similar
definition in terms of wealth.

IV. Logarithmic Preferences

We first consider the case in which both the rational and the irrational traders
have logarithmic preferences. We have the following result:

PROPOSITION 2: Suppose η �= 0. For γ = 1, the irrational trader never survives.

This result is immediate. For γ = 1, the rational trader holds the portfolio with
maximum expected growth (see, e.g., Hakansson (1971)). Any deviation in be-
liefs from the true probability causes the irrational trader to move away from
the maximum growth portfolio, which leads to his long-run relative extinction.

Our interest here, however, is not in the survival of the irrational trader,
but rather in the impact of irrationality on the long-run stock price. Under
logarithmic preferences, b = 1, and from Proposition 1, the stock price is

St = 1 + ξt

Et
[
(1 + ξT )/DT

] = 1 + ξt

1 + e−ησ 2(T−t)ξt
S∗

t , (15)
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where S∗
t denotes the stock price in an identical economy populated only by the

rational trader, as given in (13). We now prove that the irrational trader can
maintain a large impact on the stock price despite losing most of his wealth. To
state our result formally, we define the relative wealth shares of the rational
and irrational traders, respectively:

αn,t ≡ Wn,t

Wr,t + Wn,t
= ξt

1 + ξt
, αr,t ≡ 1 − αn,t .

The price impact of the irrational trader can be measured by 1 − St
S∗

t
, the relative

deviation in stock price from its limiting value with only the rational trader.
We then have

PROPOSITION 3: Consider the case of a pessimistic irrational trader, η < 0. For

any ε as small as e− σ2η2

12(1+|η|) T , there exists a point in time t ≥ T/(1 + |η|) such that

Prob[αn,t ≥ ε] ≤ ε (16a)

Prob

[
1 − St

S∗
t

≤ 1 − ε

]
≤ ε. (16b)

Intuitively, Proposition 3 shows that after a long period of time, which consti-
tutes a nontrivial fraction of the horizon of the economy, the relative wealth of
the irrational trader is most likely to be very small (which is consistent with his
long-run extinction), but his impact on the stock price is most likely to remain
large (the ratio St/S∗

t stays far from one).
Another way to illustrate the persistent nature of the irrational trader’s price

impact is by examining the long-run behavior of the instantaneous moments
of stock returns, which can be derived explicitly. For example, the conditional
volatility of stock returns is

σS,t = σ + ησαn,t − ησ

[
1 − 1

1 + e−ησ 2(T−t)αn,t(1 − αn,t)−1

]
,

and the conditional mean is

μS,t = σ 2
S,t − αn,tη σσS,t .

To visualize the behavior of stock return moments, consider the following nu-
merical example. The irrational trader is assumed to be pessimistic (η = −2).
The horizon of the economy is set to T = 400, so the relative wealth of the ir-
rational trader becomes relatively small long before the final date. We let the
current time t be sufficiently large, so with high probability, most of the wealth
in the economy is controlled by the rational trader. For convenience, we define
the following normalized state variable:

gs,t ≡ Bt − Bs√
t − s

, (17)
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Figure 2. The conditional Sharpe ratio of stock returns μS,t/σS,t and the fraction of wealth con-

trolled by the rational trader αr,t = Wr,t/(Wr,t + Wn,t) are plotted against the normalized state

variable g0,t ≡ Bt/
√

t. The shaded area is the probability density function of the normalized state

variable (vertical axis on the right). The average dividend growth rate is μ = 0.05, the volatility of

dividend growth is σ = 0.15, the bias of irrational trader’s beliefs is η = −2, the terminal date is

T = 400, and both agents have unit risk aversion, γ = 1. The current time is t = 150.

where s < t. It is easy to show that gs,t is the unanticipated dividend growth
normalized by its standard deviation, which has a standard normal distribu-
tion. Figure 2 plots the Sharpe ratio of instantaneous stock returns and the
wealth distribution between the two traders at t = 150 against the normalized
state variable g0,t. The probability density for g0,t is illustrated by the shaded
area (with the vertical axis on the right). The bottom panel of Figure 2 shows
that with almost probability one, all the wealth of the economy is controlled by
the rational trader at this time. Yet, as the top panel of the figure shows, the
conditional Sharpe ratio of stock returns is very different from σ , which is the
ratio’s value in the economy populated only by the rational trader. In particular,
over a large range of values of dividends, the conditional Sharpe ratio of returns
is approximately equal to σ (1 − η) �= σ .

Figure 3 provides a complementary illustration. It shows the most likely path
over time (the path with highest probability) for the irrational trader’s wealth
share and the Sharpe ratio of stock returns. In fact, the irrational trader’s



206 The Journal of Finance

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

μ
t,

S
 / 
σ

t,
S

Sharpe ratio

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Time, t 

α
t,

n

Wealth distribution

Figure 3. The maximum likelihood path of the irrational trader’s wealth share, αn,t = Wn,t/(Wr,t +
Wn,t), and the Sharpe ratio, μS,t/σS,t. The average dividend growth rate is μ = 0.05, the volatility

of dividend growth is σ = 0.15, the bias of irrational trader’s beliefs is η = −2, the terminal date is

T = 400, and both agents have unit risk aversion, γ = 1.

wealth share diminishes to zero exponentially while his price impact diminishes
at a much slower rate. The Sharpe ratio stays away from its level in an economy
without an irrational trader for an extended period of time before eventually
converging to the limiting value.

In order to better understand how the irrational trader can exert influence on
the stock price despite having negligible wealth, we examine how his presence
affects the SPD. The left panels of Figure 4 plot the relative consumption shares
of the rational and the irrational traders at two different times, t = 0 and t =
25, as a function of the normalized state variable gt,T, that is, the normalized
unanticipated dividend growth from t to T defined in (17). At each date, the
state of the economy is conditioned on Bt = 0, the most likely state. For t = 0, the
irrational trader owns half of the economy. But at η = −4, he is very pessimistic
and bets on states of low dividends (states toward the left end of the horizontal
axis). This is shown in the top left panel of Figure 4. The dashed line plots his
terminal consumption for different states of the economy. It is worth pointing
out that the consumption choice of the irrational trader in this economy is
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Figure 4. The terminal consumption of the rational and irrational traders as a fraction of the

total consumption and the state price density (SPD) in different terminal states of the economy at

different times. The average growth rate of the dividend is set at μ = 0.05, the volatility of dividend

growth is σ = 0.15, the bias of irrational trader’s beliefs is η = −4, the terminal date is T = 50, and

both agents have unit risk aversion, γ = 1. The horizontal axis in all panels is the normalized state

variable gt,T ≡ (BT − Bt )/
√

T − t, which has a standard normal distribution with zero mean and

unit variance, which is shown by the shaded area (vertical axis on the right). In the two panels

on the left, the terminal consumption for the rational trader (the solid line) and the irrational

trader (the dotted line) are plotted against the normalized state variable at times t = 0 and t = 25,

respectively, when Bt = 0. In the two panels on the right, the dashed line plots the logarithm of the

SPD at times t = 0 and t = 25, respectively, which is ln{[(1 + ξT )/DT ]/Et [(1 + ξT )/DT ]}. The solid

line plots the logarithm of the SPD in the economy populated only by the rational traders, which

is ln{D−1
T /Et [D−1

T ]}.

similar to that in the simple one-period economy we consider in Section I, as
shown in Figure 1(c), where the irrational trader consumes a share of 1 − δ

of the aggregate endowment in states with low dividends, and a much smaller
share in other states. This explains why in both economies, the irrational trader
can exert significant influence on prices despite being left with relatively little
wealth.

