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Abstract

In this paper, we develop an equilibrium model for stock market liquidity and its impact

on asset prices when participation in the market is costly. We show that, even when

agents’ trading needs are perfectly matched, costly participation prevents them from

synchronizing their trades, which gives rise to the endogenous need for liquidity. More-

over, the endogenous liquidity need, when it occurs, is dominated by excessive selling

of significant magnitude. Such a liquidity-driven selling leads to market crashes in the

absence of any aggregate shocks. It also gives rise to negative skewness and fat-tails in

stock returns.
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1 Introduction

Market crashes refer to large, sudden drops in asset prices in the absence of big news on the

fundamentals—such as future asset payoffs. They exhibit some distinct features. Crashes

are one-sided—there are no sudden market surges. They are typically accompanied by large

selling pressures in the market. Moreover, the drop in prices occurs quickly but the recovery

is much slower. Even though there is little consensus on what causes a crash, the lack of

liquidity has always been identified as its symptom and has been blamed for exacerbating

its consequences.1 In particular, crashes are commonly portrayed as market conditions in

which the excessive selling pressure drives prices below the fundamental value, while little

new capital rushes into the market to take advantage of the price deviations.

This view is supported by the cumulating evidence that despite the profitable opportuni-

ties after a crash—at least as perceived by some observers—new capital flows in only after long

lags. For example, following the 1987 stock market crash, many companies announced repur-

chases of their own shares, reflecting the belief that their stocks were undervalued. However,

these announcements spread over several months and took even longer to be substantially

implemented.2 The LTCM episode in 1998 was followed by substantial capital outflows from

hedge funds operating in the same markets as LTCM (e.g., fixed income arbitrage and global

macro strategies). The trend only started to reverse several quarters after, despite the op-

portunities in these markets (see, e.g., Mitchell, Pedersen, and Pulvino (2006) and Tremont

(2006)).3 These evidence suggests that capital movement is costly. The costs range from in-

formational costs to institutional rigidities, as discussed extensively in Merton (1987) among

other.4 When the abnormal trading pressure hits, only limited supply of liquidity is available

to accommodate the trades and prices have to shift drastically.

This perspective focuses on the lack of liquidity supply during severe market conditions.

However, it does not explain what gives rise to the initial need for liquidity, why it is always

1For example, the report by the Committee on the Global Financial System (CGFS (1999)) provides an
overview of the “· · · deterioration in liquidity and elevation of risk spreads · · · ” in many international financial
markets in autumn 1998.

2Earlier analysis of the share repurchases after 1987 crash include Gammill and Marsh (1988) and Netter
and Mitchell (1989). More recent studies of firms’ share repurchase behavior include Ikenberry, Lakonishok,
and Vermaelen (1995), Stephens and Weisbach (1998), and Dittmar (2000).

3We thank Cristian-Ioan Tiu and Mila Getmansky for bringing to our attention the Tremont Asset Flows
Report for data on hedge fund flows.

4In Section 2.3, we discuss in more detail the nature of various costs to market participation and capital
mobility and the empirical evidence.
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in the form of excessive selling, and why it comes in large magnitudes. In this paper, we show

that the same cost that hinders the ex post supply of liquidity also generates the need for

liquidity in the first place. Despite the symmetric nature of market participants’ idiosyncratic

trading needs, the aggregate need for liquidity—when it arises—is asymmetric, usually on the

selling side, and of large sizes. With limited supply of liquidity in the market, these sudden

surges of endogenous liquidity needs will lead to large price drops, as in market crashes.

We start with a model that captures two important aspects of liquidity, the need to trade

and the cost to trade. The trading needs arise from idiosyncratic shocks to agents’ wealth,

which they want to unload in the market by adjusting their asset holdings. By definition,

idiosyncratic shocks sum to zero at the aggregate level. Thus, agents’ trading needs are

always symmetric and perfectly matched—for each potential seller there is a potential buyer

with offsetting trading needs. If trading is costless, all potential buyers and sellers will be

in the market at all times. Their trades will be perfectly synchronized and matched, and

there will be no need for liquidity. The market-clearing price always reflects the “fundamental

value” of the asset, such as asset payoffs and investor preferences. Idiosyncratic shocks only

generate trading but have no impact on prices.

When trading or participation in the market is costly, the need for liquidity arises endoge-

nously and idiosyncratic shocks can affect prices. The cost to participate has two important

effects. First, it prevents potential traders from being in the market constantly. They will

enter the market only when they are far away from their desired positions and the expected

gains from trading outweigh the cost. Infrequent participation implies that traders who are

hit by idiosyncratic risks will not always be able to unload them in the market, which makes

them more risk averse. Second, potential traders with offsetting trading needs perceive dif-

ferent gains from trading. In particular, the gains from trading for potential sellers—those

who receive a positive shock in their idiosyncratic risk—are always larger than the gains from

trading for potential buyers. The reason is that, as both positive and negative shocks push

them away from their optimal positions, traders become more risk averse and less willing to

hold the asset. This exacerbates the selling needs for traders with negative shocks and damp-

ens the buying demand for traders with positive shocks. The asymmetry between the desire

to trade between potential buyers and sellers leads to order imbalances in the form of excess

supply and a need for liquidity. The price has to decrease in response.

Moreover, the endogenous liquidity need is highly nonlinear in the idiosyncratic shocks

that drive agents’ trading needs. When the magnitude of idiosyncratic shocks is moderate,
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gains from trading are relatively small. As a result, all traders will stay out of the market

and there is no need for liquidity. Only when the idiosyncratic shocks are sufficiently large,

gains from trading exceed the participation cost and some potential traders start to enter

the market. They enter with large trading needs and more on the selling side. Thus, the

order imbalance and the need for liquidity, when they occur, are large in magnitude, causing

the price to drop discretely in the absence of any aggregate shocks. Such a behavior of the

market—namely, infrequent but large price drops accompanied by large selling pressure with

no big news on fundamentals—clearly resembles the features of market crashes. It also leads

to skewness and fat-tails in return distributions. As a result, higher-order moments of the

price, Value-at-Risk measures, and trading volumes provide valuable information regarding

market liquidity.

There is a large theoretical literature on explaining market crashes. Most of the existing

models rely on both information asymmetry and market frictions.5 The general mechanism

of these models is similar. Frictions prevent prices from reflecting the private information

agents have and severely more so in some states than others. Those states are typically not

related to asset payoffs, often referred to as noise. But they affect how information gets into

prices. When the market shifts from less informative states to more informative states, the

price experiences large changes as private information is impounded in.

A challenge for these models is that they lead to both market crashes and surges. In

other words, if a price change is caused by an infusion of private information, it can be either

positive or negative as the information can be positive or negative.6 Another challenge is that

the price change is permanent as it reflects more information about fundamentals. It does not

capture the possibility that prices may actual move away from the fundamental value during

a crash, giving rise to transitory deviations.

The mechanism we have identified—the endogenous need of liquidity—has the unique

feature that it only leads to large excessive selling pressure and market crashes. Moreover, the

price drop is purely a liquidity effect, independent of the information on future payoffs. Thus,

it represents a temporary dip in the price below the fundamental value. As the participation

5For example, Grossman (1988), Gennotte and Leland (1990), and Romer (1993) consider models with
information asymmetry with incomplete markets. Yuan (2005) examines the interaction between information
asymmetry and borrowing constraints. Hong and Stein (2003) and Bai, Chang, and Wang (2006) analyze the
impact of information asymmetry under short-sale constraints.

