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In this paper, we develop an equilibrium model for stock market liquidity and its impact
on asset prices when constant market presence is costly. We show that even when agents’
trading needs are perfectly matched, costly market presence prevents them from synchro-
nizing their trades and hence gives rise to endogenous order imbalances and the need for
liquidity. Moreover, the endogenous liquidity need, when it occurs, is characterized by
excessive selling of significant magnitudes. Such liquidity-driven selling leads to market
crashes in the absence of any aggregate shocks. Finally, we show that illiquidity in the
market leads to high expected returns, negative and asymmetric return serial correlation,
and a positive relation between trading volume and future returns. We also propose new
measures of liquidity based on its asymmetric impact on prices and demonstrate a negative
relation between these measures and expected stock returns. (JEL D53, G12)

1. Introduction

Market crashes refer to large, sudden drops in asset prices in the absence of
big news on the fundamentals, such as future payoffs. Crashes exhibit several
distinct features: They are one-sided—market surges are less likely; they are
typically accompanied by large selling pressures in the market; and while
the drop in prices occurs quickly, the recovery is slow. The extant literature
provides no clear consensus on what causes a crash. The lack of liquidity,
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however, is always identified as its symptom and is blamed for exacerbating its
consequences.1

This view is supported by increasing evidence that despite the profitable
buying opportunities after a crash—at least as perceived by some observers—
new capital flows in only after long lags. For example, following the 1987 stock
market crash, a large number of companies announced repurchases of their
own shares, reflecting the belief that their stocks were undervalued; however,
these announcements were spread over many months and took even longer
to be implemented. Similarly, following the Long-Term Capital Management
(LTCM) episode in 1998, the substantial capital outflows from hedge funds
operating in the same markets as LTCM (e.g., fixed income arbitrage and
global macro strategies) only started to reverse several quarters later, despite the
opportunities in these markets.2 This evidence suggests that capital movements
are costly. The costs range from informational costs to institutional rigidities
(see Merton 1987, among others). When abnormal trading pressure hits, only
a limited supply of liquidity is available to accommodate the trades, and hence
prices have to shift significantly (see, for example, Shleifer 1986; and Grossman
and Miller 1988).

This perspective focuses on the lack of liquidity supply, especially during
market crises. But it does not explain what gives rise to the initial need for
liquidity, why it is usually in the form of excessive selling, and why it is of
large magnitudes. In this paper, we show that the same cost that hinders the
ex post supply of liquidity also generates the need for liquidity in the first place.
Despite the symmetric nature intrinsic to market participants’ idiosyncratic
trading needs, the aggregate need for liquidity, when it arises, is asymmetric
(usually on the selling side) and of large size. With limited supply of liquidity
in the market, these sudden surges of endogenous liquidity needs lead to large
price drops, as in market crashes.

We start with a model that captures two important aspects of liquidity, the
need to trade and the cost of trading. Trading needs arise from idiosyncratic
shocks to agents’ wealth, which the agents want to unload in the market by
adjusting their asset holdings. By definition, idiosyncratic shocks sum to zero
at the aggregate level. As a result, agents’ trading needs are always symmetric
and perfectly matched—that is, for each potential seller there is a potential
buyer with offsetting trading needs. If market presence is costless, all potential
buyers and sellers will be in the market at all times. Their trades will be
perfectly synchronized and matched, and there will be no need for liquidity.

1 For example, the report by the Committee on the Global Financial System (CGFS 1999) provides an overview
of the “deterioration in liquidity and elevation of risk spreads” in many international financial markets in autumn
1998.

2 Gammill and Marsh (1988) and Netter and Mitchell (1989) analyze the share repurchases after the 1987 crash.
Mitchell, Pedersen, and Pulvino (2007) document the inefficiency in the convertible bond market, and Tremont
(2006) reports the capital flows into and out of different hedge fund strategies around the collapse of LTCM in
1998.
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Liquidity and Market Crashes

In this case, the market-clearing price always reflects the fundamental value
of the asset, such as asset payoffs and investor preferences, and idiosyncratic
shocks generate trading but have no impact on prices.

In contrast, when market presence is costly, the need for liquidity arises en-
dogenously and idiosyncratic shocks can affect prices. Costly market presence
has two important effects. First, it prevents potential traders from being in the
market constantly. They will enter the market only when they are far away
from their desired positions and the expected gains from trading outweigh the
cost. Infrequent trading implies that traders who are hit by idiosyncratic risks
will not always be able to unload them in the market, which makes them more
risk averse. Second, potential traders with offsetting trading needs perceive
different gains from trading. In particular, the gains from trading for potential
sellers are always larger than the gains from trading for potential buyers. The
reason is that, as idiosyncratic shocks push them away from their optimal po-
sitions, traders become more risk averse and less willing to hold the asset. This
increased risk aversion reduces their preferred asset holding, exacerbates the
selling need for potential sellers, and dampens the buying demand for potential
buyers. The asymmetry in their desire to trade leads to order imbalances in the
form of excess supply, and the price has to decrease in response.

Moreover, the endogenous liquidity need is highly nonlinear in the idiosyn-
cratic shocks that drive agents’ trading needs. When the magnitude of idiosyn-
cratic shocks is moderate, gains from trading are relatively small. As a result,
all traders will stay out of the market and there is no need for liquidity. Only
when the idiosyncratic shocks are sufficiently large do gains from trading ex-
ceed the participation cost for some potential traders. They enter the market
with large trading needs and more on the selling side. Thus, when the order
imbalance and the need for liquidity occur, they are large in magnitude, causing
the price to drop discretely in the absence of any aggregate shocks. Such mar-
ket behavior—namely, infrequent but large price drops accompanied by large
selling pressure absent big news on the fundamentals—clearly resembles the
features of market crashes.

This mechanism for crashes, driven solely by liquidity, differs from those
proposed in the literature that rely on the presence of information asymme-
try among investors about the fundamentals.3 Our analysis shows that purely
idiosyncratic and non-fundamental shocks can cause market crashes if capital
flow is costly. Moreover, information-based models for crashes have two un-
desirable features from an empirical perspective: Both crashes and surges are
possible and a crash reflects a permanent shift in the price instead of a tran-
sitory price change.4 In contrast, our liquidity-based explanation for crashes
predicts one-sided and transitory price movements—that is, it is less likely to

3 For example, Grossman (1988), Gennotte and Leland (1990), and Romer (1993) consider models with information
asymmetry in incomplete markets.

4 The symmetry simply comes from the fact that when information moves prices, it can be either positive or
negative. The permanent nature of the price change follows from the fact that the change reflects additional
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see surges, and the crash represents a deviation from fundamentals that will
eventually recover.

The impact of liquidity also leads to testable implications on the behavior
of prices, returns, and trading volume. First, crashes caused by endogenous
liquidity needs lead to extra volatility unrelated to changes in fundamentals.
They also give rise to negative skewness and fat tails in the return distribution.
Second, since the price impact of liquidity is transitory, it leads to return
reversals (i.e., negative serial correlation in returns). More importantly, the
negative and discrete nature of endogenous liquidity needs implies that return
reversals are more prominent for negative returns than for positive returns.
Third, in our model trading volume is positively related to liquidity needs, and
thus it is negatively correlated with the contemporaneous return but positively
correlated with the future return. Consequently, higher volume predicts higher
future returns. Fourth, the asymmetric nature of the liquidity impact further
implies that low returns accompanied by high volume exhibit stronger reversals
than high returns. Fifth, since lower returns and higher volume are indicative
of aggregate liquidity demand, they are also accompanied by higher asset
volatility. In addition, given that the level of liquidity varies across markets, our
analysis also implies that the liquidity effects on return and volume described
above are stronger in less-liquid markets.

Furthermore, we show that an asset with lower liquidity has a lower price
and a higher average return. In our model, the level of liquidity is negatively
related to several observable variables such as the average volume and the price
impact measures of Campbell, Grossman, and Wang (1993). Thus, our model
provides an explanation for the positive relation between the average stock
return and these variables, which have been documented in several empirical
studies (see, for example, Brennan, Chordia, and Subrahmanyam 1998; and
Pastor and Stambaugh 2003). In addition, several studies find that various
trading cost measures are at best noisy proxies of liquidity in explaining returns
(see, for example, Hasbrouck 2006; and Spiegel and Wang 2007). Based on the
asymmetric nature of liquidity’s price impact, we propose more direct measures
of liquidity, such as the asymmetry in the return serial correlation between high
and low returns or between returns accompanied by high and low volume. The
model predicts a positive link between expected returns and these liquidity
measures.

In studying the impact of liquidity, much of the attention is focused on
the supply of liquidity, taking the liquidity demand as given.5 For example,

information about the fundamentals. Models with short sale or borrowing constraints, such as Hong and Stein
(2003), Yuan (2005), and Bai, Chang, and Wang (2006), can generate negative skewness in returns. But the
skewness arises from the asymmetric distribution of small price changes, not discrete price drops.

5 For example, in the market microstructure literature, which has liquidity as a central focus, the need for liquidity,
as described by the order-flow process, is often taken as given. Amihud and Mendelson (1980) and Ho and Stoll
(1981) examine how dealers’ inventory costs affect the supply of liquidity, and Glosten and Milgrom (1985) and
Kyle (1985) consider the additional effect of information asymmetry. Admati and Pfleiderer (1988) and Spiegel
and Subrahmanyam (1995), however, do allow the order-flow process to be influenced by equilibrium.
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Liquidity and Market Crashes

Grossman and Miller (1988) consider how participation costs limit market
makers’ supply of liquidity and reduce price volatility, taking as given the
nonsynchronization in trades. Pagano (1989) and Allen and Gale (1994) con-
sider the ex ante participation decisions of agents with different future liquidity
needs. They show that the ex ante optimal level of participation can be inade-
quate ex post when the realized liquidity need is very large, causing additional
volatility in prices.6

We extend the existing literature on liquidity by modeling how the need
for liquidity arises endogenously and how it behaves. Our analysis shows
that it is the participation costs that generate the nonsynchronization in trades
and hence the need for liquidity in the first place. We capture the dynamic
aspect of liquidity by allowing traders to make their participation decisions
after observing their trading needs. The endogenously derived liquidity needs
exhibit distinctive properties—in particular, one-sided and fat-tailed—which
allow us to show that liquidity needs can lead to market crashes in the absence
of fundamental news.

Furthermore, in our model, liquidity needs arise purely from idiosyncratic
shocks, which would have no pricing implication in the absence of the liquid-
ity effect. Most of the existing models rely on aggregate shifts in demand.7

The presence of aggregate shocks makes market crashes and surges equally
likely, as the shocks can be either positive or negative. Moreover, it blurs the
distinction between the effects of liquidity and risk (and/or preferences). In
these models, liquidity merely plays the role of exacerbating the impact of
exogenous aggregate shocks. In our model, it is the idiosyncratic shock that
generates endogenous selling demand at the aggregate level.