Over time, the “bad” states become less likely and the irrational trader’s bets
become less valuable. Thus, his wealth decreases. At t = 25 and Bt = 0, these
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bad states become extremely unlikely, and the irrational trader has lost most of
his wealth. His wealth as fraction of total wealth has fallen from 0.5 at t = 0 to
0.01. As shown in the bottom left panel of Figure 4, going forward, the irrational
trader consumes a nontrivial fraction of the total wealth only in the extreme
states toward the left end of the horizontal axis. The probability of these states,
as shown by the shaded area, becomes very small.

In the two panels on the right of Figure 4, we plot the state SPD against the
normalized state variable gt,T at the two times, t = 0 and t = 25, conditioned
again on Bt = 0. With logarithmic preferences, the equilibrium SPD at time
t is given by

φt ≡ (1 + ξT )D−1
T

Et
[
(1 + ξT )D−1

T

] , (18)

which is represented by the dashed line in each of the two panels. The solid
line plots the SPD when the economy is populated only by the rational traders,
which can be obtained by setting ξT = 0 in the above expression for φt. The
top panel gives the SPD at t = 0. At this point, the irrational trader has a half
share of the total wealth and his portfolio policy has a significant influence on
the SPD over the whole range. In particular, being pessimistic, he is effectively
betting on the bad states, which causes the SPD to increase for the bad states
and decrease for the good states. This is shown by the difference between the
dashed line, the SPD in the presence of the irrational trader, and the solid line,
the SPD without the irrational trader. As time passes, the irrational trader’s
wealth dwindles and his influence on the SPD diminishes quickly for most of
the states, as the bottom panel for t = 25 shows. However, for the extremely
bad states, his influence remains significant because he is still betting heavily
on these states.

We can show that the price impact of the irrational trader with negligible
wealth does not rely on excessive leverage. The fraction of the irrational trader’s
wealth invested in the stock is given by σS,t + ησ (1 − αn,t), which is bounded in
absolute value by σ (1 + 2|η|). The irrational trader can make bets on states
with a low aggregate endowment not by taking extreme portfolio positions, but
rather by underweighting the stock in his portfolio over long periods of time.

The simple case of logarithmic preferences developed above clearly shows
that survival and price impact are in general not equivalent. In particular,
survival is not a necessary condition for the irrational trader to influence long-
run prices, and depending on their beliefs, irrational traders can maintain a
significant price impact even as their wealth becomes negligible over time.

In the remaining sections, we consider the general case of γ �= 1 and analyze
the survival of the irrational trader, his price impact, and his portfolio choices.

V. Survival

In the case of logarithmic preferences, the irrational trader does not survive
in the long run simply because his portfolio grows more slowly than the maxi-
mum growth rate, the rate achieved by the rational trader. For the coefficient
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of relative-risk aversion different from one, however, the rational trader no
longer holds the optimal growth portfolio, and under an incorrect belief, the
irrational trader may end up holding a portfolio that is closer to the optimal
growth portfolio and thus his wealth may grow more rapidly. This is the ar-
gument put forward by De Long et al. using a partial equilibrium setting. In
this section, we examine the long-run survival of the irrational trader in our
general equilibrium setting.

From the competitive equilibrium derived in Section III, we have the follow-
ing result:

PROPOSITION 4: Suppose η �= 0. Let η = 2(γ − 1). For γ > 1 and η �= η, only one
of the traders survives in the long run. In particular, we have

Pessimistic irrational trader: η < 0 ⇒ Rational trader survives,

Moderately optimistic irrational trader: 0 < η < η ⇒ Irrational trader survives,

Strongly optimistic irrational trader: η > η ⇒ Rational trader survives.

(19)

For η = η, both rational and irrational traders survive.

For γ > 1, Proposition 4 identifies three distinct regions in the parameter
space as shown in Figure 5. For η < 0, the irrational trader is pessimistic and
does not survive in the long run. For 0 < η < η, the irrational trader is mod-
erately optimistic and survives in the long run while the rational trader does
not. For η > η, the irrational trader is strongly optimistic and does not survive.
Clearly, other than the knife-edge case (η = η), only one of the traders survives.

In order to gain more insight into what determines the survival of each type
of trader, we examine the terminal wealth (consumption) profile of both types.
The two panels on the left in Figure 6 show the two traders’ terminal wealth
profiles for two values of T (10 and 30) when the irrational trader is pessimistic.
The solid line shows the terminal wealth share of the rational trader and the
dashed line shows that for the irrational trader.

As expected, the rational trader ends up with more wealth in good states
of the economy (when the dividend is high) while the irrational trader, being
pessimistic, ends up with more wealth in the bad states of the economy. As
the horizon increases, the irrational trader ends up with nontrivial wealth in
more extreme and less likely low-dividend states. When the irrational trader
is mildly optimistic, the situation is different. His impact on the prices makes
the bad states (i.e., the low dividend states) cheaper than the good states. This
induces the rational trader to accumulate more wealth in the bad states by
giving up wealth in the good states, including those with high probabilities. As
a result, the irrational trader is more likely to end up with more wealth. When
strongly optimistic, the irrational trader ends up accumulating wealth in very
unlikely, good states by giving up wealth in most other states, which leads to
his extinction in the long run.
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Figure 5. The survival of rational and irrational traders for different values of η and γ . For each

region in the parameter space, we document which of the traders survives in the long run. “R”

means that survival of the rational trader is guaranteed inside the region, “N” corresponds to the

irrational trader.

It is important to recognize that our results on the long-run survival of irra-
tional traders are obtained in the absence of intermediate consumption. In other
words, these results are primarily driven by the portfolio choices of different
traders in the market and their impact on prices. This allows us to focus on how
irrational beliefs influence the behavior of traders and how they alone affect
their wealth evolution. When intermediate consumption is allowed, traders’
consumption policies will also be affected by their beliefs, which can signifi-
cantly affect their wealth accumulation as well. The net impact of irrational
belief on a trader’s wealth evolution depends on how it affects his portfolio
choice and his consumption choice. Using an infinite horizon setting with in-
termediate consumption, Blume and Easley (2001) and Sandroni (2000) show
that traders with (persistently) irrational beliefs will not survive while traders
with rational beliefs will. Their analyses clearly show that the influence of in-
correct beliefs on the irrational traders’ consumption policies can reduce their
chances of survival. However, this result relies on several conditions imposed
on the traders’ preferences and the aggregate endowment. For example, they
require that aggregate endowment be bounded above and below, away from
zero. When these bounds are not imposed, as is the case in this paper, traders
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Figure 6. The terminal consumption of rational and irrational traders for different horizons T.

We consider two values of T, 10 and 30, respectively. The average dividend growth rate is μ = 0.12,

the volatility of dividend-growth is σ = 0.18, and both traders have relative-risk aversion γ = 5.

We consider three distinctive cases for the irrational trader’s belief: (1) pessimistic, η = −0.3η,

(2) moderately optimistic, η = 0.5η, and (3) strongly optimistic, η = 2η, where η = 2(γ − 1). The

horizontal axis in all panels is the normalized value of the terminal dividend, that is, [ln DT −
(μ − 1

2
σ 2)T ]/(σ

√
T ), which has a standard normal distribution with zero mean and unit variance,

shown by the shaded area (vertical axis on the right). The two panels on the left show the terminal

consumption, as a fraction of the total consumption, of the rational trader (solid line) and the

irrational trader (dashed line) with a pessimistic belief, that is, Cr,T/DT and Cn,T/DT , for the two

values of the horizon, T = 10 and T = 30, respectively. The two panels in the middle and on the

right show the terminal consumption, as a fraction of the total consumption, of the rational trader

and the irrational trader, with a moderately and strongly optimistic beliefs for the two values of

T, respectively.

with rational beliefs may not always survive while traders with irrational be-
liefs may.2 To provide a comprehensive analysis of the survival conditions with
intermediate consumption is beyond the scope of this paper and is left for
future research. But, it suffices to say that even with intermediate consump-
tion, the long-run survival of irrational traders is possible in the absence of
further restrictions on preferences and/or endowments.