6Models with short-sale constraints, such as Hong and Stein (2003), Yuan (2005), and Bai, Chang, and Wang
(2006), can generate negative skewness in returns. But the skewness arises from the asymmetric distribution
of small price changes, not discrete price drops.

3



cost also limits the flow of capital into the market to provide liquidity, the price deviation

only recovers slowly. Although information may well play an important role in exacerbating

the initial selling demand and amplifying market crashes, we identify a unique mechanism

that can explain the sudden rise of excessive selling demand in the first place. Moreover, it

can explain the slow movement of capital into the market after crashes, the prolonged price

depression, and the eventual recovery.

The literature on the influence of liquidity on asset prices is extensive.7 In studying

the impact of liquidity, much of the attention has focused on the supply of liquidity, taking

the demand of liquidity as given.8 Our work extends the existing literature on liquidity by

modelling how the need for liquidity arises endogenously, how it behaves and how it influences

asset prices. For example, Grossman and Miller (1988) consider the role of market makers in

providing liquidity and reducing price volatility and, taking as given the non-synchronization

in trades, how participation costs limit their ability to do so. Our analysis shows that it

is the participation costs that generate the non-synchronization in trades. Moreover, the

endogenous liquidity need exhibits distinctive features, which lead to unique predictions on

its price impact.

In this regard, our paper is similar in spirit to that of Allen and Gale (1994), who consider

the ex-ante participation decisions of agents with different future liquidity needs. They show

that the ex-ante optimal level of participation can be inadequate ex-post when the realized

liquidity need is much larger than expected, causing additional volatility in prices. We focus

more on the dynamic aspect of liquidity by allowing traders to make their participation deci-

sions after observing new shocks to their trading needs over time. Thus, we are able to study

how the need for liquidity occurs in response to new idiosyncratic shocks to the traders. As

we show, the properties of the endogenous liquidity need (e.g., one-sided and fat-tailed) can

be quite different from those assumed for exogenous liquidity shocks.

7The theoretical work includes Grossman and Miller (1988), Hirshleifer (1988), Pagano (1989), Allen and
Gale (1994), Orosel (1998), Huang (2003), Lo, Mamaysky, and Wang (2004), and Vayanos (2004). Recent
empirical work on the impact of liquidity on asset prices includes Brennan and Subrahmanyam (1996), Chordia,
Roll, and Subrahmanyam (2000), Amihud (2002), Pastor and Stambaugh (2003), and Acharya and Pedersen
(2005). Cochrane (2005) provides a review of the recent literature.

8See, for example, Amihud and Mendelson (1980), Ho and Stoll (1981), and Huang (2003). In the market
micro-structure literature, which has liquidity as a central focus, the need for liquidity, as described by the
order flow process, is often taken as given. See, for example, Glosten and Milgrom (1985), Kyle (1985), and
Stoll (1985). Admati and Pfleiderer (1988) and Spiegel and Subrahmanyam (1995), however, do allow the
order flow process to be influenced by equilibrium. Several recent papers, e.g., Kyle and Xiong (2001), Gromb
and Vayanos (2002), and Brunnermeier and Pedersen (2006), allow liquidity needs to be partially endogenous
due to the impact of market prices on agents’ wealth.

4



Another distinctive feature of our model is that liquidity need arises purely from idiosyn-

cratic shocks, which would have no pricing implications in absence of the liquidity effect. Most

of the existing models on the impact of liquidity including Allen and Gale (1994) rely on ag-

gregate shifts in demand.9 The presence of aggregate shocks makes market crashes and surges

equally likely, as they can be either positive or negative. Moreover, it blurs the distinction

between the effects of liquidity and risk (and/or preferences). In these models, liquidity merely

plays the role of exacerbating the impact of exogenous aggregate shocks.10 In our model, it is

the idiosyncratic shocks that generates endogenous selling demand at the aggregate level.

Our model is closely related to the model of Lo, Mamaysky, and Wang (2004), who con-

sider the impact of fixed transactions costs on trading volume and the level of asset prices. In

a continuous-time stationary setting, they show that gains from trading are in general asym-

metric between traders with offsetting shocks when trading is infrequent. Such an asymmetry

naturally leads to non-synchronization in trades, the need for liquidity, and price deviations.

In order to focus on the impact of trading costs on price levels, Lo, Mamaysky, and Wang

(2004) avoid order imbalances by allowing the participation cost to be allocated endogenously

so that the trades of different market participants are always synchronized in equilibrium. As

we show in this paper, it is the order imbalance that leads to changes in liquidity needs and

the instability in asset prices.

The paper proceeds as follows. Section 2 describes the basic model. Section 3 solves for the

intertemporal equilibrium of the economy. In Section 4, we analyze how individual traders’

participation decisions give rise to the need for liquidity and the properties of equilibrium

liquidity needs. In Section 5, we examine how the endogenous need for liquidity affects asset

prices. Section 6 concludes. The appendix provides the proofs.

2 The Model

We construct a parsimonious model that captures two important factors in analyzing liquidity,

the need to trade and the cost to constantly participate in the market. We describe the econ-

9See also Campbell, Grossman, and Wang (1993), Campbell and Kyle (1993), and Kyle and Xiong (2001),
among others.

10Effectively, these models generate large fluctuations in the marginal utility of marginal investors in response
to aggregate shocks. In their reduced form (i.e., if we ignore how aggregate shocks lead to changes in marginal
utility), these models become similar to representative agent models with a state-dependent marginal utility.
For example, Campbell and Hentschel (1992) model the arrival of news as an increase in the aggregate risk
which depresses asset prices. This overall negative impact on prices offsets the effect of good news and amplifies
the effect of bad news, leading to skewness in returns.
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omy and the notion of equilibrium in Sections 2.1 and 2.2. We then provide more discussion

on the key features of the model in Sections 2.3 and 2.4.

2.1 Economy

For simplicity, we consider a discrete-time, infinite-horizon setting.

A Asset Market

A stock is traded in a competitive asset market. It yields a risky dividend Dt at time t, where

t = 0, 1, 2, . . . Dividends are i.i.d. normally distributed with a mean of D̄ and volatility of σD.

Let Pt denote the ex-dividend stock price at time t. In addition, there is a short-term riskless

bond, which yields a constant interest rate of r > 0 per period.

B Agents

At t = 0, 1, 2, . . ., a set of agents are born who live for one period. Agents born at t are

referred to as generation t. They are born with initial wealth Wt, which they invest in the

stock and the bond. They sell all their assets for consumption at time t + 1.

Each generation consists of two types of agents who face different endowments and trading

costs. As described below, agents’ heterogeneity in endowments will gives rise to their trading

needs in our model. The first type of agents, denoted by m, are “market makers.” They have

no inherent trading needs, but are present in the market at all times, ready to trade with

others. The second type of agents are “traders” who have inherent trading needs. Traders are

split between two equal subgroups, denoted by a and b, respectively. The population weight

of the market makers and the traders are µ and 2ν, respectively.