Our model is closely related to the model of Lo, Mamaysky, and Wang
(2004), which is in a continuous-time stationary setting. They show that gains
from trading are in general asymmetric between traders with offsetting shocks
when trading is costly. In order to focus on the impact of trading cost on price
levels, they avoid potential order imbalances by allocating the cost endoge-
nously among buyers and sellers so that their orders are always synchronized.
As we show in this paper, it is the order imbalances that lead to liquidity needs
and the instability in asset prices.

This paper proceeds as follows. Section 2 describes the basic model. Section
3 solves for the intertemporal equilibrium of the economy. In Section 4, we
examine how the endogenous need for liquidity affects asset prices, and in
particular causes market crashes. In Section 5, we explore in more detail the
testable implications of our model on the impact of liquidity on the behavior of
returns and volume. Section 6 concludes. The Appendix contains the proofs.

6 Participation costs can also take the form of capital or position constraints. For example, Gromb and Vayanos
(2002) and Brunnermeier and Pedersen (2008) consider how binding margins and collateral restrictions in down
markets limit the supply of liquidity. Acharya and Viswanathan (2008) and He and Krishnamurthy (2008) further
consider how capital constraints of market participants arise endogenously as a response to agency costs.

7 See Campbell, Grossman, and Wang (1993), Campbell and Kyle (1993), and Allen and Gale (1994).
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2. The Model

We construct a parsimonious model that captures two important factors in
analyzing liquidity, the need to trade and the cost of participating in the market.
We use a discrete-time, infinite-horizon setting.

2.1 Economy

2.1.1 Asset market. A stock is traded in a competitive asset market. It yields
a risky dividend Dt at time t , where t = 0, 1, 2, . . . Dividends are i.i.d. normally
distributed with a mean of D̄ and volatility of σD. Let Pt denote the ex-dividend
stock price at time t . In addition, there is a short-term riskless bond, which
yields a constant interest rate of r > 0 per period.

2.1.2 Agents. At t = 0, 1, 2, . . ., a set of agents are born who live for one
period. Agents born at t are referred to as generation t . They are born with
initial wealth Wt , which they invest in the stock and the bond. They sell all
their assets for consumption at time t + 1.

Each generation consists of two types of agents who face different endow-
ments and trading costs. As described below, agents’ heterogeneity in endow-
ments gives rise to their trading needs in our model. The first type of agents,
denoted by m, are “market makers.” They have no inherent trading needs, but
are present in the market at all times, ready to trade with others. The second
type of agents are “traders,” who have trading needs. Traders are split between
two equal subgroups with different trading needs, denoted by a and b, respec-
tively. The population weights of the market makers and the traders are μ and
2ν, respectively.

The per capita supply of the stock is θ̄, which is positive (i.e., θ̄ > 0). In
addition, each agent i of generation t receives a nontraded payoff N i

t+1 at the
end of his lifespan, given by

N i
t+1 = λi Z nt+1, i = m, a, b, (1)

where Z and nt+1 are mutually independent, normal random variables with a
mean of zero and a volatility of σZ and σn , respectively, and λi is a binomial
random variable drawn independently for each agent within his group, where8

λm = 0, λa = −λb =
{

1, with probability λ

0, with probability 1 − λ.
(2)

Thus, market makers receive no nontraded payoff, while a fraction λ of traders
within each trader group receives nontraded payoffs. Since λa = −λb, the two

8 Since our analysis focuses only on generation t , we omit the time subscript for brevity whenever there is little
room for confusion. For example, λi and Z have no time subscript.
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Liquidity and Market Crashes

groups of traders receive perfectly offsetting nontraded payoffs. By construc-
tion, we have ∑

i=a,b,m

N i
t+1 = 0. (3)

The nontraded payoff is assumed to be correlated with the stock dividend Dt+1.
In particular, we let nt+1 = Dt+1 − D̄.9

In the absence of risks from nontraded payoffs, all agents are identical and
there is no need to trade among them. However, in the presence of nontraded
risks, traders who receive them want to trade in order to share these risks.
In particular, given the correlation between the nontraded payoff and the stock
payoff, they want to adjust their stock positions in order to hedge their nontraded
risks. Thus, traders’ idiosyncratic risk exposures give rise to their inherent
trading needs.

Since the nontraded risks sum to zero as in (3), the traders’ underlying trading
needs are perfectly matched. If all traders are present in the market at all times,
a seller is always matched with a buyer and there is perfect synchronization in
their trades. If, however, only some traders are present at a given time, trades
may not be always synchronized and the need for liquidity may arise.

For tractability, we assume that all agents have a utility function of con-
stant absolute-risk aversion over their terminal wealth. The utility function for
generation-t agents is

E
[−e−αW i

t+1
]
, i = a, b, m, (4)

where W i
t+1 denotes agent i’s terminal wealth.

Given agents’ nontraded payoff and utility function, we need the following
condition to guarantee that their expected utility is always well defined (i.e.,
finite):

1

2
α2σ2

Dσ
2
Z < 1. (5)

2.1.3 Participation costs. All agents can trade in the market at no cost at the
beginning and the end of their lifespan. That is, agents of generation t can trade
in the market at t and t + 1 without cost. In addition, market makers can also
trade at no cost at any time between t and t + 1. The traders, however, face a
fixed cost c ≥ 0 if they want to trade between t and t + 1.

2.1.4 Time line. We now describe in detail the timing of events and actions.
At t , agents of generation t are born. They purchase shares of the stock from

9 Our modeling of the heterogeneity in endowments is similar to that of Glosten (1989) and Wang (1994) and is
meant to capture the need to trade for risk sharing. We only need the correlation between nt+1 and Dt+1 to be
nonzero. The qualitative nature of our results is independent of the sign and the magnitude of the correlation. To
fix ideas, we set it to one.
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the old generation and construct their optimal portfolio θi
t , i = a, b, m. Market

equilibrium at t determines Pt .
After t , traders learn if they will be exposed to any idiosyncratic risks (i.e.,

their draws of λi ). Those subject to such risks (λi �=0) also observe a signal S
about the potential magnitude of the risk, Z , that is

S = Z + u, (6)

where u is the noise in the signal, normally distributed with a mean of zero and
a variance of σ2

u > 0. For future convenience, we denote by X the expectation
of Z conditional on signal S and σ2

z the conditional variance. We then have

X ≡ E[Z |S] = σ2
Z

σ2
Z + σ2

u

S, σ2
z ≡ Var[Z |S] = σ2

u

σ2
u + σ2

Z

σ2
Z . (7)

Under normality, X is a sufficient statistic for signal S. Thus, we will use X
to denote these traders’ information about the magnitude of their idiosyncratic
risks.

In addition, agents also receive a signal SD about the next-period dividend
payment

SD = Dt+1 + e, (8)

where e is the signal noise with a mean of zero and a variance of σ2
e . For

convenience, we set σe = σD so that half of the uncertainty about Dt+1 is
resolved at t + 1/2.10

After learning about their idiosyncratic risks, traders face the choice of
staying out of the market (until their terminal date) or paying a cost c to enter
the market. Those who choose to enter will then trade among themselves as
well as with market makers. To fix ideas, we assume that signal X and entry
decisions occur at t + 1/2, and that trading occurs right after.

A trader’s choice to enter the market depends on his draw of λi and the
signal X on the magnitude of the idiosyncratic risk if λi �= 0. Let ηi be the
discrete choice variable of trader i (i = a, b) for whether to enter the market,
where ηi = 1 denotes entry and ηi = 0 denotes no entry. Among group i traders
(i = a, b) who receive idiosyncratic shocks (i.e., λi �= 0), we use ωi,L to denote
the fraction of traders who choose to enter the market. Similarly, ωi,NL denotes
the fraction of traders without idiosyncratic shocks who choose to enter. We also
use θi

t+1/2(ηi ) to denote the number of stock shares agent i (i = m, a, b) holds
after trading at date t + 1/2. Of course, θi

t+1/2(ηi = 0) = θi
t . Summarizing the

description above, Figure 1 illustrates the time line of the economy.

10 The signal SD is not essential for the model. It is introduced so that the fundamental risk of the stock is i.i.d. in
the two subperiods, making it easier to draw empirical predictions.
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Liquidity and Market Crashes

t t + 1/2 t + 1 time

Shocks λi, X, SD Dt+1, N i
t+1

Choices θit ηi(λi, X); θit+1/2
(ηi)

Equilibrium Pt ωi,L, ωi,NL; Pt+1/2 Pt+1

. . .

. . .

. . .

Figure 1

The time line of the economy

For agent i , his terminal financial wealth, denoted by V i
t+1, is

V i
t+1 = R2

F Wt − RFη
i ci + θi

t RF

(
Pt+1/2 − RF Pt

)
+ θi

t+1/2(ηi )
(
Dt+1 + Pt+1 − RF Pt+1/2

)
, (9)

where RF = (1 + r )1/2 is the gross interest rate for each half-period, ci = c for
i = a, b, and ci = 0 for i = m. His total wealth at date t + 1 is then given by

W i
t+1 = V i

t+1 + N i
t+1, (10)

where N i
t+1 is the income from the nontraded asset in (1).

2.2 Discussions and simplifications

In this subsection, we provide additional discussions on several aspects of the
model. A key ingredient of our model is the cost to participate in the market.
The cost is intended to capture frictions that prevent either the full participa-
tion of all potential players in a market or the instant capital flow to a market.
Information costs and institutional rigidities are abundant. Gathering and pro-
cessing information, devising trading strategies and their support systems in
response to new information, raising capital, and making changes in business
practice to implement these strategies all involve costs and time. After an ex-
tensive discussion on the importance of these costs, Merton (1987) observes,
“On the time scale of trading opportunities, the capital stock of dealers, market
makers and traders is essentially fixed. Entry into the dealer business is neither
costless nor instantaneous.”11 While direct measurements of participation costs
are difficult, there is increasing evidence demonstrating their significance (see,
for example, Coval and Stafford 2007; Gabaix, Krishnamurthy, and Vigneron
2007; and Mitchell, Pedersen, and Pulvino 2007).

Our model also makes an important technical assumption that, at the time of
participation decisions, traders only partially learn about their future idiosyn-
cratic risks, i.e., they receive a noisy signal S about Z . If Z is fully known at
the time of the participation decision, a single trader can remove all future non-
traded risks, and the model becomes essentially static. By assuming a partial
observation of Z , we capture the intertemporal effect that a trader, even when

11 See also Brennan (1975), Hirshleifer (1988), Leland and Rubinstein (1988), Chatterjee and Corbae (1992), and
Vissing-Jorgensen (2002), among others, for more discussion of participation costs in financial markets.
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he chooses to enter the market now, still expects to bear some idiosyncratic
risk since he may not be in the market in the future. Such an expectation influ-
ences his current participation decision. As we will see in the next section, this
remaining uncertainty leads to asymmetric participation decisions for traders
with matching trading needs. Thus, this result arises from the intertemporal
nature of the model. In a fully intertemporal setting, Lo, Mamaysky, and Wang
(2004) show that when participation costs force traders to trade infrequently,
they always expect to bear some idiosyncratic risks and the asymmetry in their
trading is a general outcome. Our setup provides a simple way to capture the
same effect.