2 In a simple case considered by Wang (1996), even among rational traders, survival depends on

preferences. In our setting, we do not impose any upper or positive lower bounds on endowments.
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Another difference between our setting and that of Blume and Easley (2001)
is that we use a particular and simple form of beliefs of the irrational traders.
In our model, such traders maintain a constant belief about the drift of the
endowment process, and they do not update their belief based on realized data.
To maintain analytical tractability, we do not allow for a more general form of
beliefs, for example, those that result from inefficient learning. However, in the
setting of Blume and Easley (2001), the specific form of the belief process is less
important for the survival results than the aggregate endowment process and
agents’ preferences. On the basis of this observation, we would expect the intu-
ition of our model to apply to more general settings as well, and in particular,
to certain types of inefficient learning.

VI. The Price Impact of Irrational Traders

We have already seen in the case of logarithmic preferences that the irrational
trader’s influence on prices does not decay as quickly as his relative wealth
share. In this section, we extend our analysis to the general case for γ , and
characterize the precise combinations of model parameters under which such
a phenomenon is possible.

Our interest is in the behavior of prices in the long run when the horizon
of the economy, T, is long. In order to obtain an explicit characterization, we
look at the limit when T approaches infinity and derive from the limit an an-
alytical approximation for a large but finite T. By the definition of the limit,
this approximation becomes arbitrarily accurate when T is sufficiently large.
Specifically, we call two stochastic processes asymptotically equivalent if for
large values of T, their ratio converges to unity, with probability one.

DEFINITION 2: Two stochastic processes, Xt and Yt, are asymptotically equivalent
if

lim
T→∞

X T

YT
= 1 a.s.,

which we denote XT ∼ YT.

When studying an economy with a long horizon, T, we need to have a sense
about what it means for a particular property of the economy to persist for a
significant period of time. Suppose, for example, we claim that the irrational
trader’s influence on a variable is significant as long as the variable exceeds a
fixed level e within a time interval. Such an influence is persistent only if for
a larger T, the corresponding time interval of the irrational trader’s influence
also increases in proportion. Otherwise, the fraction of time the irrational trader
does have an influence becomes smaller for a larger T, and thus his influence
is only transitory and negligible.

More formally, we consider the current time of observation t = λT, 0 < λ ≤ 1.
As T grows, the “current” time t increases as well, but it remains at a constant
fraction of the horizon of the economy. Moreover, the time remaining until the
final date of the economy is also increasing proportionally with T. Since the
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properties of the equilibrium prices and quantities depend on how much time
is remaining until the final date, they depend on λ.

We define three values of λ to help us characterize points of change in the
limiting behavior:

λS ≡ 2

2γ − η
, λr ≡ η

(γ − 1)(2γ − η)
, λn ≡ η

η(γ + 1) − 2γ (γ − 1)
. (20)

It is easy to verify that for η < η, 0 < λS ≤ 1; for 0 < η ≤ η, 0 < λr ≤ 1; and for
η < 0 or η > η, 0 < λn ≤ 1. The limiting behavior of the stock price process can
be characterized as follows.

PROPOSITION 5: At t = λT, the stock price behaves as follows:

Case 1: Pessimistic irrational trader (η < 0):

St ∼
{

S∗
t eη[σ 2T + 1

2
(η−2γ )σ 2t − σ Bt ], 0 < λ < λS

S∗
t , λS < λ ≤ 1.

(21)

Case 2: Moderately optimistic irrational trader (0 < η < η):

St ∼
{

S∗
t eη[(γ−1− 1

2
η)σ 2t + σ Bt ], 0 < λ < λS

S∗∗
t , λS < λ ≤ 1.

(22)

Case 3: Strongly optimistic irrational trader (η < η):

St ∼ S∗
t . (23)

The values of the stock price in homogeneous economies, S∗
t and S∗∗

t , are given
in equation (13). The asymptotic values of the instantaneous moments of stock
returns are equal to the moments of the corresponding asymptotic expressions
for stock prices above.

Observe that in the first two cases, when the irrational trader is pessimistic
or moderately optimistic, the stock price process does not converge quickly to its
value in the economy populated exclusively by the rational trader who survives
in the long run. Instead, over long periods of time, that is, for t between 0 and
λST, the stock price process is affected by the presence of both traders. This
can occur even when the wealth of the irrational trader becomes negligible
long before λST.3 Thus, we have generalized the results obtained in the context
of a log-utility economy. A trader can control an asymptotically infinitesimal
fraction of the total wealth and yet exerts a nonnegligible effect on the stock
price. In other words, convergence to zero in wealth does not readily imply
convergence to zero in price impact.

3 For brevity, we omit the discussion of wealth distribution over time. Interested readers can refer

to our working paper, Kogan et al. (2003), where we show that for Cases 1 and 3, the irrational

trader’s wealth is asymptotically negligible for any time λT with λ < λS.
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VII. Portfolio Policies

Proposition 5 in the previous section established the possibility that a trader
whose wealth diminishes over time can have a persistent impact on asset
prices. In this section, we study the traders’ portfolio policies. In particular,
we show that convergence in the price process does not lead to immediate con-
vergence in policies, which is another and somewhat subtle channel through
which traders with asymptotically infinitesimal wealth may affect the long-run
behavior of the economy. Moreover, by characterizing the portfolio policy, one
gains an alternative view on long-run survival in equilibrium that is comple-
mentary to the analysis of state-contingent consumption choices in Sections IV
and V.

Expressions for portfolio policies are not available in closed form. However,
using an argument similar to that in the proof of the bound on stock price
volatility in Proposition 1, we can establish the following result:

PROPOSITION 6: For both traders, their portfolio weight in the stock, denoted by
w, is bounded:

|w| ≤ 1 + |η|(γ + 1)/γ. (24)

The bound on the traders’ portfolio holdings is important for our results. It
explicitly shows that the price impact of the irrational trader with negligible
wealth does not rely on excessive leverage. It also implies that our long-run
survival results do not rely on the use of high leverage by the traders. Our
solution for the equilibrium remains valid even if traders are constrained in
their portfolio choices, as long as the constraint is sufficiently relaxed to allow
for w = ±[1 + |η|(γ + 1)/γ ].

To analyze the traders’ portfolio policies in more detail, we decompose a
trader’s stock demand into two components, the myopic component and the
hedging component. The sum of the two gives the trader’s total stock demand.
We have the following proposition.

PROPOSITION 7: At t = λT, the individual stock holdings behave as follows:

Case 1: Pessimistic irrational trader (η < 0):4

wr,t ∼

⎧⎪⎪⎨⎪⎪⎩
(myopic) (hedging) (total)

γ − η

γ (1 − η)
− (γ − 1)η

γ (1 − η)
= 1, 0 < λ < λS

1 + 0 = 1, λS < λ ≤ 1.