The per capital supply of the stock is θ̄, which is positive (i.e., θ̄ > 0). In addition, each

agent i of generation t receives a non-traded payoff N i
t+1 at the end of his life-span, given by

N i
t+1 = λiZ nt+1, i = m, a, b (1)

where Z and nt+1 are mutually independent, normal random variables with a mean of zero and

a volatility of σz and σn, respectively, λi is a binomial random variable drawn independently

for each agent within his group, where

λm = 0, λa = −λb =







1, with probability λ

0, with probability 1 − λ.
(2)
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Here we have suppressed the time subscript for λi and Z for brevity. Thus, market makers

receive no non-traded payoff, while a fraction λ of traders within each trader group receives

non-traded payoffs. Since λa = −λb, the two groups of traders receive perfectly offsetting

non-traded payoffs. By construction, we have

∑

i=a,b,m

N i
t+1 = 0. (3)

The non-traded payoff is assumed to be correlated with the stock dividend Dt+1. In particular,

we let nt+1 = Dt+1 − D̄.11

In the absence of risks from non-traded payoffs, all agents are identical and there will be no

trading needs among them. However, in the presence of non-traded risks, traders who receive

them want to trade in order to share these risks. In particular, given the correlation between

the non-traded payoff and the stock payoff, they want to adjust their stock positions in order

to hedge their non-traded risks. Thus, traders’ idiosyncratic risk exposures give rise to their

inherent trading needs.

Since the non-traded risks sum to zero as in (3), the traders’ underlying trading needs

are perfectly matched. If all traders are present in the market at all times, a seller is always

matched with a buyer and there is perfect synchronization in their trades. If, however, only

some traders are present at a given time, trades may not be always synchronized and the need

for liquidity arises.

For tractability, we assume that all agents have a utility function of constant absolute risk

aversion over their terminal wealth. The utility function for generation-t agents is

E
[

−e−αW i
t+1

]

, i = a, b, m (4)

where W i
t+1 denotes agent i’s terminal wealth.

C Trading Costs

All agents can trade in the market at no cost at the beginning and the end of their life-span.

That is, agents of generation t can trade in the market at t and t+1 without cost. In addition,

market makers can also trade at no cost at any time between t and t+1. The traders, however,

face a fixed cost c ≥ 0 if they want to trade between t and t + 1.

11We only need the correlation between nt+1 and Dt+1 to be non-zero. The qualitative nature of our results
are independent of the sign and the magnitude of the correlation. To fix ideas, we set it to 1.
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D Time Line

We now describe in detail the timing of events and actions. At t, agents of generation t are

born. They purchase shares of the stock from the old generation and construct their optimal

portfolio θi
t, i = a, b, m. Market equilibrium at t determines Pt.

After t, traders learn if they will be exposed to any idiosyncratic risks (i.e., their draws of

λi). Those who will (λi 6=0) also observe a signal S about its potential magnitude Z:

S = Z + u (5)

where u is the noise in the signal, normally distributed with a mean of zero and a variance of

σ2
u > 0. For future convenience, we denote by X the expectation of Z conditional on signal S

and σ2
ẑ the conditional variance. We then have

X ≡ E[Z|S] =
σ2

z

σ2
z + σ2

u

S, σ2
ẑ ≡ Var[Z|S] =

σ2
u

σ2
u + σ2

z

σ2
z . (6)

Under normality, X is a sufficient statistic for signal S. Thus, we will use X to denote these

traders’ information about the magnitude of their idiosyncratic risks.

After learning about their idiosyncratic risks, traders face the choice of staying out of the

market (until their terminal date) or paying a cost c to enter the market. Those who choose

to enter the market will then trade among themselves as well as with market makers. To fix

ideas, we assume that signal X and entry decisions occur at t + 1/2 and trading occurs right

after. This specification has the advantage of carrying forward interests more easily.

A trader’s choice to enter the market depends on his draw of λi and the signal X on the

magnitude of the idiosyncratic risk if λi 6= 0. Let ηi be the discrete choice variable of trader

i (i = a, b) for whether to enter the market, where ηi = 1 denotes entry and ηi = 0 denotes

no entry. Among group i traders (i = a, b) who receive idiosyncratic shocks (i.e., λi 6= 0), we

use ωi,L to denote the fraction that choose to enter the market. Similarly, ωi,NL denotes the

fraction of traders without idiosyncratic shocks that choose to enter. We also use θi
t+1/2

(ηi)

to denote the number of stock shares agents i (i = m, a, b) holds after trading at date t + 1/2.

Of course, θi
t+1/2

(ηi = 0) = θi
t. Summarizing the description above, Figure 1 illustrates the

time-line of the economy.

For agent i, his terminal financial wealth, denoted by F i
t+1, is

F i
t+1 = R2Wt − R ηici + θi

tR (Pt+1/2 − RPt) + θi
t+1/2

(ηi) (Dt+1 + Pt+1 − RPt+1/2) (7)

where R = (1 + r)1/2 is the gross interest rate for each 1/2 period, ci = c for i = a, b and ci = 0
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-
t t + 1/2 t + 1 time

Shocks λi, X Dt+1, N i
t+1 · · ·

Choices θi
t ηi(λi, X); θi

t+1/2
(ηi) · · ·

Equilibrium Pt ωi,L, ωi,NL; Pt+1/2 Pt+1 · · ·

Figure 1: The time line of the economy.

for i = m. His total wealth at date t + 1 is then given by

W i
t+1 = F i

t+1 + N i
t+1 (8)

where N i
t+1 is the income from the non-traded asset in (1).

2.2 Definition of Equilibrium

The equilibrium of the economy requires three conditions. First, taking prices as given, all

agents optimize with respect to their participation and trading decisions. Second, agents’

participation reaches an equilibrium. Third, the stock market clears. Given the repetitive

nature of each generation, we only need to focus on the equilibrium over the life-span of one

generation, say, generation t.

At time t, generation-t is born and they purchase the shares from the previous generation.

Since the total supply of the stock is (µ + 2ν) θ̄, the equilibrium stock price Pt is determined

by the market clearing condition

µ θm
t + ν (θa

t + θb
t ) = (µ + 2ν) θ̄. (9)

At time t + 1/2, after learning about whether or not they are exposed to idiosyncratic

risks, traders decide whether to pay a cost to enter the market. A participation equilibrium

is reached if all traders within the same group make identical participation decisions, i.e.,

ωi,j = 0 or 1, i = a, b and j = L, NL, or if they are indifferent about whether to participate

or not at an interior value ωi,j ∈ (0, 1).

Given the participation decision, market makers and participating traders determine the

market equilibrium. Let θi,j
t+1/2

≡ θi
t+1/2

(

ηi(λi)=1
)

(i = a, b) denote the stock holding at t + 1/2

of participating traders from each group, with and without idiosyncratic shock (λi = 0, 1),
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respectively. The clearing of the stock market at t + 1/2 requires

µ θm
t+1/2

+ ν
∑

i=a,b

[

λ ωi,Lθi,L
t+1/2

+(1−λ)ωi,NLθi,NL

t+1/2

]

= µ θm
t + ν

∑

i=a,b

[

λ ωi,L + (1−λ)ωi,NL
]

θi
t (10)

which determines the equilibrium stock price at t + 1/2.

At time t+1, the economy repeats itself: A new generation is born; the current generation

sells their assets and consume their total wealth as given in (8); and the stock market clears

as the new generation purchases all the stock shares. Given the stationary nature of the

economy, we consider a stationary equilibrium in which

Pt+1 = Pt. (11)

It is worth noting that we assumed a constant interest rate and thus do not require the bond

market to clear.

2.3 Discussions and Simplifications

In this subsection, we provide additional discussions and motivations on some of the key

features of the model. The two key ingredients of the model are the need to trade and the

cost to participate in the market. Little justification is needed for introducing trading needs,

given the large trading volume we observe in the market, its variations over time, and its

abnormal level during market crashes.12 In order to model trading needs, we must capture

certain forms of heterogeneity among agents.13 We use heterogeneity in agents’ non-traded

payoffs as a device to introduce trading needs for risk sharing. This modelling choice is mainly

for tractability.