As long as it occurs after the participation decision, the exact timing of the
full revelation of Z is not critical. For simplicity, we assume that by the time
of trading (right after t + 1/2) all traders who receive idiosyncratic risks also
observe the realization of Z .12

2.3 Equilibrium with costless participation

Before solving for the equilibrium, we describe the special case of participation
costs being zero for all agents. This case serves as a benchmark when we
examine the impact of participation costs on liquidity and stock prices. At zero
cost, all traders and market makers will be in the market at all times.

At any time t , we define the conditional mean and variance of the stock’s
future payoff, discounted at the risk-free rate r , as

Ft ≡ Et

[∑
s>t

1

(1 + r )s−t
Ds

]
, σ2

t ≡ Vart

[∑
s>t

1

(1 + r )s−t
Ds

]
, (11)

where Et [·] and Vart [·] denote the expectation and variance conditional on
the information at time t . The equilibrium price and agents’ equilibrium stock
holdings are given by

Pt = Ft − ασ2
t θ̄, θi

t = θ̄

Pt+1/2 = Ft+1/2 − ασ2
t+1/2θ̄, θi

t+1/2 = θ̄ − λi Z ,
(12)

where t = 0, 1, 2, . . . , and i = a, b, m.
In this case, the stock price Pt is determined by the stock’s expected future

dividends Ft , the dividend risk σ2
t , and the aggregate (per capita) risk exposure

θ̄. We call these the “fundamentals.” Prices do not depend on the idiosyncratic
risk Z . For traders exposed to nontraded risks, their stock holdings equal the
per capita endowment θ̄ plus an additional component λi Z , which reflects
the traders’ hedging demand to offset the exposure to the nontraded risk. It

12 We also solve the model under the assumption that Z is revealed at t + 1. The equilibrium price and participation
decisions are qualitatively the same, except that there is an extra risk premium for the unhedged risk even
under full participation. Since our focus is on the price difference between the full and the partial participation
equilibrium, we choose the current setup to have a simpler full participation benchmark.
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Liquidity and Market Crashes

is important to note that because these traders’ underlying trading needs are
perfectly matched (λa = −λb), so are their trades when they are all in the
market. In this case, the market is perfectly liquid in the sense that order flows
have no price impact. There is no need for liquidity and market makers perform
no role (their holdings stay at θm = θ̄).

3. Equilibrium

We now solve for the equilibrium with costly participation as follows. First,
taking the stock price at t + 1, agents’ initial stock holdings, and participa-
tion decisions as given, we solve for the stock market equilibrium at t + 1/2.
Second, we solve for individual agents’ participation decisions and the partic-
ipation equilibrium, given the market equilibrium at t + 1/2 and the agents’
initial stock holdings at t . Finally, we solve for the market equilibrium at time
t , and use the condition Pt+1 = Pt to obtain the full stationary equilibrium of
the economy.

In the first two steps (Sections 3.1 to 3.3), we assume that traders who
receive no idiosyncratic shocks (λi = 0) stay out of the market until the end of
their horizon—that is, ωi,NL = 0, i = a, b. Thus, we consider only those traders
who receive shocks and solve for their participation decisions, the participation
equilibrium, and the market equilibrium at t + 1/2. In these subsections, unless
stated otherwise, traders refer only to those with λi �= 0, and ωa ≡ ωa,L and
ωb ≡ ωb,L refer to fractions of the traders that choose to participate. In the
last step (Section 3.4), we include all traders and confirm that, indeed, in
equilibrium those who receive no idiosyncratic shocks choose not to participate
in the market.

3.1 Market equilibrium at t + 1/2

At t + 1/2, we take agents’ initial stock holdings and their participation deci-
sions as given and solve for the market equilibrium. Let θ ≡ (θa

t , θ
b
t , θ

m
t ) denote

agents’ stock holdings at t and ω ≡ (ωa,ωb) denote the participation decision.
Together with the idiosyncratic shock Z , {θ,ω} defines the state of the economy
at t + 1/2. Two variables are of particular importance in describing the market
condition

θ̂ ≡ μθm + λ ν(ωaθa +ωbθb)

μ + λ ν(ωa +ωb)
, δ ≡ λ ν

μ + λ ν(ωa +ωb)
(ωa − ωb), (13)

where θ̂ gives the per capita stock supply in the market (brought in by partici-
pating agents) and δ measures the difference in participation between the two
trader groups. Since the participation equilibrium at t depends on the informa-
tion X about the nontraded risk, ωa and ωb, and thus θ̂ and δ are all functions
of X .

The following proposition solves the market equilibrium at t + 1/2.

2617

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/22/7/2607/1599349 by M

IT Libraries user on 30 D
ecem

ber 2019



The Review of Financial Studies / v 22 n 7 2009

Proposition 1. Let Pt+1 be the equilibrium price at time t + 1. Given the
market condition θ̂ and δ, the equilibrium stock price at t + 1/2 is

Pt+1/2 = R−1
F

(
Et+1/2[Dt+1] + Pt+1 − 1

2ασ2
D θ̂ − 1

2ασ2
DδZ

)
(14)

and the equilibrium stock holding of participating agent i is

θi
t+1/2 = θ̂ + δZ − λi Z , i = a, b, m. (15)

When δ = 0, the participation of the two groups of traders is symmetric. The
participating agents’ holdings are equal to the per capita holding θ̂ minus the
hedging demand λi Z . Since λa = −λb, there is a perfect match between the
buy and sell orders among traders, and the equilibrium price is not affected by
the idiosyncratic shock Z . This situation is reminiscent of the benchmark case
when participation is costless.

When δ �= 0, the participation of the two groups of traders is asymmetric.
The quantity δZ measures the excess exposure (per capita) to the nontraded
risk due to the asymmetric participation of traders. In this case, the optimal
holding in (15) has an extra term δZ for all participating agents since they
equally share this additional source of risk. The idiosyncratic shock Z now
affects the equilibrium price. Thus, in our model, even though traders face
offsetting shocks, asymmetry in their participation can give rise to a mismatch
in their trades and cause the price to change in response to these shocks.

Here, we have taken traders’ participation and the resulting δ and θ̂ as given. In
the following subsections, we show that when individual participation decisions
are made endogenously, asymmetric participation occurs as an equilibrium
outcome.

3.2 Optimal participation decision

Given the market equilibrium at t + 1/2 and the signal X for future idiosyn-
cratic shocks, we now solve the optimal participation policy of an individual
trader, taking as given the participation decision of others. In the next subsec-
tion, we find the competitive equilibrium for traders’ participation decisions.

For trader i , let JP and JNP denote his utility from participation and no
participation, respectively. In general, trader i’s utility depends on his initial
stock holding θi , his exposure to the nontraded risk given by λi and X , and
the market condition given by θ̂ and δ. His net gain from participation can be
defined as the certainty equivalence gain in wealth:

g(θi ; λi , X ; θ̂, δ) = −1

α
ln

JP(θi ; λi , X ; θ̂, δ)

JNP(θi ; λi , X ; θ̂, δ)
. (16)

The minus sign on the right-hand side adjusts for the fact that JP(·) and JNP(·) are
negative. The following proposition describes the optimal participation policy
for an individual trader.
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Proposition 2. For trader i with initial stock holding θi , idiosyncratic shock
λi �= 0 and X, and market condition θ̂ and δ, his net gain from participation
is13

g(θi ; λi , X ; θ̂, δ) = g1(θi ; λi , X ; θ̂, δ) + g2(λi ; δ) − RF ci , (17)

where

g1(·) = ασ2
D (1−k λiδ)2

4(1−k)[1−k+k (1−λiδ)2]
(θi − θ̂i )2,

g2(·) = 1

2α
ln[1 + (1−λiδ)2k/(1−k)], (18)

and

θ̂i ≡ 1 − k

1 − kλiδ
θ̂ − 1 − λiδ

1 − kλiδ
λi X, k ≡ 1

2 α2σ2
D σ2

z . (19)

The trader chooses to participate if and only if g(·) > 0.

The first term of the gain, g1(·), represents the expected gain from trading given
the current signal X on nontraded risks. This term depends on trader i’s initial
holding θi , the per capita stock supply of all participating agents θ̂, and the
expected idiosyncratic risk, λi X . The second term, g2(·), captures the expected
gain from trading to offset future shocks to nontraded risks. This term depends
on the market condition δ and the quantity k, which depends on σz in (7) and
captures the variation in future trading needs. The last term, −RF ci , simply
reflects the cost of participation.

The gain is always positive when the participation cost is small, i.e., when c ≤
R−1

F g2(·). Trader i always participates in this case, independent of X . The more
interesting case is when c > R−1

F g2(·) and trader i chooses to participate only
if the expected gain g1(·) from trading against his current expected exposure is
sufficiently large. Note that g1(·) is zero when his current holding θi is equal to
θ̂i . Thus, we can interpret θ̂i as trader i’s desired stock holding after observing
his idiosyncratic risk. In this case, a trader chooses to participate when his
holding θi is sufficiently far away from the desired position θ̂i .

Gains from participation depend on traders’ initial stock holding θi . When
λ is small, we expect that in equilibrium θi (i = a, b) and θm are not too far
apart and both are close to θ̄, the per capita supply of stock. For the discussion
to follow we assume that this is the case, in particular, where agents’ initial
holdings satisfy the following condition:

|θi − θm | ≤ min

{
μσz

μ + λν
, k θm

}
, i = a, b. (20)

13 The gain from participation for those with λi = 0 is different and is given in the Appendix.
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θi + λiZ

θi − λiZ

t+1/2 t+1
time

Risk Exposure

Initial exposure

Deviation for buyers

Deviation for sellers

Desired exposure

Figure 2

Traders’ desired risk exposure before and after idiosyncratic shocks

We verify later that this condition is indeed satisfied in equilibrium (see
Theorem 1).

From the expressions in Proposition 2, it is obvious that the gains from
trading are not symmetric between the two trader groups (with λa �= λb). To
understand the intuition, we consider the simple situation in which the market
participation rate is symmetric (δ = 0) and show that the gains from trading are
not symmetric even in this case. Note that when δ = 0, g2(·) and ci are identical
for both trader groups, and g1(·) reduces to the following:

g1(θi ; λi , X ; θ̂, 0) = ασ2
D

4(1−k)
[θi − (1−k)θ̂ + λi X ]2, i = a, b. (21)

Under (13) and (20), we have θi > (1−k)θ̂. Thus, the trading gain is always
higher for the group with λi X > 0 (potential sellers) than for the group with
λi X < 0 (potential buyers).