(25a)

4 The limit of the irrational trader’s portfolio policy for values of λ ∈ [min(λn, λS), max(λn, λS)] can

be characterized as explicitly as well, but the results depend on the ordering between λn and λS,

which in turn is determined by the values of model parameters. We omit these results to simplify the

exposition.
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wn,t ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(myopic) (hedging) (total)

1
1−η

+ 0 = 1
1−η

, 0 < λ < min(λn, λS)

1 + η

γ
+ 0 = 1 + η

γ
, max(λn, λS) < λ ≤ 1.

(25b)

Case 2: Moderately optimistic irrational trader (0 < η < η):

wr,t ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(myopic) (hedging) (total)

1
1+η

+ 0 = 1
1+η

, 0 < λ < λr

1
1+η

+ η(γ−1)
γ (1+η)

= 1 − η

γ (1+η)
, λr < λ < λS

1 − η

γ
+ 0 = 1 − η

γ
, λS < λ ≤ 1.

(26a)

wn,t ∼

⎧⎪⎪⎨⎪⎪⎩
(myopic) (hedging) (total)

γ+η

γ (1+η)
+ η(γ−1)

γ (1+η)
= 1, 0 < λ < λS

1 + 0 = 1, λS < λ ≤ 1.

(26b)

Case 3: Strongly optimistic irrational trader, (η < η):

wr,t ∼ 1 + 0 = 1, 0 < λ ≤ 1 (27a)

wn,t ∼

⎧⎪⎨⎪⎩
(myopic) (hedging) (total)

1 + η

γ
+ η(γ−1)

γ
= 1 + η, 0 < λ < λn

1 + η

γ
+ 0 = 1 + η

γ
, λn < λ ≤ 1.

(27b)

Since the moments of stock returns are asymptotically state independent,
it is intuitive to expect that the implied portfolio policies are myopic. Propo-
sition 7 shows, however, that this is not true. In other words, the asymptotic
portfolio policy can differ significantly from what the asymptotic moments of
stock returns suggest. Such a surprising behavior can only be due to the hedg-
ing component of the traders’ portfolio holdings since, by definition, the myopic
component of portfolio holdings depends only on the conditional mean and vari-
ance of stock returns. Given that the instantaneous moments of stock returns
are asymptotically state independent, it may seem surprising that the hedg-
ing component of portfolio holdings remains finite, as Case 3 in Proposition 7
illustrates for the irrational trader. The reason behind this result is that in-
stantaneous moments in the limit of stock returns do not fully characterize the
investment opportunities that the traders face. In particular, moments of stock
returns do not always stay constant. As we see in Figure 2, for example, return
volatility can change significantly as the relative wealth distribution changes.
After a long time, the likelihood of the reversal of wealth distribution between
the rational and irrational traders and a shift in return moments is relatively
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Figure 7. The horizontal axis in all panels is the normalized state variable, g0,T = BT /
√

T ,

which has a standard normal distribution with zero mean and unit variance, shown by the shaded

area (vertical axis on the right). The four panels from top to bottom show: (i) the instantaneous

Sharpe ratio of stock returns, μS/σS; (ii) the state dependence of the indirect value function of the

rational trader, as captured by the function h(t, Dt) in (20); (iii) the portion of the portfolio strategy

of the irrational trader attributable to hedging demand, defined as whedge
n = wn − μS + ησ 2

S/(γ σ 2
S );

and, (iv) the fraction of the aggregate wealth controlled by the rational agent, Wr/(Wr + Wn). The

average dividend growth rate is μ = 0.12, the volatility of dividend growth is σ = 0.18, both traders

have relative-risk aversion γ = 5, the horizon of the economy is T = 30. Also, the bias of irrational

trader’s beliefs is η = 2η = 16, that is, the irrational trader is strongly optimistic. The time of

observation is set at t = 0.15 × T.

low. Nonetheless, the possibility of such a change remains important, which
gives rise to the significant hedging demand in the traders’ portfolio holdings.

Figure 7 illustrates the behavior of the economy when the irrational trader is
strongly optimistic (η > η). In this case (Case 3 in Propositions 4, 5, and 7), the
irrational trader does not survive and has no price impact in the long run. For
the chosen set of parameter values, λn = 0.29. The time of observation t is set to
be 0.15 T. Thus, t < λnT. As the bottom panel of Figure 7 shows, with probability
of almost one, the rational trader controls most of the wealth in the economy by
this point in time. From Proposition 5, at this point, the stock price converges
closely to the price in the economy populated by only the rational trader. If we
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consider the Sharpe ratio of the stock, defined by μS/σS, which characterizes
the instantaneous investment opportunity that traders face, it also converges
to its value of γ σ in the limiting economy with the rational trader only. The top
panel of Figure 7 plots the value of the Sharpe ratio for different states of the
economy at time t. It is obvious that with almost probability one, the value of
the Sharpe ratio equals its limit γ σ (the probability distribution of the state
of the economy is shown by the shaded area). However, for very large values
of Dt (or Bt), the economy will be dominated by the irrational trader (as we
see from the bottom panel), and the instantaneous Sharpe ratio of the stock
converges to its value in an economy populated by the irrational trader only,
which is (γ − η)σ . Such a possibility, even though with very low probability
under the true probability measure, can be important to the irrational trader
because under his beliefs, its likelihood can be nontrivial. As a result, it can
have a significant impact on the irrational trader’s portfolio choice.

The importance of these low probability but large changes in the Sharpe ratio
is reflected in the trader’s value function, given by

V (t, Wt , Dt) ≡ Et

[
ξT

W 1−γ

T

1 − γ

]
= 1

1 − γ
eh(t,Dt )W 1−γ

t ≡ Et

[
ξT

1

1 − γ
C1−γ

n,T

]
. (28)

State dependence of the indirect utility function, that is, the effect of possible
changes in the Sharpe ratio, is captured by the function h(t, Dt). The second
panel of Figure 7 shows that for the irrational trader, h is nonconstant over a
wide range of values of Dt. It exhibits significant state dependence even when
the contemporaneous Sharpe ratio is approximately constant. It is this state-
dependence in the indirect utility function that induces hedging demand. The
third panel of Figure 7 shows the hedging demand of the irrational trader. Over
a wide range of values for Dt, his hedging demand is nonzero; in particular, it is
close to its asymptotic value η(γ − 1)/γ (see Proposition 7), which equals 12.8
for the chosen values of parameters.

What we conclude from the above is that convergence of the stock price to a
limiting process does not necessarily imply convergence of the traders’ portfolio
policies to their policies under the limiting price process. Price paths of small
probability under the true probability measure can have a significant impact
on the traders’ portfolio policies. Thus, an intuitive conjecture that convergence
in price gives convergence in portfolio policies does not hold in general. This
result has important implications for the analysis of long-run survival as we
see in the next section.

VIII. Heuristic Partial Equilibrium Analysis of Survival

Although general equilibrium analysis is always desirable, its tractability is
often limited. Several authors such as De Long et al. have relied on heuristic
partial equilibrium analysis to study the survival of irrational traders. In this
section, we examine the limitations of partial equilibrium heuristics in our
setting.
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The essence of the partial equilibrium argument is to examine a limiting
situation when one of the two traders controls most of the aggregate wealth.
Following De Long et al. the argument then assumes that the infinitesimal
trader has no impact on market prices, and all traders follow portfolio policies
close to those under the limiting prices. If the wealth of the infinitesimally small
trader has a higher growth rate under the assumed portfolio policies, his share
of wealth will grow over time and he will be able to successfully “invade” the
economy. Hence, such traders can survive in the long run, “in the sense that
their wealth share does not drop toward zero in the long run with probability
one.”