In general, the two trader groups can receive arbitrary non-traded risks, i.e., N i
t+1 = Y int+1,

i = a, b with arbitrary Y a and Y b. Let Y = (Y a + Y b)/2 and Z = (Y a − Y b)/2. We have

Y i = Y + Z and Y b = Y − Z. Hence, Y captures the aggregate exposure to non-traded

risk and Z captures the idiosyncratic exposure. Since it is the idiosyncratic risk that drives

trading (and liquidity), we will focus on it and simply assume Y = 0.14 Thus, there is no loss

12For example, Gammill and Marsh (1988) provides a partial picture of trading activity by different types
of market participants during the 1987 crash.

13Trading for risk sharing can arise from heterogeneity in endowments (e.g., Wang (1994) and Lo, Mamaysky,
and Wang (2004)), preferences (e.g., Dumas (1992) and Wang (1996)), or beliefs (e.g., Harris and Raviv (1993)
and Detemple and Murthy (1994)). By the No-Trade Theorem of Milgrom and Stokey (1982), in the absence of
other heterogeneity, information alone does not necessarily generate trading. In the presence of other trading
needs, information asymmetry can lead to additional trading (e.g., Wang (1994) and He and Wang (1995)).

14This is not to say that aggregate risk does not matter. Fluctuations in aggregate risk can interact with
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of generality in our specification of idiosyncratic risks in (1) and (2).

In the presence of non-traded payoffs, a trader’s utility is influenced by the risk they bring.

For example, a trader with only non-traded assets has an expected utility of

E
[

−e−αZnt+1
]

= − E
[

e
1
2

α2σ2
zn2

t+1

]

.

For it to be well defined (i.e., finite), we need

α2σ2
nσ2

z < 1 (12)

where σ2
n denotes the variance of nt+1. For nt+1 = Dt+1 − D̄, σ2

n = σ2
D
. For technical

convenience, we assume that (12) holds throughout the paper.

Another key ingredient of our model is the cost to participate in the market. It is intended

to capture the frictions preventing the full participation of all potential players in a given

market at any given moment. Although these frictions are mostly absent in the neoclassical

asset pricing theory, they are nonetheless part of market reality. As pointed out in Grossman

and Miller (1988), financial markets do not operate like “a gigantic town meeting in which

all potential buyers and sellers participate directly.” Instead, participation is always limited.

Information costs and institutional rigidities are abundant in preventing full participation or

instant capital flow. Gathering and processing information, devising trading strategies and

their support systems in response to new information, raising capital and making changes in

business practice to implement these strategies all involve costs and take time. After providing

an extensive discussion on the importance of these costs, Merton (1987) observes that “On the

time scale of trading opportunities, the capital stock of dealers, market makers and traders

is essentially fixed. Entry into the dealer business is neither costless nor instantaneous.”15

Commenting on the 1987 crash, Leland and Rubinstein (1988) suggest that “. . . at any one

time, there is a limited pool of investors available with the ability to evaluate stocks and take

appropriate action in the market.”16

Merely recognizing the costs and limits to participation is not sufficient. Their magnitude

also matters. Although direct measurements of these costs are hard to come by, there is cu-

the demand and supply of liquidity. We leave the impact of aggregate risk for future work.

15It is worth noting that the information costs Merton (1987) refers to are much broader than the simple
cost of gathering information. They also include the costs and time spent to process these information, to
devise strategies to take advantage of it, to raise capital, and to implement these strategies. Finally, the costs
also involve deeper issues like the incentive structure of the institutions and the regulatory environment.

16See also Brennan (1975), Hirshleifer (1988), Chatterjee and Corbae (1992), and Gromb and Vayanos (2002)
among others for more discussion of participation/fixed costs in financial markets.
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mulating evidence demonstrating their significance. For example, Coval and Stafford (2006)

find that widespread selling by financially distressed mutual funds leads to significantly de-

pressed prices for stocks in their portfolio. The price effects can last over a couple of quarters

and take several more quarters to reverse. Moreover, the effect occurs despite the fact that

many of the stocks sold are widely held by other mutual funds who are not suffering outflows.

Mitchell, Pedersen, and Pulvino (2006) examine several markets such as convertible bonds

and mergers and acquisitions, in which hedge funds actively pursue pricing anomalies. They

show that when hedge funds in a particular market (say convertible bonds) face large redemp-

tions, prices deviate significantly from the fundamentals. However, funds are slow in flowing

back into the market. As a result, the price deviations persist for long periods of time before

they start to diminish. The persistence in large price deviations caused by liquidity events as

documented in these studies implies substantial frictions that prevent instantaneous capital

flow or participation.17

Two more comments are in order regarding participation costs. First, they may confront

certain subset of agents, but not necessarily all, and different agents may face different kinds

of participation costs. Other than the distinction between traders (who face costs) and market

makers (who face no cost,) our model does not fully reflect the richness of the cost structure

in the market place. Second, the participation cost in essence reflects the cost to capital

flow. More capital in a market tends to reduces the risk aversion of marginal investors (e.g.,

Grossman and Vila (1992)). In our setting, all agents have constant risk aversion. But

participation of more agents brings down the effect risk aversion of the market maker (see also

Grossman and Miller (1988)).

Our model also makes an important technical assumption that, at the time of making

their participation decisions, traders only partially learn about their future idiosyncratic risk.

That is, they receive only a noisy signal S about the true magnitude of the total exposure

Z. Note that, if Z is fully known at the time of the participation decision, a single trade

is expected to remove all future non-traded risks; the model degenerates into a static one.

By assuming a partial observation of Z, we capture the intertemporal effect that future risks

cannot be fully eliminated by one trade. In other words, even if a trader chooses to enter the

market now, he still expects to bear some future idiosyncratic risk since he may not be in the

17The evidence on the limited mobility of capital is quite extensive. See also Harris and Gurel (1986),
Shleifer (1986), Lynch and Mendenhall (1997), Wurgler and Zhuravskaya (2002), and Chen, Noronha, and
Singal (2004) on the price effect of stock deletions from the S&P index, Frazzini and Lamont (2006) on the
price impact of capital flows to mutual funds, and Tremont (2006) on market behavior and hedge fund flows.
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market in the future. Such an expectation influences his current participation decision. As

we will see in the next section, this additional uncertainty leads to asymmetric participation

decisions for traders with matching trading needs. This result arises from the intertemporal

nature of the model. In a fully intertemporal setting, Lo, Mamaysky, and Wang (2004) show

that when participation costs force traders to trade infrequently, they always expect to bear

some idiosyncratic risks and the asymmetry in their trading is a general outcome. Our setup

provides a simple way to capture the same effect.

As long as it occurs after the participation decision, the exact timing of the full revelation

of Z is not critical. For simplicity, we assume that by the time of trading all traders who

receive idiosyncratic risks also observe the realization of Z.18

Another assumption we make is that traders without idiosyncratic risk (λi = 0) do not

observe the magnitude of the shocks that others receive. This helps to simplify the model as

these traders will typically stay out of the market. We should emphasize that our main results

remain the same if they also observe the shocks (e.g., by observing prices). This assumption

only helps to simplify our analysis.

2.4 Equilibrium with Costless Participation

Before solving for the equilibrium, we describe the special case of participation costs being zero

for all agents. This case serves as a benchmark when we examine the impact of participation

costs on liquidity and stock prices. If ci = 0 ∀ i = a, b, m, all traders and market makers will

be in the market at all times, and ωi,L = ωi,NL = 1 ∀ i = a, b. The equilibrium price and

agents’ equilibrium stock holdings are:

Pt = P̄ ≡ 1
r

(

D̄ − ασ2
D

θ̄
)

, θi
t = θ̄

Pt+1/2 = RPt, θi
t+1/2

= θ̄ − λiZ
(13)

where t = 0, 1, 2, . . . and i = a, b, m.