Figure 2 illustrates the asymmetric trading gains between the buyers and
the sellers. We plot the case in which λi X > 0. The solid lines correspond to
traders’ desired stock holding before and after their idiosyncratic shocks. A
trader i starts with an initial holding θi , which is optimal before receiving any
idiosyncratic shock. After learning that he will receive a shock (λi �= 0), the
trader’s preferred stock exposure changes to (1−k) θ̂, which is only (1−k) share
of the per capita stock supply in the market, and clearly lower than his initial
holding θi . This change in the desired risk exposure is independent of the actual
sign or the magnitude of the shock X . Thus, conditional on the idiosyncratic
shock, potential sellers who have received additional positive exposure via the
nontraded risk (i.e., λi X > 0) are further away from their optimal holding than
potential buyers are. As a result, the gains from trading are higher for the
potential sellers.
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Liquidity and Market Crashes

The reason traders prefer a lower risk exposure upon receiving the idiosyn-
cratic shock is that the cost of participation prevents the trader from trading
in the market at all times. As a result, the trader expects to bear some of the
idiosyncratic risk Z . This extra risk effectively reduces his risk tolerance and
lowers his desired stock exposure relative to market makers, who face no cost
and can always trade.14 The percentage reduction in the trader’s desired posi-
tion, captured by k, is proportional to the level of the remaining uncertainty in
his idiosyncratic risk exposure.

In summary, the main intuition behind the asymmetric trading gains is as
follows. Since traders choose their initial holdings before they learn whether or
not they will receive idiosyncratic shocks, they rationally choose a high initial
holding if they expect a low probability of ever receiving a shock. However,
once they are hit with shocks, their initial holding level becomes too high given
the possibility of bearing some unhedged risk. Irrespective of the sign of his
idiosyncratic shock, a trader prefers to decrease his stock exposure. Obviously,
potential sellers who have received additional positive exposure are further
away from the desired holding level than are potential buyers. As a result,
sellers enjoy larger gains from trading.15

3.3 Participation equilibrium

Intuitively, the asymmetry in gains from trading will lead to asymmetric par-
ticipation between the traders. In particular, since potential sellers always have
higher gains from trading than potential buyers in our setting, we further expect
that sellers are more likely to participate in the market than buyers. We confirm
this intuition by considering the participation equilibrium.

In order to solve for the equilibrium ωa and ωb, we substitute the expression
of θ̂ and δ in (13) into the definition of g(·) and define a function of participation
gain for group-a and group-b traders, respectively, as

ga(ωa,ωb) ≡ g(θa; λa, X ; θ̂, δ), gb(ωa,ωb) ≡ g(θb; λb, X ; θ̂, δ). (22)

The following proposition describes the participation equilibrium.

Proposition 3. When agents’ initial stock holdings satisfy (20), there exists a
unique participation equilibrium. Let

ŝa =
⎧⎨
⎩

0, if ga(0, 0) ≤ 0
1, if ga(1, 0) ≥ 0
sa, otherwise

and ŝb =
⎧⎨
⎩

0, if gb(1, 0) ≤ 0
1, if gb(1, 1) ≥ 0
sb, otherwise,

14 The result that traders become effectively more risk averse with unhedged idiosyncratic risks is clearly preference
dependent. Kimball (1993) shows that it is true for “standard risk aversion,” which is defined as a class of utility
function that exhibits both DARA and decreasing absolute prudence.

15 In a setting similar to ours, Lo, Mamaysky, and Wang (2004) show that even in continuous time the gain from
trading is asymmetric around the optimal holding due to the fact that traders only trade infrequently.
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Figure 3

Equilibrium participation

The figure plots the equilibrium participation rate for the two trader groups for different values of idiosyncratic
shock X . Panel (a) reports the equilibrium fraction of group i traders who choose to participate, where the dotted
and the dashed lines refer to group a and b traders, respectively. Panel (b) reports the difference in participation
decisions, δ = λν(ωa − ωb)/[μ + λν(ωa + ωb)]. Other parameters are set at the following values: θ̄ = 1, α = 4,
r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7, σu = 0.7, μ = 1, ν = 5, and λ = 0.15.

where sa and sb are the solutions to ga(sa, 0) = 0 and gb(1, sb) = 0, respec-
tively. For X > 0, the equilibrium is fully specified as follows:

A. For ga(1, ŝb) ≥ 0, ωa = 1 and ωb = ŝb.
B. For ga(1, ŝb) < 0 and gb(ŝa, 0) ≤ 0, ωa = ŝa and ωb = 0.
C. Otherwise, ωa,ωb ∈ (0, 1) and satisfy both ga(ωa,ωb) = 0 and

gb(ωa,ωb) = 0.

Moreover, ωa ≥ ωb. For X < 0, the equilibrium is given by exchanging sub-
scripts a and b.

When X > 0, group-a traders are potential sellers and group-b traders are
potential buyers. Cases A and B thus describe two polar cases, either all potential
sellers participate (Case A) or no buyers do (Case B). Case A corresponds to
the situation in which trading gains for sellers are overwhelming so that they
all enter the market, irrespective of what buyers do. The presence of a large
number of sellers increases the trading gain for buyers. Thus, in this case some
buyers may also choose to participate. Case B corresponds to the situation in
which all sellers will not participate but, independent of what they do, the net
trading gains for buyers remain negative. In this case, some sellers choose to
participate while buyers do not. Case C corresponds to the intermediate case
when we have a partial interior solution. In this case, participation of each
group depends on the degree of participation of the other group.

Proposition 3 confirms that there are always more sellers entering the market
than buyers in equilibrium, generating an excess sell order in the market and the
need for liquidity. Market makers provide the necessary liquidity in equilibrium.

Figure 3 illustrates the equilibrium participation decisions as functions of
the idiosyncratic shock X . Panel (a) reports the fraction ωi of traders within
group i who choose to participate. The dotted line plots ωa and the dashed
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Liquidity and Market Crashes

line plots ωb. Panel (b) reports the difference in participation ratio between the
two groups of traders, δ, defined in equation (13). Consistent with our earlier
intuition, more sellers are participating than buyers as ωa is always above
ωb when X > 0. In particular, when X is not too far from zero, ωa > 0 and
ωb = 0, that is, no group-b traders choose to participate because the benefit
from trading is too small, and only a fraction of group-a traders participates.
This corresponds to Case B in Proposition 3. As X increases, the gains from
trading increase for both groups and both ωa and ωb increase. In particular,
for medium levels of X , ωb becomes positive and ωa reaches one. That is, the
gain from trading dominates the cost for group-a traders and they all choose to
participate. This corresponds to Case A in Proposition 3. When X < 0, group-a
traders become potential buyers and group-b traders become potential sellers.
The above results remain the same after we switch subscripts a and b. In fact,
ωb is simply the mirror image of ωa around the vertical axis, reflecting the fact
that traders a and b face opposite idiosyncratic shocks. Neither ωa nor ωb is
symmetric around zero, consistent with the fact that a trader’s gain from trading
is asymmetric between positive and negative idiosyncratic shocks.

Panel (b) of Figure 3 shows that the normalized difference between ωa

and ωb is always positive when X > 0, indicating that more group-a traders
are participating. Since they are potential sellers when X > 0, the aggregate
order imbalance is skewed toward sell orders. Similarly, when X < 0, δ is
always negative, indicating more group-b traders are participating. Since group-
b traders are potential sellers when X < 0, the order imbalance is again skewed
toward sell orders.

3.4 Full equilibrium of the economy

We now solve the full equilibrium of the economy. We start by computing
the value function for all agents at time t , including traders who receive no
idiosyncratic risks. For trader i = a, b, his indirect utility function, JP or JNP ,
depends on his own λi and X , given his initial stock holding θi

t . For a trader
with λi �= 0, his unconditional value function becomes

J L
(
θi

t ; θt
) = E

[
max

{
JP

(
θi

t ; λ
i , X ; θ̂, δ

)
, JNP(θi

t ; λ
i , X ; θ̂, δ)

} ∣∣ λi �= ]
(23)

and for a trader with λi = 0, who does not observe X , his value function is

J NL
(
θi

t ; θt
) = max

{
E

[
JP

(
θi

t ; λ
i , X ; θ̂, δ

) ∣∣ λi = 0
]
,

E
[
JNP

(
θi

t ; λ
i , X ; θ̂, δ

) ∣∣ λi = 0
] }

, (24)

where θ̂ and δ, defined in (13), depend on the equilibrium participation ratio
ωa and ωb in Proposition 3 and thus are functions of X (and θt ), and E[·]
denotes expectation over X . The ex ante utility of any trader before receiving
any information on idiosyncratic shocks can then be defined as a weighted
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average of J L and J NL

J i
(
θi

t ; θt
) = λJ L

(
θi

t ; θt
) + (1−λ)J NL

(
θi

t ; θt
)
, i = a, b. (25)

Finally, for market makers, the ex ante utility simply is

J m
(
θm

t ; θt
) = E

[
JP

(
θm

t ; λm, X ; θ̂, δ
) ∣∣ λm = 0, ci = 0

]
. (26)

To solve for the full equilibrium of the economy, we first take Pt+1 as given to
derive the equilibrium price Pt and stock holding θt from the following market
clearing condition:

μ θm
t + ν

(
θa

t + θb
t

) = (μ + 2ν) θ̄. (27)

We then impose the stationarity condition

Pt+1 = Pt (28)

to derive the full equilibrium. In addition, we need to confirm that in equilib-
rium, traders receiving no idiosyncratic shocks optimally choose to stay out of
the market, that is,

E
[
JP

(
θi

t ; λ
i , X ; θ̂, δ

) ∣∣ λi = 0
] ≤ E

[
JNP

(
θi

t ; λ
i , X ; θ̂, δ

) ∣∣ λi = 0
]
. (29)

The following proposition describes the condition that defines the equilibrium.

Proposition 4. A stationary equilibrium of the economy is determined by the
set of prices and holdings {Pt , θt } that satisfies conditions (20) and (29) and
solves agents’ optimality condition

0 = ∂

∂θi
t

J i
(
θi

t ; θt
)
, i = a, b, m, (30)

the market clearing condition (27), and the stationarity condition (28).

Equation (30) is agents’ first-order condition for optimal portfolio choice at t
before they receive any idiosyncratic shocks.

We can solve the equilibrium explicitly when the probability of idiosyncratic
shock λ is small, as shown in the Appendix, which leads to the following
theorem:

Theorem 1. When the probability of idiosyncratic shock λ is small, there
exists a stationary equilibrium as described by Proposition 4.

For arbitrary λ, we have to solve the equilibrium numerically.
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4. Endogenous Liquidity Demand and Market Crashes

The equilibrium under costly participation shows two striking features. First,
despite the fact that the two groups of traders have perfectly offsetting trading
needs, their actual trades are not synchronized. The nonsynchronization in
their trades gives rise to the need for liquidity in the market. A group of traders
may bring their orders to the market while traders with offsetting trading
needs are absent, creating an imbalance of orders. The stock price adjusts in
response to the order imbalance to induce market makers to provide liquidity
and to accommodate the orders. As a result, the price of the stock depends not
only on the fundamentals (i.e., its expected future payoffs and total risks), but
also on idiosyncratic shocks that market participants face. Second, despite the
symmetry between shocks to potential buyers and sellers, the order imbalance
observed in the market tends to be asymmetric and on average is dominated
by sell orders. Thus, the endogenous liquidity need typically takes the form of
excessive selling, which causes the price to tank. We now examine these results
and their implications in more detail.