In our setting, we can easily derive the survival conditions using this partial
equilibrium argument. In the limit when the economy is populated only by
either the rational trader or the irrational trader, the stock price follows the
geometric Brownian motion

dSt = St(μS dt + σS dBt). (29)

If only the rational trader is present, St = S∗
t and from (13), we have μS = γ σ 2

and σS = σ . The rational trader invests only in the stock and the rate of his
wealth growth is given by μS − 1

2
σ 2

S = 1
2
(2γ − 1)σ 2.

Suppose, now an irrational trader is injected into the economy. Under his
belief (given by the measure Q), the drift of the stock price process is μ̂S =
μS + σ 2η and the volatility remains at σ . He will choose to invest a fraction
wn = μ̂S/(γ σ 2) = 1 + η/γ of his wealth in the stock. Thus, the growth rate of

the irrational trader’s wealth is μS − 1
2
σ 2 + 1

2
σ 2

γ 2 η (γ η − η), where η = 2(γ − 1).

The growth rate of wealth of the “invading” irrational trader is higher than that
of the dominant rational trader if and only if 0 < η < γη.

Next, assume that only the irrational trader is dominant. Then, St = S∗∗
t .

Repeating the steps of the previous analysis, the volatility of the limiting stock
price remains at σ , and the drift becomes μS = γ σ 2 − ησ 2. The growth rate
of the irrational trader’s wealth is μS − 1

2
σ 2, while for the rational trader, it

is μS − 1
2
σ 2 + 1

2
σ 2

γ 2 (2γ − 1)η(η − γ

2γ − 1
η). The rational trader’s portfolio grows

faster than the irrational trader’s portfolio if and only if η < 0 or η >
γ

2γ − 1
η.

The partial equilibrium analysis thus appears to provide sufficient con-
ditions for the long-run survival of both types of traders. In particular, for
γ > 1,

0 < η <
γ

2γ − 1
η ⇒ irrational trader survives,

γ

2γ − 1
η < η < γη ⇒ both traders survive,

η < 0 or η > γη ⇒ rational trader survives.

(30)

For γ = 1, only the rational trader survives regardless of the value of η.
Figure 8 summarizes these results. Since γ /(2γ − 1) ≤ 1 for γ ≥ 1, η belongs
to the second region in (30).
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Figure 8. The survival of rational and irrational traders for different values of η and γ in partial

equilibrium. For each region in the parameter space, we highlight which of the agents survives in

the long run: “R” means that survival of the rational trader is guaranteed inside the region; “N”

corresponds to the irrational trader; and “N,R” means that both traders survive.

The survival conditions given in Figure 8 clearly differ from the survival
conditions from the general equilibrium analysis shown in Figure 5. The dif-
ference occurs when γ

2γ−1
η < η < γη. In particular, the partial equilibrium

argument predicts survival of both traders for these parameter values, while
general equilibrium analysis shows the extinction of the irrational trader when
η > η.

The difference in results from the partial equilibrium argument comes from
its two assumptions: (i) when the irrational trader becomes small in relative
wealth, the stock price behaves as if he is absent, and (ii) both traders adopt
the portfolio policies that would be optimal under that limiting price process.
We know from our analysis in Section IV that the first assumption is generally
false. But the more direct reason for the discrepancy in survival results is be-
cause the second assumption is false. For instance, η < η < γη corresponds to
Case 3 of Proposition 5, wherein the stock price is asymptotically the same as in
the economy without the irrational trader. In other words, the irrational trader
has no significant impact on the current stock price as his wealth becomes
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negligible. The moments of stock returns converge to the values implied by the
partial equilibrium analysis. However, as we show in Section VII, the irrational
trader’s portfolio policy differs significantly from what the partial equilibrium
analysis assumes. In particular, he does not simply hold the portfolio implied by
the limiting price process. This explains the deviations in the conclusions about
long-run survival from the heuristic partial equilibrium argument and demon-
strates the limitations of partial equilibrium arguments and the importance of
equilibrium effects on survival.

IX. Conclusion

The analysis above examines the long-run price impact and survival of irra-
tional traders who use persistently wrong beliefs to make their portfolio choices.
Using a parsimonious model with no intermediate consumption, we show that
irrational traders can maintain a persistent influence on prices even after they
have lost most of their wealth. Our analysis of conditions for survival of either
type of traders further highlights the importance of taking into account the
effect that traders have on asset prices.

For tractability, we confine our analysis to preferences with constant
relative-risk aversion. Extensions of our analysis to more general preferences
are possible and may yield unexpected results. We also assume that the rational
and irrational traders differ only in their beliefs but not in their preferences.
This allows us to focus on the impact of irrational beliefs on survival and prices.
Of course, differences in time and risk preferences can have their own set of
implications for long-run survival. Perhaps more important is the extension of
these results to models with intermediate consumption and alternative prefer-
ences. While there is more to be done in this area, it is fair to say that a general
message is emerging and is unlikely to be overturned. Namely, survival and
price impact are related but distinct concepts and arguments ignoring such
a distinction are unreliable. In our model, irrational traders can survive and
even dominate rational traders, but even when they do not survive, they can
still have a persistent impact on asset prices.

Appendix

Proof of Proposition 1: The optimality conditions of the maximization prob-
lem in (9a) require that

Cr,T = Cn,T (b ξT )1/γ . (A1)

Combined with the market clearing condition (9b), this implies (10a) and (10b).
The SPD must be proportional to the traders’ marginal utilities. Since we set

the interest rate equal to zero, the SPD conditional on the information available
at time t is given by (1 + (b ξT )1/γ )γ D−γ

T /Et[(1 + (b ξT )1/γ )γ D−γ

T ]. The price of any
payoff ZT is therefore given by (12).

The individual budget constraint in a dynamically complete market is equiv-
alent to the static constraint that the initial wealth of a trader is equal to the
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present value of the trader’s consumption (e.g., Cox and Huang (1989)). Since
the two traders in our model have identical endowments at time t = 0, their
budget constraints imply

Wr,0 = E0

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ−1]
E0

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ ] = E0

[
D1−γ

T (b ξT )
1
γ

(
1 + (b ξT )

1
γ

)γ−1]
E0

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ ] = Wn,0.

(A2)

We now verify that b = eησ 2(γ−1)T satisfies (A2). Note that

D1−γ

T = e[(1−γ )(μ− σ2

2
)+ 1

2
(1−γ )2σ 2]T e− 1

2
(1−γ )2σ 2T+(1−γ )σ BT . (A3)

Define a new measure Q, such that ( d Q
d P )T = e− 1

2
(1−γ )2σ 2T+(1−γ )σ BT , where P is the

original probability measure. Using the translation invariance property of the

Gaussian distribution, the random variable BQ
T = BT − (1 − γ )σT is a standard

normal random variable under Q. Thus, the equality

E0

[
D1−γ

T (b ξT )
1
γ

(
1 + (b ξT )

1
γ

)γ−1
]

= E0

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ−1
]

is equivalent to

E
Q
0

[(
ξ

Q
T

) 1
γ
(
1 + (

ξ
Q
T

) 1
γ
)γ−1

]
= E

Q
0

[(
1 + (

ξ
Q
T

) 1
γ
)γ−1

]
,

where ξ
Q
T = exp(− 1

2
σ 2η2T + σηBQ

T ). Since the variable BQ
T is equivalent in dis-

tribution to BT, we can restate the last equality equivalently as

E0

[
ξ

1
γ

T

(
1 + ξ

1
γ

T

)γ−1]
= E0

[(
1 + ξ

1
γ

T

)γ−1]
.