In this case, stock prices, Pt and Pt+1/2, are determined by the stock’s expected future

dividends D̄, the dividend risk σD, and the aggregate (per capita) risk exposure θ̄. We call

these the “fundamentals” of the stock. Prices do not depend on the idiosyncratic risk exposure

λiZ. For traders exposed to non-traded risks, their stock holding equal the per capita shock

share θ̄ plus an additional component λiZ, which reflects their hedging demand to offset the

18We have also solved the model under the assumption that Z is revealed at t + 1. The equilibrium price
and participation decisions are qualitatively the same.
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exposure to the non-traded risk. It is important to note that because these traders’ underlying

trading needs are perfectly matched (λa = −λb), so are their trades when they are all in the

market. In this case, the market is perfectly liquid in the sense that order flows have no price

impact. There is no need for liquidity and market makers perform no role (their holdings stay

at θm = θ̄).

3 Equilibrium

We now solve for the equilibrium when participation is costly in three steps. First, taking

the stock price at time t + 1 and agents’ initial stock holdings and participation decisions at

t as given, we solve for the stock market equilibrium at t + 1/2. Next, we solve for individual

agents’ participation decisions and the participation equilibrium, given the market equilibrium

at t + 1/2 and their initial stock holdings at t. Then, we solve for the market equilibrium at

time t. Using the condition Pt+1 = Pt, we finally obtain the full stationary equilibrium of the

economy.

In the first two steps (Sections 3.1-3.3), we assume that traders who receive no idiosyncratic

shocks (λi = 0) stay out of the market until the end of their horizon, that is, ωi,NL = 0,

i = a, b. We then only consider those traders who do receive shocks and solve for their

participation decisions, the participation equilibrium, and the market equilibrium at t + 1/2.

In these subsections, unless stated otherwise, traders refer only to those with λi 6= 0 and

participation weights, ωa = ωa,L and ωb = ωb,L, refer to fractions of them who choose to

participate. In the last step (Section 3.4), we include all traders and confirm that in equilibrium

those who receive no idiosyncratic shocks indeed choose not to participate in the market.

3.1 Market Equilibrium at t + 1/2

At t + 1/2, we first take agents’ initial stock holdings and their participation decisions as given

and solve for the market equilibrium. Let θ ≡ (θa
t , θ

b
t , θ

m
t ) denote agents’ stock holdings at

t and ω ≡ (ωa, ωb). Since our analysis focuses on generation t, we have omitted the time

subscript t of θ and ω for brevity. Together with Z, {θ, ω} defines the state of the economy

at t + 1/2. Two variables are of particular importance in describing the market condition:

θ̂ ≡ µθm + λ ν(ωaθa+ωbθb)

µ + λ ν(ωa+ωb)
, δ ≡ λ ν

µ + λ ν(ωa+ωb)
(ωa − ωb) (14)
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where θ̂ gives the per capita stock supply in the market (brought in by participating agents)

and δ measures the difference in participation between the two trader groups. Since the

participation equilibrium at t depends on the information X about the non-traded risk, ωa

and ωb and thus θ̂ and δ are in fact functions of X.

The following proposition solves the market equilibrium at t + 1/2, taking as a given the

market condition θ̂ and δ and the magnitude of idiosyncratic risks Z.

Proposition 1. Let Pt+1 be the equilibrium price at time t + 1. Given {θ, ω}, the equilibrium

stock price at t + 1/2 is

Pt+1/2 =
1

R

(

D̄ + Pt+1 − ασ2
D

θ̂ − ασ2
D

δZ
)

(15)

and the equilibrium stock holding of participating agent i is

θi
t+1/2

= θ̂ + δZ − λiZ, i = a, b, m. (16)

When δ = 0, the participation of the two groups of traders is symmetric. The participating

agents’ holdings are equal to the per capita holding θ̂ minus the hedging demand λiZ. Since

λa = −λb, there is a perfect match between the buy and sell orders among traders, and the

equilibrium price is not affected by the idiosyncratic shock Z. This situation is reminiscent of

the benchmark case when participation is costless.

When δ 6= 0, the participation of the two groups of traders is asymmetric. The quantity

δZ measures the excess exposure (per capita) to the non-traded risk due to the asymmetric

participation of traders. In this case, the optimal holding in (16) has an extra term δZ for all

participating agents since they equally share this additional source of risk. The idiosyncratic

shock Z now affects the equilibrium price. Thus in our model, even though traders face

offsetting shocks, asymmetry in their participation can give rise to a mismatch in their trades

and cause the price to change in response to these shocks.

Here, we have taken traders’ participation and the resulting δ and θ̂ as given. In the next

subsection, we show that when individual participation decisions are made endogenously,

asymmetric participation occurs as an equilibrium outcome.

3.2 Optimal Participation Decision

Given the market equilibrium at t + 1/2 and the signal X for future idiosyncratic shocks, we

now solve the participation equilibrium. First, taking as given the participation decision of
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others and price Pt+1/2, we derive the optimal participation policy of an individual trader.

Next, we find the competitive equilibrium for traders’ participation decisions.

For trader i, let JP and JNP denote his utility after he chooses to participate or not to

participate, respectively. We have

JP (θi; λi, X; θ̂, δ) = E

[

max
θi

t+1/2

Et+1/2

[

−e−αW i
t+1

]

∣

∣

∣

∣

λi, X; ηi = 1

]

(17a)

JNP (θi; λi, X; θ̂, δ) = E

[

− e−αW i
t+1

∣

∣

∣

∣

λi, X; ηi = 0, θi
t+1/2

= θi

]

(17b)

where θi denotes his initial stock holding, λi and X define his exposure to the non-traded risk,

θ̂ and δ define the market condition, and E[·|X] denotes the expectation conditional on X.

His net gain from participation can be defined as the certainty equivalence gain in wealth:

g(θi; λi, X; θ̂, δ) = − 1

α
ln

JP (·)
JNP (·) . (18)

The minus sign on the right-hand side adjusts for the fact that JP (·) and JNP (·) are negative.

The optimal decision for trader i is to participate if and only if the net gain from participating is

positive. The following proposition describes the optimal participation policy for an individual

trader.

Proposition 2. For trader i with initial stock holding θi, idiosyncratic shock λi 6= 0 and X,

and under market condition θ̂ and δ, his net gain from participation is

g(θi; λi, X; θ̂, δ) = g1(θ
i; λi, X; θ̂, δ) + g2(λ

i; δ) − Rci (19)

where

g1(·) =
ασ2

D
(1−k λiδ)2

2(1−k)[1−k+k (1−λiδ)2]

(

θi − θ̂i
)2

(20a)

g2(·) =
1

2α
ln

[

1 + (1−λiδ)2k/(1−k)
]

(20b)

and

θ̂i ≡ 1−k

1−k λiδ
θ̂ − 1−λiδ

1−k λiδ
λiX, k ≡ α2σ2

D
σ2

ẑ (21)

He chooses to participate if and only if g(·) > 0.