By construction, the equilibrium stock price is stationary over time at the
beginning of each generation, Pt+1 = Pt = P . And it fluctuates during the
lifespan of each generation as a function of the idiosyncratic shocks. As (14)
indicates, the intermediate price consists of two components: the risk-adjusted
fundamental value R−1

F (Et+1/2[Dt+1] + P − 1
2ασ2

D θ̂) and the liquidity compo-
nent

p ≡ − 1
2

(
ασ2

D

/
RF

)
δZ . (31)

The fundamental component is equal to the expected future payoffs (dividend
plus resale price) minus a risk premium. It reflects the stock’s “fundamental
value” since it gives the stock price when the idiosyncratic shock is zero. The
liquidity component p, on the other hand, captures price deviations caused by
market illiquidity. It is nonzero only when agents receive idiosyncratic shocks.
Moreover, it is proportional to the per capita order imbalance, driven by the
asymmetric participation between buyers and sellers. Since our purpose here
is to understand the endogenous nature of order imbalances and its impact on
asset prices, we focus our discussion on the liquidity component p.

From (31), p depends on the difference in market participation rate δ, which
is a function of the signal X , and the realized idiosyncratic shock Z , which is
equal to the signal X plus an update, Z − X ∼ N (0, σ2

z ). We can average out
the update term and consider the expected liquidity component conditional on
the signal X :

p̂ = E[ p | X ] = − 1
2

(
ασ2

D

/
RF

)
δX. (32)

Panel (a) of Figure 4 plots the conditional liquidity component p̂ as a func-
tion of X . Recall from Section 2.3 that p̂ is always zero in the absence of
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The liquidity component p in price and its expected value p̂ conditional on signal X
Panel (a) plots the conditional liquidity component p̂ as a function of the signal X . Panels (b) and (c) plot the
probability density function of the conditional liquidity component p̂ and the unconditional liquidity component
p, respectively. The values at the point 0 correspond to the total probability mass at the point since the density
function should be infinity at this point. Other parameters are set at the following values: θ̄ = 1, α = 4, r = 0.05,
D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7, σu = 0.7, μ = 1, ν = 5, and λ = 0.15.

participation costs. Figure 4(a) shows that p̂ is generally not zero and is always
negative in the presence of costs. This result follows costs. This result follows
directly from the asymmetric participation equilibrium obtained in Section 3. In
particular, partial participation leads to nonsynchronized trades among traders
and the need for liquidity. The stock price has to adjust to attract the market
makers to provide the liquidity and accommodate the trades. In general, the
stock price becomes dependent on the idiosyncratic shocks of individual traders
and p̂ �= 0. Moreover, potential sellers are more willing to enter the market to
sell the stock. Thus, the average order imbalance, as captured by −δX , is always
negative, which leads to a negative p̂. The fact that p̂ is independent of the
sign of X indicates that, independent of the source of idiosyncratic shocks and
its distribution among investors, costly participation always leads to an excess
selling pressure in the market and a lower stock price. In summary, we have
the following result.

Result 1. Under costly participation, purely idiosyncratic trading needs can
lead to aggregate demand for liquidity, which always takes the form of excess
selling and causes asset prices to drop.

The magnitude of p̂ depends on the size of X . From Figure 4(a), we further
observe that p̂ is highly nonlinear in X . In particular, for small values of X ,
gains from trading are small for all traders and they do not enter the market. As
a result, there is no need for liquidity and the price impact of liquidity is equal
to zero. For very large values of X , gains from trading are sufficiently large for
all traders and they all enter the market. There is no need for liquidity and p̂
is also equal to zero. For intermediate ranges of X , the gains from trading are
large enough for some traders to enter the market, but not for all traders to do
so. It is in this case that trades are nonsynchronized and liquidity is needed in
the market, which will in turn affect the stock price. As Figure 4(a) shows, the
price impact of liquidity reaches the maximum for a certain magnitude of the
idiosyncratic shock.
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The result that the price impact of liquidity need is one-sided and highly
nonlinear arises from the fact that liquidity needs are endogenous in our model.
In most of the existing models of liquidity, such as that in Grossman and
Miller (1988), liquidity needs are exogenously specified; consequently, the
price impact is linear in the exogenous liquidity needs and symmetrically
distributed. Our analysis shows that modeling liquidity needs endogenously is
important for understanding their behavior and impact on prices.

The nonlinearity in the price impact of liquidity leads to another interesting
result: large but infrequent price movements in the absence of any aggregate
shocks. Figure 4(b) plots the probability distribution of p̂. When participation is
costless, there is no liquidity effect, and the distribution is simply a delta func-
tion at zero. When traders face costs to participate in the market, however, the
stock price becomes dependent on the idiosyncratic shock X . Moreover, even
though the underlying idiosyncratic shocks that drive the individual traders’
trading needs are normally distributed, their price impact p̂ as depicted in
Figure 4(a) is always negative and highly nonlinear in X . In particular, its dis-
tribution peaks at a finite and negative value. Since such a price movement is
caused by a large imbalance in trades, endogenously risen from idiosyncratic
shocks, it represents a market crash driven purely by liquidity needs. We call it
a “liquidity crash.” We summarize this result as follows.

Result 2. The impact of liquidity can lead to “liquidity crashes” in which
large price drops occur in the absence of any shocks to the fundamentals.

The above discussion focuses on p̂, which gives the expected price impact
of liquidity conditional on X , the signal on future idiosyncratic shocks. The
actual liquidity component in price, as given in (31), depends on Z , the actual
realization of idiosyncratic shock. Although the behavior of p is qualitatively
similar to that of p̂, its distribution is slightly different because of the additional
shock. Figure 4(c) plots the unconditional distribution of p. Here, we observe
that p exhibits negative skewness and fat tails. In the absence of liquidity
effects, its distribution will simply be a delta function at zero. The total price of
the stock also includes the news on the dividend, which is normally distributed.
Thus, its distribution combines the distributions of dividend news and p, which
also exhibits negative skewness and fat tails. Hence, we have the following
result.

Result 3. The impact of liquidity can significantly increase the downside risk
and lead to negative skewness and fat tails in prices.

5. Return and Volume

The impact of liquidity also leads to testable implications about the behavior
of return and volume. In this section, we explore some of these implications.
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The (excess) returns on the stock over the two relevant periods are given by

Rs = Dt+s + Pt+s − RF Pt+s−1/2, s = 1/2, 1. (33)

The trading volume of the stock at s = 1/2 is given by

V1/2 ≡ μ |δZ | + λν
∑

i=a,b

ωi |δZ −λi Z |. (34)

5.1 Return and volume dynamics

First, let us examine the impact of liquidity on return dynamics. In contrast
to shocks to fundamentals (i.e., cash flows), which cause permanent changes
in prices, liquidity shocks give rise to transitory price changes. Consequently,
the impact of liquidity generates negative serial correlation in returns. This
is probably the most salient feature of liquidity’s influence on prices, as em-
phasized in Ho and Stoll (1981), Grossman and Miller (1988), and Campbell,
Grossman, and Wang (1993). Our analysis of liquidity leads to additional
predictions. In particular, in our model it is the idiosyncratic shock to dif-
ferent agents that gives rise to the liquidity need, which leads to transitory
price deviations from its fundamental value. Moreover, the impact of liq-
uidity on prices is more likely to be negative. We thus have the following
result.

Result 4. The impact of liquidity leads to return reversals. Moreover, negative
returns exhibit stronger reversals than positive returns.

Given a set of parameters, we can simulate the returns and trading volumes
from the model and compute their statistics. Table 1 reports several of these
statistics for the benchmark parameters. The first three columns of Panel A
report the unconditional mean of volume and returns and the fourth column
reports the value of return serial correlation, denoted by ρ ≡ Corr[R1/2, R1].
Clearly, ρ < 0, confirming the first part of Result 4. Panel B reports these
statistics conditioning on the current return being above and below its average,
respectively. The third and fourth columns of Panel B confirm that the expected
future return (i.e., E[R1]) is higher and the return autocorrelation is more
negative if the current return is below average.

The fifth column of Table 1 reports the excess volatility, which is defined as
the volatility of the liquidity component p in (31) and captures the volatility
of the price in excess of the fundamental volatility. Since lower returns and
higher volume are indicative of liquidity demand, not surprisingly, we find
that the excess volatility is higher in these cases. We summarize the result as
follows.

Result 5. Volatility is higher during negative return and high volume periods.

2628

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/22/7/2607/1599349 by M

IT Libraries user on 30 D
ecem

ber 2019



Liquidity and Market Crashes

Table 1

Return and volume dynamics

Conditioning information E[V1/2] E[R1/2] E[R1] ρ σp

A. Unconditional
Unconditional 0.079 0.349 0.375 −0.023 0.045

B. Conditioning on current return
R1/2 > E[R1/2] 0.076 0.588 0.370 −0.012 0.043
R1/2 < E[R1/2] 0.081 0.110 0.381 −0.016 0.047

C. Conditioning on current volume
V1/2 > E[V1/2] 0.164 0.323 0.402 −0.035 0.056
V1/2 < E[V1/2] 0.031 0.364 0.360 −0.009 0.028

Parameters take the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7, σu =
0.7, μ = 0.2, ν = 5, and λ = 0.02.

While the asymmetric relation between return and volatility is well documented
in the literature, our model offers a liquidity-based explanation in addition to
the existing alternatives such as leverage and time-varying volatility.16

Next, we consider the joint behavior of returns and volume. In our setting,
both trading and the need for liquidity are generated by agents’ idiosyncratic
shocks. Thus, they are closely related. In particular, higher trading volume also
implies that the need for liquidity or the order imbalance is more likely to be
high, which is associated with lower current returns but higher future returns.
As shown in the second column of Panel C, Table 1, higher current volume is on
average accompanied by lower returns. Given return reversals, it also implies
higher future returns. The third column of Panel C confirms this result, while
the fourth column shows that the return reversal is also stronger for higher
volume. We summarize these findings as follows.

Result 6. Higher volume implies higher future returns. Also, returns accom-
panied by higher volume exhibit stronger reversals.

The negative relation between volume and return serial correlation is studied in
Campbell, Grossman, and Wang (1993). The positive relation between volume
and future returns, a rather surprising result, has been empirically documented
by Gervais, Kaniel, and Mingelgrin (2001). Our analysis provides a liquidity-
based explanation.

Given the negative correlation between contemporaneous return and volume,
both driven by agents’ endogenous liquidity needs and predictive of future
returns, a natural question is whether volume provides additional information
about the magnitude of liquidity needs and consequently future returns.