To verify that the above equality holds, consider a function F(z) defined as

F (z) = E0

[(
e

1
2γ

zT + e− 1
2γ

zT
ξ

1
γ

T

)γ ]
.

Changing the order of the differentiation and expectation operators (see
Billingsley (1995, Th. 16.8)),

F ′(z)|z=0 = E

[
1

2

(
1 − ξ

1
γ

T

)(
1 + ξ

1
γ

T

)γ−1
]

.

Thus, it suffices to prove that F ′(z)|z=0 = 0. Since

E0

[(
e

1
2γ

zT + e− 1
2γ

zT
ξ

1
γ

T

)γ ]
= E0

[(
e

1
2γ

(zT− 1
2
η2σ 2T+ησ BT ) + e− 1

2γ
(zT− 1

2
η2σ 2T+ησ BT )

)γ

ξ
1
2

T

]
,

if we both define a new measure Q so that ( dQ
dP )T = e− 1

8
η2σ 2T+ 1

2
ησ BT and use a

change of measure similar to its earlier application in this proof, we find that

E0

[(
e

1
2γ

zT + e− 1
2γ

zT
ξ

1
γ

T

)γ ]
= E0

[(
e

1
2γ

(zT+ησ BT ) + e− 1
2γ

(zT+ησ BT )
)γ ]

e− 1
8
η2σ 2T .
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The symmetry of the distribution of the normal random variable BT implies
that F(z) = F(−z), and therefore F′(z)|z=0 = 0. This verifies that b = eησ 2(γ−1)T .

We now prove that the conditional volatility of stock returns is
bounded between σ and σ (1 + |η|). Define A = e(−ησ 2/γ )(T−t) and g =
e− 1

2
η2σ 2 1

γ
T+σ 2η(γ−1) 1

γ
t+ ησ

γ
BT . The stock price can be expressed as

St = Et
[
D1−γ

T

(
1 + (bξT )1/γ

)γ ]
Et

[
D−γ

T

(
1 + (bξT )1/γ

)γ ] = e(μ−σ 2γ )T+(− 1
2
σ 2(1−2γ ))t eσ Bt

Et[(1 + g )γ ]

Et[(1 + g A)γ ]
. (A4)

By Ito’s Lemma, its volatility σSt is given by

σSt = ∂ ln St

∂ Bt
= σ + ησ

(
Et[(1 + g A)γ−1]

Et[(1 + g A)γ ]
− Et[(1 + g )γ−1]

Et[(1 + g )γ ]

)
. (A5)

To establish the bounds on stock return volatility, we prove that

Et[(1 + g A)γ−1]

Et[(1 + g A)γ ]
− Et[(1 + g )γ−1]

Et[(1 + g )γ ]
≥ 0 (A6)

for A ≤ 1, with the opposite inequality for A ≥ 1. Note that for any twice-
differentiable function F(A, γ ),

∂

∂γ

∂

∂ A
ln(F (A, γ )) ≥ 0 ⇒ ∂

∂ A
ln(F (A, γ − 1)) − ∂

∂ A
ln[F (A, γ )] ≤ 0

⇒ ∂

∂ A
F (A, γ − 1)

F (A, γ )
≤ 0.

Thus, to prove (A6), it suffices to show that ∂2 ln(Et[(1+ g A)γ ])/ ∂ A∂γ ≥ 0.
The function (1 + gA)γ is log-supermodular in A, g, and γ , since it is pos-
itive and its cross-partial derivatives in all arguments are positive. Thus,
according to the additivity property of log-supermodular functions (see, for
example, Athey (2002)), Et[(1+ g A)γ ] is log-supermodular in A and γ , that is,
∂2 ln(Et[(1+ g A)γ ])/ ∂ A∂γ ≥ 0.

Because A > 1 if and only if η < 0, we have shown that

η

(
Et[(1 + g A)γ−1]

Et[(1 + g A)γ ]
− Et[(1 + g )γ−1]

Et[(1 + g )γ ]

)
≥ 0 (A7)

and hence σSt ≥ σ .

Because ( Et [(1 + g A)γ−1]
Et [(1 + g A)γ ]

− Et [(1 + g )γ−1]
Et [(1 + g )γ ]

) is bounded between −1 and 0 for η < 0,

and between 0 and 1 for η > 0, we obtain the upper bound from (A5): σSt ≤
σ (1 + |η|). Q.E.D.

Proof of Proposition 3: We will make use of the following result:

LEMMA A1: Let N(x) denote the cumulative density function of the standard
normal distribution: N (x) ≡ 1√

2π

∫ ∞
x e− z2

2 dz. For x > 0, N (x) ≤ 1
2
e− x2

2 .
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Proof of Lemma A1: N (x) = 1√
2π

∫ ∞
x e− z2

2 dz ≤ 1√
2π

∫ ∞
x e− x2

2
− (z−x)2

2 dz = 1
2
e− x2

2 .

Note that for convenience, we define the cumulative density function as the
probability above a given value rather than below. Q.E.D.

Let t = T/(1 + |η|) and define M =
√

2−1
2

σ |η|t. According to Lemma A1,

Prob[|Bt | ≥ M
√

t]] = 2 N (M
√

t) ≤ e− M2

2
t = e− (

√
2−1)2

2
σ 2η2t ≤ e− 1

12
σ 2η2t .

On the set {|Bt | ≤ M
√

t},

αn,t = ξt

1 + ξt
≤ ξt ≤ e− σ2η2

2
t+σ |η|Mt = e− 3−2

√
2

2
σ 2η2t ≤ e− 1

12
σ 2η2t ≤ ε.

Therefore,

Prob[αn,t ≥ ε] ≤ Prob[|Bt | ≥ M
√

t] ≤ e− 1
12

σ 2η2t ≤ ε, (A8)

which establishes the first result of the proposition. The second result follows
from the fact that on the set {|Bt | ≤ M

√
t},

St

S∗
t

≤ e−σ 2|η|(T−t) 1

αn,t
≤ e−σ 2|η|(T−t)+ σ2η2

2
t+σ |η|M√

t ≤ e− σ2η2

2
t+σ |η|Mte−σ 2|η|T+σ 2|η|(1+|η|)t .

Given that on the set {|Bt | ≤ M
√

t}, e− σ2η2

2
t+σ |η|Mt ≤ e− 1

12
σ 2η2t , and since

t = T/(1 + |η|), e−σ 2|η|T+σ 2|η|(1+|η|)t ≤ 1. We conclude that on the set {|Bt | ≤
M

√
t}, St

S∗
t

≤ e− 1
12

σ 2η2t and hence

Prob

[
1 − St

S∗
t

≤ 1 − ε

]
≤ e− 1

12
σ 2η2t ≤ ε, (A9)

which concludes the proof of the proposition. Q.E.D.

Proof of Proposition 4: According to (10a) and (10b),

Cn,T

Cr,T
= (b ξT )1/γ = exp

[
1

γ

(
−1

2
σ 2η2 + ησ 2(γ − 1)

)
T + 1

γ
ησ BT

]
. (A10)

Using the strong Law of Large Numbers for Brownian motion (see Karatzas
and Shreve (1991, Sec. 2.9.A)), for any value of σ ,

lim
T→∞

ea T+σ BT =
{

0, a < 0
∞, a > 0,

where convergence takes place almost surely. The proposition then follows.
Q.E.D.

Proof of Proposition 5: Our analysis will make use of the following technical
result.