The net gain from participation consists of three terms, g1(·), g2(·) and −Rci. The first term,

g1(·), represents the expected gain from trading given the current signal X on non-traded

risks. This term depends on trader i’s initial holding θi, the per capita stock supply of all

participating agents θ̂, and the expected idiosyncratic risk, λiX. It is important to note that

16



as long as the initial holding θi is different from 1−k
1−λik δ

θ̂, this term is not symmetric between

the two trader groups. As we will see below, the asymmetry in trading gains gives rise to

asymmetric participation decisions. The second term, g2(·), captures the expected gain from

trading to offset future shocks to non-traded risks. This term depends on the market condition

δ and the variation in future trading needs, which is captured by k. The last term, −Rci,

simply reflects the cost of participation.

Given the gain from participation, the optimal participation decision becomes very in-

tuitive. Since both g1(·) and g2(·) are always positive, the gain g(·) is always positive

when the participation cost is smaller than the gain from offsetting future shocks, i.e., when

c ≤ R−1g2(·). Trader i always participates in this case, independent of signal X. The more

interesting case is when c > R−1g2(·) and trader i chooses to participate only if the expected

gain g1(·) from trading against his current expected exposure is sufficiently large. Note that

g1(·) is zero when his current holding θi is equal to θ̂i. Thus, we can interpret θ̂i as trader i’s

desired stock holding after observing his idiosyncratic risk, given by λi and X. In this case,

a trader chooses to participate when his holding θi is sufficiently far away from the desired

position θ̂i.

3.3 Participation Equilibrium

Given traders’ optimal participation decisions, we now solve for the participation equilibrium.

In the absence of participation costs, traders with positive idiosyncratic shocks (λiX > 0)

expect to sell the stock while traders with negative shocks (λiX < 0) expect to buy. Depending

on the realization of λiX, each group of traders become either potential sellers or buyers. For

example, when X > 0, group-a traders become potential sellers (λaX > 0) while group-b

traders become potential buyers (λbX < 0). When X < 0, the opposite is true.

In order to solve for ωa and ωb in equilibrium, we substitute the expression of θ̂ and δ

in (14) into the definition of g(·) and define a function of participation gain for group-a and

b traders respectively,

ga(ωa, ωb) ≡ g(θa; λa, X; θ̂, δ), gb(ωa, ωb) ≡ g(θb; λb, X; θ̂, δ). (22)

In general, participation gain depends on agents’ initial positions. We only consider the

situation in which their initial holdings satisfy the following condition:

|θi − θm| ≤ min

{

µ σẑ

µ + λν
, k θm

}

, i = a, b. (23)
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We verify later that this condition is satisfied in equilibrium (see Theorem 1).

The following proposition describes the participation equilibrium.

Proposition 3. When agents’ initial stock holdings satisfy (23) and X > 0, there exists a

unique participation equilibrium. Let

ŝa =











0, if ga(0, 0) ≤ 0

1, if ga(1, 0) ≥ 0

sa, otherwise

and ŝb =











0, if gb(1, 0) ≤ 0

1, if gb(1, 1) ≥ 0

sb, otherwise

where sa and sb are the solutions to ga(sa, 0) = 0 and gb(1, sb) = 0, respectively. The equilib-

rium is fully specified as follows:

A. If ga(1, ŝb) ≥ 0, then ωa = 1 and ωb = ŝb.

B. If ga(1, ŝb) < 0 and gb(ŝa, 0) ≤ 0, then ωa = ŝa and ωb = 0.

C. Otherwise, ωa, ωb ∈ (0, 1) and solve both ga(ωa, ωb) = 0 and gb(ωa, ωb) = 0.

Moreover, ωa ≥ ωb. For X < 0, all the results hold by exchanging subscripts a and b.

Cases A and B describe two polar cases when we have corner solutions, either all potential

sellers participate (case A) or no buyers do (case B). Case A corresponds to the situation

in which trading gains for sellers are overwhelming so that they will all enter the market,

irrespective of what buyers do. The presence of a large number of sellers increases the trading

gain for buyers. Thus, in this case some buyers may also choose to participate. Case B

corresponds to the situation in which not all sellers will participate but independent of what

they do the net trading gains for buyers remains negative. In this case, some sellers choose

to participate but no buyers do. Case C corresponds to the intermediate case when we

have an interior solution. In this case, participation of each group depends on the degree of

participation of the other group.

Proposition 3 confirms that there are always more sellers entering the market than buyers

in equilibrium. Additional sellers bring excess sell orders to the market and the need for

liquidity, which is provided by market makers.

3.4 Full Equilibrium of the Economy

We now turn to the solution to the full equilibrium of the economy. We start by computing

the value function for all agents at time t, including traders who receive no idiosyncratic risks.
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First, we observe that the indirect utility function, JP or JNP , defined in (17) is valid for each

agent i (i = a, b, m) conditional on his own λi, X, given his initial stock holding θi
t. Next, for

a trader with λi 6= 0, his unconditional value function becomes

JL(θi
t; θt) = E

[

max{JP (θi
t; λ

i, X; θ̂, δ), JNP (θi
t; λ

i, X; θ̂, δ)}
∣

∣ λi 6= 0
]

. (24)

and for a trader with λi = 0, who does not observe X, his value function is

JNL(θi
t; θt) = max

{

E
[

JP (θi
t; λ

i, X; θ̂, δ)
∣

∣ λi = 0
]

, E
[

JNP (θi
t; λ

i, X; θ̂, δ)
∣

∣ λi = 0
]}

(25)

where θ̂ and δ are defined in (14), which depend on the equilibrium participation ratio ωa and

ωb in Proposition 3 and thus are are functions of X (and θt), and E[·] denotes expectation over

X.19 The ex-ante utility of any trader before any information regarding idiosyncratic shocks

can then be defined as a weighted average of JL and JNL:

J i(θi
t; θt) = λ JL(θi

t; θt) + (1−λ) JNL(θi
t; θt), i = a, b. (26)

Finally, for market makers, the ex-ante utility is simply

Jm(θm
t ; θt) = E

[

JP (θm
t ; λm, X; θ̂, δ)

∣

∣ λm = 0, ci = 0
]

. (27)

To solve for the full equilibrium of the economy, we first take Pt+1 as given to derive the

equilibrium price Pt and stock holding θt, then we impose the stationarity condition (11) (i.e.,

Pt+1 = Pt) to derive the full equilibrium. In addition, we need to confirm that in equilibrium,

traders receiving no idiosyncratic shocks optimally choose to stay out of the market, i.e.,

E
[

JP (θi
t; λ

i, X; θ̂, δ)
∣

∣ λi = 0
]

≤ E
[

JNP (θi
t; λ

i, X; θ̂, δ)
∣

∣ λi = 0
]

. (28)

The following proposition describes the condition that defines the equilibrium.

Proposition 4. A stationary equilibrium of the economy is determined by the set of prices

and stock holdings {Pt, θt} that solves the agents’ optimality condition at t

0 =
∂

∂θi
t

J i(θi
t; θt), i = a, b, m, (29)

the market clearing condition (9), the stationarity condition (11), and satisfies conditions (23)

and (28).

Equation (29) is agents’ first order condition for optimal portfolio choice at t before they

19For JNL, the expectation is taken over X before the maximization because a trader with λi = 0 does not
observe X and makes his participation decisions independent of the realization of X .
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receive any idiosyncratic shocks.

We can solve the equilibrium explicitly when the probability of idiosyncratic shock λ is

small as shown in the appendix, which leads to the following theorem:

Theorem 1. When the probability of idiosyncratic shock λ is small, there exists a stationary

equilibrium as described by Proposition 4.

For arbitrary λ, we have to solve the equilibrium numerically.