16 For a levered firm, a negative realized return reduces its value and further increases its financial leverage, which
makes the firm’s equity riskier and increases its volatility. See, for example, Black (1976), Christie (1982), and
Schwert (1989). When volatility is time varying, an anticipated increase in volatility raises the required return
on equity, which causes an immediate stock price decline and a lower realized return. See, for example, French,
Schwert, and Stambaugh (1987), and Campbell and Hentschel (1992).
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Table 2

Expected future return conditional on current returns and volume

Sorted by current volume, V1/2
Sorted by

current returns, R1/2 Low Medium High High − Low

Low (25%) 0.351 0.383 0.418 0.067
Medium (50%) 0.351 0.376 0.402 0.051
High (25%) 0.350 0.368 0.388 0.038

Parameters take the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7, σu =
0.7, μ = 0.2, ν = 5, and λ = 0.02.

In Table 2, we report the expected future returns for each subgroup after
double-sorting the simulated data into four-by-four subgroups based on current
returns R1/2 and volume V1/2. For conciseness we combine the middle two
quartiles in the table. In the last column, we report the difference in the average
future return for the high- and low-volume groups. Clearly, higher volume
still predicts higher future returns even after controlling for the current return.
Moreover, the predictive power of volume is stronger (the difference between
the high and low groups is larger) for lower current returns. These findings are
consistent with the empirical results of Avramov, Chordia, and Goyal (2006).

A simple way to describe the double-conditioning results in Table 2 is to
consider the following forecasting equation, proposed by Campbell, Grossman,
and Wang (1993):

Rt+1 = a + bRt+1/2 + cVt+1/2 Rt+1/2 + εt+1. (35)

If we use the whole sample to estimate (35), from Result 6, c is negative, which
is confirmed by the more negative ρ for higher volume in the last column of
Panel C, Table 1. However, suppose that we split the sample into two according
to the current return, below or above its mean, and then run the regression for
each subsample. Let c− and c+ denote the corresponding coefficients for the
volume-return interaction term. Comparing the first and last rows of Table 2,
we observe that c− is much more negative than c+.17 This result again arises
from the fact that the transitory impact of liquidity on prices is typically negative
with large volume, an important feature of our model. Thus, we have the
following result.

Result 7. Negative returns accompanied by high volume exhibit stronger
reversals than positive returns.

5.2 The cross-section of returns and volume

The impact of liquidity on asset prices clearly depends on the level of liquidity
available in the market. To the extent that the level of liquidity varies across

17 Indeed, because R1/2 is negative for the low-return group and positive for the high-return group, the coefficient
c− should be significantly negative while c+ should be mildly positive.
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Figure 5

Liquidity premium, trading volume, excess volatility, excess kurtosis, and the level of liquidity μ

Panels (a), (b), (c), and (d) plot the liquidity premium, average trading volume, excess return volatility, and
excess kurtosis (which equals zero for normal distribution) as a function of μ, respectively. Other parameters are
set at the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7, σu = 0.7, μ = 1,
ν = 5, and λ = 0.15.

different markets, its influence also changes. In our model, the level of liquidity
in the market is captured by μ, the population of market makers. Thus, in this
subsection we analyze how the behavior of prices depends on μ. The resulting
implications provide a theoretical motivation to examine the differences in price
behavior across markets with different levels of liquidity.

We first consider how the level of liquidity influences expected stock returns,
which is defined as E[R] = E[(R1/2 + R1)/2]. In the absence of participation
costs, the market is perfectly liquid and the expected stock return is determined
only by the risk premium, which we denote by R0. From Section 2.3, we have
R0 = 1

2ασ2
D θ̄. In the presence of participation costs, we define the liquidity

premium as

π = E[R] − R0. (36)

In all discussions, R0 is held constant and we use the terms liquidity premium
and expected return interchangeably.

In Figure 5(a), we plot the liquidity premium π for different values of μ, the
level of liquidity in the market. Clearly, the liquidity premium decreases with
μ. Figure 5(b) plots the average trading volume against μ, which shows that
with more market makers present, liquidity is higher and so is trading volume.
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Dependence of unconditional and conditional return serial correlation on the level of liquidity μ

Panel (a) reports the unconditional return serial correlation as a function of μ. Panel (b) reports �Rρ in (37),
the difference in return serial correlation between positive and negative returns. Panel (c) reports �V ρ in (38),
the difference in return serial correlation between high trading volume and low trading volume states. Other
parameters are set at the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.42, σz = 0.7,
σu = 0.7, μ = 1, ν = 5, and λ = 0.15.

As discussed in Section 4, in our model, non-fundamental shocks, idiosyn-
cratic to individual agents, give rise to the endogenous liquidity need and its
impact on price deviations. This liquidity effect leads to more volatile and fat-
tailed prices. We next examine how liquidity influences the behavior of returns.
In Figures 5(c) and (d), we report the excess volatility and the excess kurtosis
for different values of μ. We see that returns are more volatile and exhibit fatter
tails in less liquid markets (i.e., with lower μ). We summarize the above results
as follows.

Result 8. Lower levels of liquidity lead to higher expected returns, higher
excess volatility, and fatter tails in the return distribution, but lower average
trading volume.

Next, we examine how the return and volume dynamics vary with liquidity.
As discussed earlier, a general feature of the price impact of liquidity is negative
serial correlation in returns. Figure 6(a) plots the return serial correlation for
different values of μ. It clearly shows that for markets with higher levels
of liquidity, there is less negative serial correlation in returns. An important
implication of our model is that return serial correlation is asymmetric, stronger
for negative returns than for positive returns. We define the asymmetry in return
serial correlation as follows:

�Rρ ≡ Corr
[
R1/2, R1

∣∣ R1/2 ≥ E
[
R1/2

]]− Corr
[
R1/2, R1

∣∣ R1/2 < E
[
R1/2

]]
.

(37)

Result 4 states that �Rρ is positive. Figure 6(b) further shows that the magnitude
of �Rρ decreases with μ. In other words, the return serial correlation becomes
less symmetric, and in particular, stronger for negative returns in less-liquid
markets.

Result 6 states that the negative return serial correlation is stronger when
trading volume is higher. We define the difference in the return serial correlation
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The expected return and different liquidity measures

Panels (a), (b), and (c) plot the liquidity premium (which in turn determines the expected return) against trading
volume E[V ], asymmetry in return serial correlation �Rρ, and the volume sensitivity of return serial correlation
�Vρ, respectively. Other parameters are set at the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, c = 0.09,
σD = 0.42, σz = 0.7, σu = 0.7, μ = 1, ν = 5, and λ = 0.15.

between low-volume and high-volume states as follows:

�V ρ ≡ Corr
[
R1/2, R1

∣∣ V1/2 < E
[
V1/2

]] − Corr
[
R1/2, R1

∣∣ V1/2 ≥ E
[
V1/2

]]
.

(38)

Then, �V ρ should be positive. Figure 6(c) confirms the result and further
shows that �V ρ decreases with μ. For markets with higher liquidity (i.e., high
μ values), return serial correlation diminishes and �V ρ decreases to zero. We
thus have the following result:

Result 9. Both the asymmetry in return serial correlation, as measured by
�Rρ, and the volume sensitivity of return serial correlation, as measured by
�Vρ, are negatively related to the level of liquidity in the market.

5.3 Liquidity and expected returns

Our above analysis, when applied to a cross-section of stocks, implies a negative
relation between a stock’s average return and the level of its liquidity. However,
the level of liquidity μ is not directly observable. Many empirical studies
employ different proxies as measures of liquidity and find that higher liquidity is
generally associated with lower expected stock returns. For example, Brennan,
Chordia, and Subrahmanyam (1998) use volume as one of the liquidity proxies
and find that it has a negative correlation with average stock returns.

In our model, both average return and volume are related to the market
liquidity level as an equilibrium outcome. As a result, they are closely related to
each other. In particular, as Figure 5(b) shows, higher volume indicates higher
liquidity, which requires a lower liquidity premium. This negative relation
between volume and liquidity premium is confirmed in Figure 7(a).

Besides volume, other proxies of liquidity have also been used to explain
the cross-section of stock returns. But the results are less definitive (see, for
example, Hasbrouck 2006). Since most empirical proxies of liquidity are also
related to price volatility, Spiegel and Wang (2007) further examine the marginal
contribution of these liquidity measures and idiosyncratic return volatility in
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explaining returns (also see Kieschnick, Cook, and Arugaslan 2007). They
find that the impact of idiosyncratic risk is stronger and often consumes the
explanatory power of various cost-based liquidity proxies.

Our analysis suggests new empirical measures of liquidity. In particular,
Result 9 implies that both �Rρ and �V ρ provide measures of liquidity. They
capture a unique aspect of liquidity—namely, its general downward pressure
on prices, accompanied by high volume and strong return reversals. Using the
above measures as proxies for the level of liquidity in the market, we expect
a positive relation between them and the liquidity premium π. Figures 7(b)
and (c) plot the liquidity premium π for different values of �Rρ and �V ρ,
respectively, and clearly show a positive relation between π and these two
measures.

6. Conclusion

In this paper, we show that frictions such as costs to market presence can
induce nonsynchronization in agents’ trades even when their trading needs are
perfectly matched. Each trader, when arriving at the market, faces only a partial
demand/supply of the asset. The mismatch in the timing and the size of trades
creates temporary order imbalances and a need for liquidity, causing asset prices
to deviate from the fundamentals. Purely idiosyncratic shocks can affect prices,
introducing additional price volatility. Moreover, the price deviations tend to be
highly skewed and of large size. In particular, the shortage of liquidity always
causes the price to decrease, and when this happens, the price tends to drop
significantly, resembling a crash due to a sudden surge in liquidity needs. We
also show that the impact of liquidity leads to interesting implications on return
and volume behavior, consistent with existing empirical findings.

A few additional comments are in order. First, our analysis takes as given
the population weight of market makers, which determines the amount of
liquidity they can provide and the equilibrium impact of liquidity needs. As
Huang and Wang (2008) show, the population weight of market makers can
be endogenized. In particular, they assume that all agents can pay either a low
cost ex ante to become a market maker or a high cost ex post when trading
needs arise. They show that typically only a small fraction of agents will
choose to become market makers. In light of their analysis, we can interpret
the relative population weight of market makers and traders as an equilibrium
outcome. Second, in our model the idiosyncratic shocks are transitory. Thus,
when a liquidity crash occurs, the stock price tanks but eventually recovers. The
possibility of such a price pattern might seem puzzling since it seems to leave
profitable opportunities. However, this is not so given the costs. With a small
probability for such an event to happen, it is profitable for only a small number
of market makers to enter the market ex ante even if the cost for becoming
a market maker is rather small. For others, the significant cost to jump in on
the spot prevents them from taking advantage of the opportunities. Finally, in
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our setting, the cost to jump into the market on the spot does impose an upper
bound on the potential impact of liquidity on prices. But, this is true only in the
absence of aggregate shocks as we have assumed in the model. In the presence
of aggregate shocks, the potential impact of endogenous liquidity needs on
prices becomes unbounded.

Appendix

Proof of Proposition 1. Given Pt+1, participating agent i maximizes his expected utility
over his terminal wealth W i

t+1 given in (10), which is obtained by integrating over the distribution
of Dt+1 given θi

t+1/2

max
θi

t+1/2

−e−α
[

R2
F Wt −RF ci +RF θi

t (Pt+1/2−RF Pt )+θi
t+1/2(Et+1/2[Dt+1]+Pt+1−RF Pt+1/2)− 1

4 ασ2
D

(
θi

t+1/2+λi Z
)2]

.