LEMMA A2: Consider a stochastic process X t = ec t+v Bt and a constant a ≥ 0.
Assume that ac + 1

2
v2a2(1 − λ) �= 0, 0 ≤ λ < 1. Then the limit limT→∞Et[Xa

T] is
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equal to either zero or infinity almost surely, where we set t = λT. The following
convergence results hold:

(i) (Point-wise convergence)

lim
T→∞

Et
[
(1 + X T )a

]
1 + Et

[
X a

T

] = 1. (A11)

(ii) (Convergence of moments)

lim
T→∞

meant Et
[
(1 + X T )a

]
meant

(
1 + Et

[
X a

T

]) = 1, lim
T→∞

volt Et
[
(1 + X T )a

]
volt

(
1 + Et

[
X a

T

]) = 1, (A12)

where meantft and voltft denote the instantaneous mean and standard deviation
of the process ln ft, respectively.

Proof of Lemma A2: (i) Consider the conditional expectation

Et
[
X a

T

] = exp

[
ac T + 1

2
v2a2(1 − λ) T + avBt

]
. (A13)

The limit of Et[Xa
T] is equal to zero if ac + 1

2
v2a2(1 − λ) < 0 and equal to infinity

if the opposite inequality holds (according to the strong Law of Large Numbers
for Brownian motion; see Karatzas and Shreve (1991, Sec. 2.9.A)).

Because the function ac T + 1
2
v2a2(1 − λ) T is convex in a and equal to zero

when a = 0, we find that for a ≥ 1,

Et
[
X a

T

] → ∞ ⇒ Et
[
X z

T

]
Et

[
X a

T

] → 0, ∀z ∈ (0, a) (A14a)

Et
[
X a

T

] → 0 ⇒ Et
[
X z

T

] → 0, ∀z ∈ (0, a). (A14b)

We prove the result of the Lemma separately for six regions covering the
entire parameter space.

Case 1: 0 ≤ a ≤ 1, Et[Xa
T] → ∞. If XT ≤ 1, (XT + 1)a ≤ 2a, whereas if XT ≥

1, (XT + 1)a − Xa
T ≤ aXa−1

T ≤ a since (XT + 1)a is concave and a − 1 ≤ 0. There-
fore, Xa

T ≤ (1 + XT)a ≤ Xa
T + 2a + a and, hence, limT→∞Et[(1 + XT)a]/Et[Xa

T] = 1,
which implies limT→∞Et[(1 + XT)a]/(1 + Et[Xa

T]) = 1.

Case 2: 1 ≤ a ≤ 2, Et[Xa
T] → ∞. By the mean value theorem, (1 + XT)a =

Xa
T + a(w + XT)a−1 for some w ∈ [0, 1]. Using the analysis of Case 1, (w +

XT)a−1 ≤ (1 + XT)a−1 ≤ Xa−1
T + 2a−1 + a − 1, which combined with (A14a), im-

plies that limT→∞ Et[(1 + X T )a]/Et
[
X a

T

] = 1 and the main result follows.

Case 3: 2 ≤ a, Et[X a
T ] → ∞. By the mean value theorem, (1 + XT)a = Xa

T +
a(w + XT)a−1 for some w ∈ [0, 1]. By Jensen’s inequality, [(1 + XT)/2]a−1 ≤ (1 +
Xa−1

T )/2. Thus, 0 ≤ (w + XT)a−1 ≤ (1 + XT)a−1 ≤ 2a−2 + 2a−2Xa−1
T , which com-

bined with (A14a), implies that limT→∞Et[(1 + XT)a]/Et[Xa
T] = 1 and the main

result follows.
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Case 4: 0 ≤ a ≤ 1, Et[X a
T ] → 0: If XT ≤ 1, (1 + XT)a ≤ 1 + XT ≤ 1 + Xa

T, while
if XT ≥ 1, (1 + XT)a ≤ Xa

T + a ≤ 1 + Xa
T since (1 + XT)a is concave. Thus, 1 ≤

(1 + XT)a ≤ 1 + Xa
T and, therefore, limT→∞ Et[(1 + X T )a] = 1, which implies the

main result.

Case 5: 1 ≤ a ≤ 2, Et[X a
T ] → 0. By the mean value theorem, (1 + XT)a = 1 +

aXT(1 + wXT)a−1 for some w ∈ [0, 1]. Furthermore, XT(1 + wXT)a−1 ≤ XT(1 +
XT)a−1 ≤ XT(Xa−1

T + 2a−1 + a − 1), using the same argument as in Case 1.
Since limT→∞Et[Xa

T] = 0, according to (A14b), limT→∞Et[XT] = 0 and hence
limT→∞ Et[(1 + X T )a] = 1.

Case 6: 2 ≤ a, Et[X a
T ] → 0. By the mean value theorem, (1 + XT)a = 1 +

aXT(1 + wXT)a−1 for some w ∈ [0, 1]. Furthermore, XT(1 + wXT)a−1 ≤ XT(1 +
XT)a−1 ≤ 2a−2XT + 2a−2Xa

T by Jensen’s inequality. Since limT→∞Et[Xa
T] = 0 ac-

cording to (A14b), and limT→∞Et[XT] = 0, then limT→∞ Et[(1 + X T )a] = 1.

(ii) Since the conditional expectations Et[(1 + XT)a] and Et[1 + Xa
T] are mar-

tingales, they have zero drift for all values of T and t. By Ito’s Lemma, con-
vergence of the first moments of the natural logarithms of the same processes
follows from convergence of the second moments.

We now establish convergence of volatility of the process Et[(1 + XT)a].
According to Ito’s Lemma, one must show that

lim
T→∞

∂ ln Et
[
(1 + X T )a

] /
∂ Bt

∂ ln
(
1 + Et

[
X a

T

])/
∂ Bt

= 1, ∀ a ≥ 0.

Given (A13), it suffices to prove that limT→∞ ∂ ln Et[(1 + X T )a]/∂ Bt = 0
if limT→∞Et[Xa

T] = 0, and limT→∞∂ln Et[(1 + XT)a]/∂Bt = av if limT→∞Et[Xa
T]

= ∞.
First, changing the order of differentiation and expectation operators (see

Billingsley (1995, Th. 16.8)),

∂ ln Et
[
(1 + X T )a

]
∂ Bt

= av
Et

[
X T (1 + X T )a−1

]
Et

[
(1 + X T )a

] = av

(
1 − Et

[
(1 + X T )a−1

]
Et

[
(1 + X T )a

] )
.

Furthermore, according to part (i),

Et
[
(1 + X T )a−1

]
Et

[
(1 + X T )a

] ∼ Et
[
(1 + X T )a−1

]
1 + Et

[
X a

T

] . (A15)

Assume a ≥ 1. As we show in Case 1 of the Proof of part (i), Xa−1
T ≤ (1 + XT)a−1 ≤

Xa−1
T + 2a−1 + a − 1. If Et[X a

T ] → ∞, according to (A14a), Et[X a−1
T ]/Et[X a

T ] →
0, which yields limT→∞∂ln Et[(1 + XT)a]/∂Bt = av. Similarly, if Et[X a

T ] → 0,

then, according to (A14b), limT→∞Et[Xa−1
T ] = 0, which according to part (i) im-

plies that limT→∞Et[(1 + XT)a−1] = 1 and limT→∞∂ln Et[(1 + XT)a]/∂Bt = 0.
Next, consider the case of 0 < a < 1. If Et[X a

T ] → ∞, because Et[(1 +
X T )a−1] ≤ 1, (A15) implies limT→∞∂ln Et[(1 + XT)a]/∂Bt = a v.