4 Limited Participation and the Need for Liquidity

The equilibrium under costly participation shows two striking features. First, despite the

fact that the two groups of traders have perfectly offsetting trading needs, their actual trades

are not synchronized when participation in the market is costly. The non-synchronization in

their trades gives rise to the need for liquidity in the market. A group of traders may bring

their orders to the market while traders with offsetting trading needs are absent, creating an

imbalance of orders. The stock price adjusts in response to the order imbalance to induce

market makers to provide liquidity and to accommodate the orders. As a result, the price of

the stock not only depends on the fundamentals (i.e., its expected future payoffs and total

risks), but also depends on idiosyncratic shocks that market participants face. Second, despite

the symmetry between shocks to potential buyers and sellers, the order imbalance observed

in the market tends to be asymmetric and is on average dominated by sell orders. Thus, the

endogenous liquidity need typically takes the form of excessive selling, which causes the price

to tank. In the next two sections, we examine in more detail these results and the economic

intuition behind them.

4.1 Gains from Trading and Individual Participation Decisions

We start with the individual participation decision, taking as given the initial holding, the

idiosyncratic shocks, and the equilibrium participation in the market. A trader bases his

participation decision on the trade-off between the cost to be in the market and the gain from

trading. Our key result regarding the trading gain is stated below.

Result 1. The gain from trading is in general different between buyers and sellers even when

their trading needs are perfectly matched.
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We start with the simple situation in which the market participation rate is symmetric, i.e.,

ωa = ωb and δ = 0. The gain from participating in the market for trader i is g1(θ
i; λi, X; θ̂, 0)+

g2(λ
i; 0) − Rci. Since g2(·) and ci are identical for both trader groups, we only need to focus

on g1(·) = g1(θ
i; λi, X; θ̂, 0), which is fully determined by the distance between current stock

holding θi and the desired holding θ̂i. In particular, in this case we have θ̂i = (1−k)θ̂ − λiX

and

g1(θ
i; λi, X; θ̂, 0) =

ασ2
D

2(1−k)

[

θi − (1−k)θ̂ + λiX
]2

, i = a, b. (30)

The trading gain is symmetric between the two groups of traders, who have opposite λiX, only

when θi = (1−k)θ̂. When λ is small, the equilibrium θi is close to θ̄, and hence θi > (1−k)θ̂.

Thus, the trading gain is different for the two trader groups.

It is important to recognize that Result 1 is a general phenomenon when trading is costly.

When the traders can trade without cost, they will constantly maintain the optimal position,

and the gains from trading are always symmetric for small deviations from the optimal po-

sition. Let u(θ) denote the utility from holding θ, and θ∗ be the optimal holding. Then,

u′(θ∗) = 0. For a small deviation x = θ−θ∗ from the optimum, the gain from trading is

given by u(θ∗) − u(θ∗+x) ≃ −u′′(θ∗) x2/2, which is the same for an opposite deviation −x.

Thus, at the margin, traders with offsetting shocks or trading needs have the same gain from

trading. This is no longer the case when trading is costly. Facing a cost, traders no longer

trade constantly. They only trade when the deviation from the optimal is sufficiently large.

As Figure 2 illustrates, the trading gain is no longer symmetric for finite deviations from the

optimum since in general u(θ∗)− u(θ∗+x) 6= u(θ∗)− u(θ∗−x). Hence, the gains from trading

become different between traders with perfectly offsetting trading needs.

Θ

uHΘL

Θ
*

Θ
*
+xΘ

*
-x

uHΘ*L-uHΘ*-xL uHΘ*L-uHΘ*+xL

Figure 2: Utility gain from trading is asymmetric when trading is costly.

In our specific setting, we can go beyond simply confirming the above general result. In

particular, we can make directional predictions regarding the relative size of trading gains for
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buyers and sellers.

Result 2. When the probability of idiosyncratic shock λ is small, in equilibrium sellers always

enjoy larger gains from trading than buyers.

To understand this result, we continue our previous example with δ = 0. From (30), it

is apparent that g1(·) is higher for potential sellers (who have (λiX > 0) than buyers (who

have λiX < 0). Figure 3 illustrates the changes in the desired stock holding before and

after traders observe whether or not they receive an idiosyncratic shock (λi) and its expected

magnitude (X). The solid lines represent the desired stock holdings. A trader i starts with an

initial holding θi
t (i = a, b) before receiving any information on his idiosyncratic risk. Then,

he learns whether or not he is exposed to the idiosyncratic risk, i.e., his draw of λi. If he is

not exposed, i.e., λi = 0, he stays out of the market and keeps his initial holding.20 If instead

he is exposed, i.e., λi 6= 0, even without learning the actual sign or the magnitude of the shock

X, the trader’s preferred stock holding changes to (1−k) θ̂, given by the dashed line in Figure

3, which is lower than θi, his initial holding. It is worth pointing out that this new preferred

holding level is independent of the sign of his idiosyncratic shock, that is, whether λi = 1 or

−1. Moreover, even if the expected idiosyncratic shock is zero, X = 0, the desired holding

changes to (1−k) θ̂ and the gain from trading is not zero, as (30) shows.

6

-

θi

(1 − k) θ̂

(1 − k)θ̂ + |X|

(1 − k)θ̂ − |X|

t

λi, X

t+1/2

time

Holdings

6
?

?

6
Deviation for buyers

Deviation for sellers

Figure 3: Traders’ desired stock holdings before and after observing liquidity signals.

The desired holding for the trader has a straightforward interpretation: He chooses to

hold (1−k) times the per-capita stock supply in the market. Since k > 0, the trader prefers

an overall stock exposure that is lower than the per-capita supply even though he has the

same utility function as the rest of agents in the market. The reason is the following. The

20In this case, his preferred stock holding will actually increase. Without observing X , as stated in Theorem
1, the expected gain from participation remains negative and he will not enter the market.
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cost of participation prevents the trader from trading in the market at all times. As a result,

the trader has to bear some idiosyncratic risk, at least sometimes. This extra risk effectively

reduces the risk tolerance of the trader and lowers his desired stock exposure relative to market

makers, who face no cost and can always trade.21 The percentage reduction in the trader’s

desired position, captured by k, is proportional to the level of the remaining uncertainty in

his idiosyncratic risk exposure.

Finally, taking into account the sign and the magnitude of his non-traded risk λiX further

increases or decreases his desired stock holding to θ̂i = (1−k) θ̂−λiX. In particular, a potential

buyer, who receives a negative shock to his risk exposure, has λiX < 0 and a desired holding

of (1 − k) θ̂+|X|, while a potential seller, who receives a positive shock, has λiX > 0 and a

desired holding of (1− k) θ̂−|X|. Figure 3 shows that the desired holdings (given by the top

and bottom solid lines, respectively) deviate further from the initial position (given by the

dotted line) for a potential seller than for a potential buyer. Obviously, the gain from trading

is higher for the seller.

The main intuition behind the above result is as follows. Since traders choose their initial

holdings before they learn whether or not they will receive idiosyncratic shocks, they rationally

choose a high initial holding if they expect a low probability of ever receiving a shock. However,

once they are hit with shocks, their initial holding level becomes too high given the possibility

of bearing some un-hedged risk. Irrespective of the sign of his idiosyncratic shock, he prefers to

decrease his stock exposure. Obviously, potential sellers who have received additional positive

exposure are further away from the desired holding level than are the potential buyers. As a

result, sellers enjoy larger gains from trading.22

Intuitively, one expects that the asymmetry in gains from trading can lead to asymmetric

participation between the traders. In particular, since potential sellers always have higher

gains from trading than potential buyers in our setting, we further expect that sellers are

more likely to participate in the market than buyers.23 We verify this intuition in the next

21The result that traders become effectively more risk-averse with un-hedged idiosyncratic risks is clearly
preference dependent. Kimball (1993) shows that it is true for “standard risk aversion,” which is defined as a
class of utility function that exhibits both DARA and decreasing absolute prudence.