(A1)

His optimal holding is calculated by solving the first-order condition with respect to θi
t+1/2,

θi
t+1/2 = 2

ασ2
D

(
Et+1/2[Dt+1] + Pt+1 − RF Pt+1/2

) − λi Z , i = a, b, m. (A2)

The market-clearing condition is given by

μθm
t+1/2 + ν

∑
i=a,b

[
λωi,Lθ

i,L
t+1/2 + (1 − λ)ωi,NLθ

i,NL
t+1/2

] = μθm
t + ν

∑
i=a,b

[λωi,L + (1−λ)ωi,NL ]θi
t .

(A3)

Its solution yields the equilibrium price Pt+1/2. Plugging in the definition of δ and θ̂ in (13) yields
the expression of Pt+1/2 in the proposition. The optimal holding in the proposition is obtained by
substituting the equilibrium price Pt+1/2 back into (A2).

Proof of Proposition 2. For trader i , his (indirect) utility if he chooses to participate or
not, denoted by JP and JNP , respectively, is given by

JP (θi ; λi , X ; θ̂, δ) = E

[
max
θi

t+1/2

Et+1/2
[ − e−αW i

t+1
] ∣∣ λi , X ; ηi = 1

]
(A4a)

JNP (θi ; λi , X ; θ̂, δ) = E
[−e−αW i

t+1 | λi , X ; ηi = 0, θi
t+1/2 = θi ]. (A4b)

Substituting the equilibrium Pt+1/2 and θi
t+1/2 in Proposition 1 into (A1) and integrating over the

distribution of Dt+1 and Z conditional on X , we obtain JP for the participating traders,

JP (·)=− 1√
1−k +k(1−λi δ)2

e
−α

[
R2

F Wt −RF ci +θi
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− ασ2

D
4(1−k)

(
θi

t +λi X
)2+g1(·)

]
,

(A5)

where g1(·) and k are defined in (18) and (19). Next, we calculate the value function for non-
participating traders JNP in (A4b) by integrating over Dt+1 and Z conditional on X ,

JNP (·) = − 1√
1 − k

e
−α

[
R2

F Wt +θi
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− ασ2

D
4(1−k) (θi

t +λi X )2
]
. (A6)
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Finally, we substitute JP and JNP into (16) to derive the gains from participation. Obviously, trader
i chooses to participate in the market if and only if g(·) > 0.

We also calculate the value function for traders with λi = 0. Conditional on the signal X , the
utility if they choose to participate is

JP (λi = 0) =− 1√
1+k δ2

e
−α

[
R2

F Wt −RF ci +θi
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
−1

4 ασ2
Dθi

t
2+1

4
ασ2

D
(1+k δ2)

(θi
t −θ̂−δX )2

]
.

(A7)

If they choose not to participate, the utility is

JNP (λi = 0) = −e
−α

[
R2

F Wt +θi
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− 1

4 ασ2
Dθi

t
2
]
. (A8)

Applying the definition in (16), the gains from participation for traders with λi = 0 is

g(θi ; λi = 0, X ; θ̂, δ) = ασ2
D

4(1+δ2k)

(
θi − θ̂ − δX

)2 + 1

2α
ln(1+δ2k) − RF ci . (A9)

Proof of Proposition 3.

Lemma 1. When traders’ initial stock holdings satisfy (20), the gain from participation
ga(ωa, ωb) for group-a traders decreases with ωa and increases with ωb, while the opposite
is true for group-b traders’ gain gb(ωa,ωb).

The proof of Lemma 1 is as follows. Given the definition of g(·) in (17), we compute its partial
derivative with respect to ωa and ωb . Define δi ≡ λi δ and di ≡ 1−k+k(1−δi )2. Following (22),
let gi ≡ g(θi

t ; λ
i , X ; θ̂, δ). Then

∂gi

∂ω j
=

(
∂g1

∂δi
+ ∂g2

∂δi

)
∂δi

∂ω j
+ ∂g1

∂ θ̂

∂ θ̂

∂ω j
, j = a, b,

where

∂g1

∂δi
= ασ2

D(1 − kδi )

2(di )2

[
k δi θi

t + k(1 − δi )θ̂ + λi X
] (

θi
t − 1 − k

1 − kδi
θ̂ + 1 − δi

1 − kδi
λi X

)
∂g2

∂δi
= − (1 − δi )k

αdi
,

∂δi

∂ω j
= λi (λ j − δ)λ̂, λ̂ ≡ λν

μ + λν(ωa + ωb)

∂g1

∂ θ̂
= −ασ2

D(1 − kδi )

2di

(
θi

t − 1 − k

1 − kδi
θ̂ + 1 − δi

1 − kδi
λi X

)
,

∂ θ̂

∂ω j
= λ̂

(
θi

t − θ̂
)
.

We now consider the cases of j = i and j �= i separately. When j = i , then λi λ j = 1 and

∂gi

∂ωi
= −ασ2

Dλ̂(1 − δi )2

2(di )2

[
λi X + k θ̂ + 1 − k δi

1 − δi

(
θi

t − θ̂
)]2

− kλ̂(1 − δi )2

αdi
.

From (13), δ increases in ωa and decreases in ωb . Hence, δ ∈ [−δ̄, δ̄], where δ̄ = λν
μ+λν

< 1. Since

δi = λi δ ∈ [−δ̄, δ̄], we have ∂gi /∂ωi < 0.
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When j �= i , then λi λ j = −1 and

∂gi

∂ω j
= ασ2

Dλ̂ (1 − δ2)

2(di )2

[
λi X + k θ̂ + (1 + k) δi − 2k δ2

1 − δ2

(
θi

t − θ̂
)]2

+ ασ2
D λ̂

2(1 − δ2)

[
k (1 − δ2)2

1
2 α2σ2

Ddi
− (

θi
t − θ̂

)2

]
. (A10)

Since δ2 ∈ [0, δ̄2], we have (1 − δi )2 ∈ [0, 1 + δ̄2]. From (5), k = 1
2 α2σ2

Dσ2
z ∈ [0, 1]. Thus,

k(1 − δ2)2

1
2 α2σ2

Ddi
≥ σ2

z (1 − δ̄2)2

1 − k + k(1 + δ̄)2
> σ2

z (1 − δ̄)2.

However, θ̂ in (13) is a weighted average of θi
t and θm

t with weights in-between zero and one. We
have

(
θi

t − θ̂
)2 ≤ (

θi
t − θm

t

)2
<

(
μ σz

μ + λν

)2

= σ2
z (1 − δ̄)2,

where the second inequality is due to condition (20). Thus, ∂gi /∂ω j > 0 for j �= i , proving the
lemma.

Lemma 2. Given (20), under symmetric participation, sellers always enjoy larger gains from
trading than buyers. That is, when X > 0, ga (ω, ω) ≥ gb(ω, ω), ∀ ω ∈ [0, 1].

The proof of Lemma 2 is as follows. When ωa = ωb , δ = 0 and g(·) in (17) reduce to

g
(
θi

t ; λ
i , X ; θ̂, 0

) = ασ2
D

4(1 − k)

[
θi

t − (1 − k) θ̂ + λi X
]2 − 1

2α
ln(1 − k) − RF ci .

Hence,

ga(ωa,ωb) − gb(ωa, ωb) = ασ2
D

2(1 − k)

[
θi

t − (1 − k) θ̂
]

(λa − λb)X.

When X > 0, group-a traders are sellers and group-b are buyers, and λa X ≥ 0 ≥ λb X . Since θ̂ is
the weighted average of θi

t and θm
t , θi

t − (1 − k) θ̂ ≥ θi
t − (1 − k) θm

t > 0, where the last inequality
comes from (20). Hence, ga(ωa, ωb) ≥ gb(ωa, ωb) when ωa = ωb , proving the lemma.

Now we prove Proposition 3. First, from Lemma 1, we know that ga(ωa, 0) is a monotonically
decreasing function of ωa . If ga(0, 0) > 0 > ga(1, 0), then there exists an sa ∈ (0, 1) that solves
ga(sa, 0) = 0. Similarly, gb(1,ωb) is monotonically decreasing in ωb and gb(1, 0) > 0 > gb(1, 1)
guarantees that the solution sb ∈ (0, 1). Hence, ŝa, ŝb ∈ [0, 1].

The three cases in the proposition are clearly exhaustive. Case A has three subcases depending
on the value of ŝb . First, if ŝb = 0, then gb(1, 0) ≤ 0 ≤ ga(1, 0). From Lemma 1, gb(1,ω) ≤
gb(1, 0) and ga(1, 0) ≤ ga(1, ω) for any ω. Hence, ωa = 1 and ωb = 0 in equilibrium. Second,
if ŝb = 1, then gb(1, 1) ≥ 0. Lemma 2 implies ga(1, 1) ≥ 0 as well. Hence, all traders participate
and ωa = ωb = 1. Third, if ŝb = sb ∈ (0, 1), then gb(1, ŝb) = 0. The condition ga (1, ŝb) ≥ 0
confirms that sellers enjoy positive gains in this case. Hence, at equilibrium participation ωa = 1
and ωb = ŝb , trader a enjoys a positive gain and trader b is indifferent between participating or
not.

In Case B, there are only two subcases depending on the value of ŝa . Note that ŝa = 1
is not feasible under the condition ga(1, ŝb) < 0, since ga(1, 0) ≤ ga(1, ŝb) < 0 according to
Lemma 1, while ŝa = 1 requires ga(1, 0) ≥ 0. The first subcase is ŝa = 0. Then ga(0, 0) ≤ 0. Since
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gb(0, 0) < ga(0, 0) by Lemma 2, ωa = ωb = 0 is the only solution. The second subcase is
ŝa = sa ∈ (0, 1), where ŝa solves ga(ŝa, 0) = 0. At ŝa , trader a is indifferent between partici-
pating or not. The condition gb(ŝa, 0) ≤ 0 confirms that trader b does not want to participate when
ωa = ŝa . Hence, ωa = ŝa and ωb = 0 in equilibrium.

In Case C, the condition is that ga(1, ŝb) < 0 < gb(ŝa, 0). Similar to Case B, the condition
ga(1, ŝb) < 0 still rules out the possibility that ŝa = 1. In addition, gb(ŝa, 0) > 0 rules out the
possibility that ŝb = 0, since 0 < gb(ŝa, 0) < gb(1, 0) by Lemma 1. Similarly, we can rule out
ŝa = 0 and ŝb = 1. Hence, the condition in Case C reduces to ga(1, sb) < 0 < gb(sa, 0). Note
that ga(sa, 0) = 0 and gb(sa, 0) > 0 implies that in equilibrium, ωb > 0. To prove this, assume
by contradiction that ωb = 0. Then at the optimal ωa = sa , trader a is indifferent while trader
b can gain from participating. Thus, ωb = 0 cannot be the equilibrium. Similarly, ga (1, sb) < 0
and gb(1, sb) = 0 implies ωa < 1 in equilibrium. Lemma 2 guarantees that both ωa and ωb

are interior solutions. Both traders need to be indifferent between participating or not, that is,
ga(ωa, ωb) = 0 and gb(ωa,ωb) = 0. The monotonicity of the ga and gb functions ensures the
existence of a solution in this case. Finally, to prove that ωa ≥ ωb , we assume by contradiction
that ωa < ωb . Then 0 = ga (ωa, ωb) > ga (ωa, ωa) > gb(ωa, ωa) > gb(ωa, ωb) = 0, yielding a
contradiction. Note that the first inequality is because ga(ωa, ωb) increases in ωb , and the last is
because gb(ωa, ωb) decreases in ωb . The middle inequality is because of Lemma 2.