Suppose limT→∞ Et[X a
T ] = 0. By Markov’s inequality, for any ε > 0, Pt[XT >

ε] ≤ Et[Xa
T]/εa → 0. Similarly, Pt[XT < ε] ≤ Et[(1 + XT)a−1]/(1 + ε)a−1. Thus,
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1 ≥ Et[(1 + XT)a−1] ≥ Pt[XT < ε](1 + ε)a−1, and lim infT→∞Et[(1 + XT)a−1] ≥
(1 + ε)a−1 for any ε > 0. This implies that limT→∞Et[(1 + XT)a−1] = 1 and
limT→∞∂ln Et[(1 + XT)a]/∂Bt = 0. Q.E.D.

We establish the long-run behavior of St for the case γ > 1 and 0 < η < η =
2(γ − 1). The results for all other regions in the parameter space can be obtained
similarly.

The equilibrium stock price and the ratio of the individual wealth processes
are given by

St =
Et

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ
]

Et

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ
] ,

Wr,t

Wn,t
=

Et

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ−1
]

Et

[
D1−γ

T (b ξT )
1
γ (1 + (b ξT )

1
γ

)γ−1
] . (A16)

We therefore need to characterize the long-run behavior of the following two
quantities:

E (1) ≡ Et

[
D1−γ

T (1 + (b ξT )
1
γ

)γ
]
, E (2) ≡ Et

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ
]
. (A17)

Consider the first expression,

E (1) = Et

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ
]

= D1−γ
t Et

[(
DT

Dt

)1−γ
(

1 +
(

b ξt
ξT

ξt

) 1
γ

)γ ]
. (A18)

Given the aggregate dividend process,(
DT

Dt

)1−γ

= e(T−t)(μ(1−γ )− 1
2
σ 2(1−γ )γ )e− 1

2
(1−γ )2σ 2(T−t)+(1−γ )σ (BT −Bt ).

As in the Proof of Proposition 1, we introduce a new measure Q with the

Radon–Nikodym derivative ( d Q
d P )t = e− 1

2
(1−γ )2σ 2(T−t)+(1−γ )σ (BT −Bt ). By Girsanov’s

theorem, BT − Bt = BQ
T − BQ

t − (1 − γ )σ (T − t), where BQ
t is a Brownian mo-

tion under the measure Q. Using the expression for b from Proposition 1,
b = eT (γ−1)σ 2η, we find

E (1) = eT (μ(1−γ )− 1
2
σ 2(1−γ )γ )+t(− 1

2
σ 2(1−γ )2)+Bt (σ (1−γ ))

× E
Q
t

[(
1 + e(− 1

2
η2σ 2 1

γ
)T+( 1

γ
(γ−1)σ 2η)t+ ησ

γ
BQ

T

)γ ]
.

We omit the superscript Q, since the distribution of BQ
t under the measure Q

is the same as the distribution of Bt under the original measure P.
Using the assumption that t = λT, define

X T = e(− 1
2
η2σ 2 1

γ
+(1−λ) 1

γ
(γ−1)σ 2η)T+ ησ

γ
BT . (A19)

We now apply the result of Lemma A2, with

c = −1

2
η2σ 2 1

γ
+ (1 − λ)

1

γ
(γ − 1)σ 2η, v = ησ

γ
, a = γ.
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Since we assume γ > 1 and 0 < η < 2(γ − 1), limT→∞Et[Xa
T] = ∞. According to

Lemma A2,

Et

[
D1−γ

T

(
1 + (b ξT )

1
γ

)γ
]

∼ e(μ(1−γ )− 1
2
σ 2(1−γ )γ )T+(− 1

2
σ 2(η+1−γ )2)t+σ (η+1−γ )Bt .

We next examine E(2). Using a similar change of measure, we find

E (2) = e(−μγ+ 1
2
σ 2(1+γ )γ )T+(− 1

2
σ 2γ 2)t+(−σγ )Bt

× Et
[(

1 + e(−σ 2η 1
γ
− 1

2
η2σ 2 1

γ
)T+σ 2ηt+ ησ

γ
BT

)γ ]
. (A20)

We apply Lemma A2, setting X T = ec T+v BT and

c = −σ 2η
1

γ
− 1

2
η2σ 2 1

γ
+ (1 − λ)σ 2η, v = ησ

γ
, a = γ.

The value of limT→∞Et[Xa
T] depends on the exact combination of the model

parameters. In particular,

lim
T→∞

Et
[
X a

T

] =
{

∞, −2η + λ(2γ η − η2) > 0,

0, −2η + λ(2γ η − η2) < 0,

(see the Proof of Lemma A2, part (i)). Define λS ≡ 2
2γ−η

. Note that because γ > 1

and 0 < η < 2(γ − 1), 0 < λS < 1. Then, limT→∞Et[Xa
T] = ∞ if λ > λS and 2γ η −

η2 > 0 or if λ < λS and 2γ η − η2 < 0, and the limit is equal to zero otherwise.
By Lemma A2, if limT→∞Et[Xa

T] = ∞,

Et

[
D−γ

T (1 + (b ξT )
1
γ )γ

]
∼ eT (−μγ+ 1

2
σ 2(1+γ )γ−σ 2η)T+(− 1

2
σ 2(η−γ )2)t+σ (η−γ )Bt ,

while if limT→∞Et[Xa
T] = 0, then

Et

[
D−γ

T (1 + (b ξT )
1
γ )γ

]
∼ e(−μγ+ 1

2
σ 2(1+γ )γ )T+(− 1

2
σ 2γ 2)t+(−σγ )Bt .

Using our definition of λS, we re-state these results as

Et

[
D−γ

T

(
1 + (b ξT )

1
γ

)γ
]

∼
{

e(−μγ+ 1
2
σ 2(1+γ )γ )T+(− 1

2
σ 2γ 2)t−σγ Bt , 0 ≤ λ < λS

e(−μγ+ 1
2
σ 2(1+γ )γ−σ 2η)T+(− 1

2
σ 2(η−γ )2)t+σ (η−γ )Bt , λS < λ ≤ 1.

Having established the behavior of both the numerator and the denominator
of the expression for the stock price, we have proven the limiting result for the
stock price itself. According to part (ii) of Lemma A2, not only the stock price,
but also the mean and volatility of returns behave according to the asymp-
totic expressions of Proposition 5 in the limit of the economy with horizon T
approaching infinity. Q.E.D.
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Proof of Proposition 7: When the financial markets are dynamically complete
and there is a single source of uncertainty (driven by a Brownian motion), the
fraction of the agent’s wealth invested in stock can be computed as a ratio of the
instantaneous volatility of the agent’s wealth to the instantaneous volatility of
the cumulative stock return process. Proposition 5 (and Kogan et al. (2003),
Proposition 8) provide the expression for the long-run behavior of the volatility
of stock returns and individual wealth processes, from which the expression for
portfolio holdings follows immediately. To decompose the portfolio holdings of
the rational trader into a sum of the myopic and hedging demands, we compute
the hedging demand as μS/(γ σ 2

S ), where μS and σS are the drift and the diffusion
coefficients of the stock return process, respectively. The difference between the
total portfolio holdings and the myopic component define the agent’s hedging
demand. For the irrational trader, the calculations are analogous, except the
myopic demand is given by (μ̂S/(γ σ 2

S) = (μS + ησσS)/(γ σ 2
S)), where μ̂S is the

expected stock return as perceived by the irrational trader. Q.E.D.
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