Proof of Proposition 4. We substitute in the participation and market equilibrium from
Propositions 1 and 3 and integrate over X to derive the unconditional value function J L and J NL

in (23) and (24). Hence, the ex ante value function J i (·) in (25) is well defined for all traders.
Moreover, the utility conditional on X for the market maker is the same as JP (λi = 0) in (A7)
except that his initial holding is θm

t and his cost is cm = 0. Thus,

J m
P (X ) = − 1√

1 + kδ2
e
−α

[
R2

F Wt +θm
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− 1

4 ασ2
Dθm

t
2+ ασ2

D
4(1+kδ2)

(
θm

t −θ̂−δX
)2

]
.

(A11)

Integrating over X then yields the ex ante utility J m (·) = E[J m
P (X )].

With the market clearing condition (27), stationarity condition (28), and three first-order con-
ditions in (30), we have five equations and five unknowns (θa

t , θb
t , θ

m
t , Pt , Pt+1). A solution to the

system gives a full equilibrium of the economy.

Proof of Theorem 1. Proposition 4 describes conditions for an equilibrium. The ex ante
symmetry between the two groups of traders implies that J a = J b and θa

t = θb
t . For simplicity, we

use index i to denote traders a or b. Substituting in the stationarity condition (Pt+1 = Pt ) directly,
we are left with three variables {Pt , θ

i
t , θ

m
t } and three equilibrium conditions: two first-order

conditions (30) for agents i and m, respectively, and one market-clearing condition (27).
When λ = 0, traders face no idiosyncratic shocks. Clearly, traders never participate whenever

ci > 0, that is, ωi = 0 ∀ i = a, b. The equilibrium prices are determined by market makers as
representative agents, and are identical to those derived in (12). Equilibrium holdings of the stock
for all agents are always equal to the per capita supply θ̄.

For small λ, we expand the solution to equilibrium in λ to the first order

Pt = P̄ + Pλλ + o(λ), (A12a)

θi
t = θ̄ + θi

λλ + o(λ), (A12b)

θm
t = θ̄ + θm

λ λ + o(λ), (A12c)

where P̄ is equal to Pt in (12) and o(λ) denotes higher-order terms of λ. We then solve the
equilibrium up to the first order of λ.
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Given (A12), condition (20) is satisfied for small λ since both μσz/(μ + λν) and k θm in
condition (20) are of order O(1) while θi

t − θm
t = λ(θi

λ − θm
λ ) is of order O(λ), where O(·) denotes

terms of the same order. Hence, Proposition 3 holds. And the trading gain in (17) can be simplified to

gi (·) = − 1

2α
ln(1 − k) + ασ2

D

4(1 − k)
(kθ̄ + λi X )2 + O(λ).

Thus, trader i participates iff gi (·) > 0, which occurs iff X > Xi+ or X < Xi−, where

Xi
± = −λi k θ̄ ± h + O(λ),

and

h ≡

⎧⎪⎨
⎪⎩

1

ασD

√
2(1 − k)[2αci RF + ln(1 − k)], if 2αci RF + ln(1 − k) ≥ 0

0, if 2αci RF + ln(1 − k) ≥ 0.

Since δ and θ̂ depend on ωi only through term λωi , we can ignore all O(λ) terms for the
calculation of ωi . The equilibrium participation in Proposition 3 can be simplified to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωa = ωb = 1, δ = 0, if X ≤ −k θ̄ − h
ωa = 0, ωb = 1, δ = −δ̄, if −k θ̄ − h < X ≤ −|k θ̄ − h|
ωa = ωb = 1, δ = 0, if −|k θ̄ − h| < X ≤ |k θ̄ − h| and k θ̄ > h
ωa = ωb = 0, δ = 0, if −|k θ̄ − h| < X ≤ |k θ̄ − h| and k θ̄ < h
ωa = 1, ωb = 0, δ = δ̄, if |k θ̄ − h| < X < k θ̄ + h
ωa = ωb = 1, δ = 0, if X ≥ k θ̄ + h.

(A13)

Since δ̄ is of order O(λ), so is δ. The following equation linearizes δ and θ̂:

δ
(
θi

t , θ
m
t , X

) = δλ(X )λ (A14a)

θ̂
(
θi

t , θ
m
t , X

) = θ̄ + μθm
λ + λ ν(ωa + ωb)θi

λ

μ + λ ν(ωa + ωb)
λ + o(λ) = θ̄ + θm

λ λ + o(λ). (A14b)

Using (A12) and (A14) and the definition of P̄ in (12), the first-order condition for market
makers can be written as

0 = ∂ J m

∂θm
t

= E

[
−αJ m

P (X )

(
Et+1/2[Dt+1] + Pt+1 − R2

F Pt − 1
2 ασ2

Dθm
t − ασ2

D

2(1 + kδ2)
(θ̂ − θm

t + δX )

)]

= E
[ − αJ0 eαr θ̄Pλ λ+o(λ) [−(r Pλ + 1

2 ασ2
Dθm

λ + 1
2 ασ2

Dδλ X )λ + o(λ)
]]

= E
[
αJ0

(
r Pλ + 1

2 ασ2
Dθm

λ + 1
2 ασ2

Dδλ X
)]

λ + o(λ),

where J m
P (X ) is defined in (A11), and J0 ≡ −e−α(R2

F Wt + 1
4 ασ2

D θ̄2). Plugging in (A13), we have

r Pλ + 1
2 ασ2

D θm
λ + c1 = 0, (A15)

where

c1 ≡ ν

μ
ασ2

Dσx

√
1

2π

(
e−h2

1 − e−h2
2
)
, h1 ≡ k θ̄ − h√

2 σx
, h2 ≡ k θ̄ + h√

2 σx
,

and σ2
x = σ4

z

σ2
z +σ2

u
. Since h1 ≤ h2, we know that c1 ≥ 0.
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We now consider the first-order condition for trader i . First, we verify that traders with λi = 0
never participate. From (A9), the expected gain from participation is

gN L

(
θi

t ; θ
) = E[g(θi ; λi = 0, X ; θ̂, δ)], (A16)

where E[·] is taken with respect to X . Given (A12) and (A14) and the fact that θi
t − θ̂ and δ are

both of the order O(λ), we have

gN L

(
θi

t ; θ
) = O(λ) − RF ci ,

which is negative as long as ci is finite and λ is small enough. Thus, J NL = E[JNP (λi = 0)]. When
λi �= 0, a trader’s first-order condition can be written as

0 = λ
∂ J L

∂θi
t

+ (1 − λ)
∂ J NL

∂θi
t

= λ
∂E[JNP ]

∂θi
t

+ λ
∂E

[
1{g(·)>0} (JP − JNP )

]
∂θi

t
+ (1 − λ)

∂ J NL

∂θi
t

, (A17)

where JP and JNP are defined in (A5) and (A6), and g(·) is the trading gain in (17). The first term
in (A17) can be simplified to

λ
∂E[JNP ]

∂θi
t

= λ
α
(

Et+1/2[Dt+1] + Pt+1 − R2
F Pt − ασ2

Dθi
t

2(1−kz )

)
√

1 − kz
,

e
−α

[
R2

F Wt +θi
t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− 1

4
ασ2

D
1−kz

θi
t
2
]

= λ J0 α c2 + o(λ), c2 ≡ kz ασ2
D θ̄

2(1 − kz)3/2
e

1
4

kz
1−kz

α2σ2
D θ̄2

,

where kz = 1
2 α2σ2

Dσ2
z for σz in (7) captures the total uncertainty in idiosyncratic shocks. Since

JP = JNP when g(·) = 0, for the second term in (A17), we have

λ
∂E[1{g(·)>0} (JP − JNP )]

∂θi
t

= λ E

[
1{g(·)>0}

∂(JP − JNP )

∂θi
t

]

= E

[
− 1{g(·)>0} J0

α2σ2
D (k θ̄ + X )

2(1 − k)3/2

× e
α2σ2

D
4(1−k) (k θ̄2+2θ̄X+X2)

λ + o(λ)

]

= −J0 α c2c3 λ + o(λ),

where

c3 ≡
√

1 − kz

2π(1 − k)

σx

kz θ̄

(
e−h2

3 − e−h2
4
) − 1

2
(Erf(h3) + Erf(h4) − 2)

h3 ≡ h(1 − kz) − kz(1 − k)θ̄√
2(1 − k)(1 − kz) σx

, h4 ≡ h(1 − kz) + kz(1 − k)θ̄√
2(1 − k)(1 − kz) σx

.

2640

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/22/7/2607/1599349 by M

IT Libraries user on 30 D
ecem

ber 2019



Liquidity and Market Crashes

Note that ∂c3
∂h = − h√

2π kz σx θ̄
( 1−kz

1−k )3/2(e−h2
3 − e−h2

4 ) ≤ 0 (since h3 ≤ h4.) Since h ≥ 0, and c3 = 1

when h = 0, we have c3 ≤ 1. For the third term in (A17), we have

(1 − λ)
∂ J NL

∂θi
t

= (1 − λ) α
(

Et+1/2[Dt+1] + Pt+1 − R2
F Pt − 1

2 ασ2
Dθi

t

)

× e−α
[

R2
F Wt +θi

t

(
Et+1/2[Dt+1]+Pt+1−R2

F Pt

)
− 1

4 ασ2
Dθi

t
2]

= J0α
(
r Pλ + 1

2 ασ2
Dθi

λ

)
λ + o(λ).

Hence, to the first order of λ, the first-order condition for trader i reduces to

r Pλ + 1
2 ασ2

D θi
λ + c2(1 − c3) = 0. (A18)

Finally, the market clearing condition (27) reduces to

μ θm
λ + 2ν θi

λ = 0. (A19)

Solving systems (A15), (A18), and (A19), we derive the linear stationary equilibrium

Pλ = −μ c1 + 2 ν c2(1 − c3)

r (μ + 2ν)
(A20a)

θi
λ = 2μ [c1 − c2(1 − c3)]

ασ2
D (μ + 2ν)

(A20b)

θm
λ = − 4 ν [c1 − c2(1 − c3)]

ασ2
D (μ + 2ν)

. (A20c)

Moreover, Pλ is always negative since c1 ≥ 0, c2 ≥ 0, and c3 ≤ 1.
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