22In a setting similar to ours, Lo, Mamaysky, and Wang (2004) show that even in continuous time the gain
from trading is asymmetric around the optimal holding due to the fact that traders only trade infrequently.

23It is worth noting that our results are for θ̄ > 0, i.e., when the market as a whole has a positive risk
exposure. If θ̄ < 0, i.e., when the market as a whole has a short position in some aggregate risk, the results
would be reversed. That is, the liquidity need is in the form of excess buying pressure, causing prices to surge.
Since this paper is about the behavior of aggregate markets such as stocks and bonds, it is natural to assume
θ̄ > 0. In markets for security borrowing such as repo or shorting (see, for example, Duffie (1996), Duffie,
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subsection.

4.2 Non-Synchronized Trading and the Need for Liquidity

Given the individual trader’s entry policy, we now examine the participation equilibrium,

which is stated in Proposition 3. From the proposition, it is clear that in general, ωa 6= ωb.

That is, even with perfectly offsetting trading needs, the traders fail to synchronize their trades

under costly participation. Whenever the participation is asymmetric, there is a mismatch in

the buy and sell orders in the market. This order imbalance then creates the need for liquidity.

Thus, we have the following result.

Result 3. In equilibrium, participation can be asymmetric among traders even when their

trading needs are perfectly matched, giving rise to non-synchronization in their trades and the

endogenous need for liquidity.

Figure 4 shows the equilibrium participation decisions as functions of the idiosyncratic

shock X. Panel (a) reports the fraction ωi of traders within group i who choose to participate.

The dotted line plots ωa and the dashed line plots ωb. Panel (b) reports the difference in

participation ratio between the two groups of traders δ, defined in equation (14), as a function

of X. When X > 0, group-a traders are potential sellers and group-b traders are potential

buyers. Consistent with our earlier intuition, more sellers are participating than buyers as ωa

is always above ωb in this region. In particular, when X is not too far from zero, ωa > 0 and

ωb = 0, that is, no group-b traders choose to participate because the benefit from trading is

too small, and only a fraction of group-a traders participates. This corresponds to Case B in

Proposition 3. As X increases, the gains from trading increases for both groups and both ωa

and ωb increases. In particular, for medium levels of X, ωb becomes positive and ωa reaches

1. When X is sufficiently large, ωa = ωb = 1. That is, the gain from trading dominates the

cost for both groups of traders and they all choose to participate. This corresponds to Case A

in Proposition 3. When X < 0, group-a traders become potential buyers and group-b traders

become potential sellers. All the above results flip. In fact, ωb is simply the mirror image of

ωa around the vertical axis, reflecting the fact that traders a and b face opposite idiosyncratic

shocks. Interestingly, neither ωa nor ωb is symmetric around 0, consistent with the fact that a

trader’s gain from trading is asymmetric between positive and negative idiosyncratic shocks.

Gârleanu, and Pedersen (2002), and Vayanos and Weill (2007),) the opposite situation can arise, at least for
a segment of the market. This is beyond the scope of the current paper and we leave it for future research.
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Figure 4: Equilibrium Participation. The figure plots the equilibrium participation rate for the
two trader groups for different values of idiosyncratic shock X . Panel (a) reports the equilibrium
fraction of group i traders who choose to participate, where the dotted and the dashed lines refer
to group a and b traders respectively. Panel (b) reports the difference in participation decisions,
δ = λν(ωa−ωb)/[µ+λν(ωa+ωb)]. Other parameters are set at the following values: θ̄ = 1, α = 4,
r = 0.05, D̄ = 0.36, c = 0.09, σD = 0.3, σz = 0.7, σu = 0.7, µ = 1, ν = 5, and λ = 0.15.

A trader’s decision to participate in the market generates both positive and negative

externalities. On one hand, the participation of one trader group has positive externality

on the other group as they offset each other’s idiosyncratic risks. On the other hand, both

groups of traders are competing for market makers’ risk sharing capacity. Their participation

generates a negative externality on each other, especially for traders within the same group.

In general, these externalities are not efficiently internalized through the market mechanism,

and the participation equilibrium can be suboptimal. The asymmetric participation is also a

reflection of such an inefficiency given that traders’ trading needs are perfectly matched.24

The externalities from traders’ participation decisions are also the reason that the interior

solution described in Case C of Proposition 3 is rare—we do not observe it in Figure 4. More

participation of potential sellers enhances the participation gains of potential buyers. As a

result, more buyers will be lured into the market, which in turn encourages more sellers to

participate. Hence, starting with an interior participation level, increasing participation for

both groups generally improves utility for both groups of traders. An equilibrium is reached

when all sellers and enough buyers are in the market so that the gain from further entry by

buyers diminishes to zero. The interior solution in Case C is only possible when traders start

with large enough initial stock holdings and the competition for market makers’ risk sharing

capacity overwhelms their gains from offsetting each other’s idiosyncratic risks.

Panel (b) of Figure 4 shows that the normalized difference between ωa and ωb is always

24A general discussion on the welfare impact of participation costs is beyond the scope of this paper and
left for future work. See Huang and Wang (2006).
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positive when X > 0, indicating that more group-a traders are participating. Since they are

potential sellers when X > 0, the aggregate order imbalance is skewed towards sell orders.

Similarly, when X < 0, δ is always negative, indicating more group-b traders are participating.

Since group-b traders are potential sellers when X < 0, the order imbalance is again skewed

towards sell orders.25 In summary,

Result 4. When the probability of idiosyncratic shock λ is small, potential sellers always

participate more in the market than potential buyers in equilibrium. The aggregate order

imbalance always takes the form of an excess supply.

5 Liquidity and Stock Price

Our analysis above suggests that self-interest fails to coordinate agents’ participating deci-

sions and synchronize their trades even when their trading needs perfectly match. This non-

synchronization in trades gives rise to imbalances in asset demand and the need for liquidity.

Such exogenous order imbalances are the starting point for Grossman and Miller (1988) and

market microstructure models such as those in Ho and Stoll (1981) and Glosten and Milgrom

(1985). In our model, by explicitly modelling the motives and the costs of being in the market,

we endogenously derive the order imbalance. In particular, we show that, in the absence of

any aggregate shocks, the order imbalance often takes the form of an excess supply. This

directional prediction leads to interesting implications for equilibrium prices, to which we now

turn our attention.

5.1 Liquidity and Crashes

By construction, the equilibrium stock price is stationary over time at the beginning of each

generation, Pt+1 = Pt = P . And it fluctuates in-between each generation as a function of the

idiosyncratic shocks. As (15) indicates, the intermediate price consists of two components:

25In the model we solve, we have assumed that traders receiving no idiosyncratic shocks λi = 0 make their
participation decisions without observing X . The analysis above shows that the order imbalance occurs for
relatively large values of X (but not extremely large). Moreover, this situation occurs when some potential
buyers choose to stay out of the market as the participation cost dominates gains from trading. From Proposi-
tion 2, we also see that for large X , gains from trading is higher for traders with idiosyncratic shocks (λi 6= 0)
than for those without (λi = 0). From this, we conclude that even if traders with λi = 0 also observe X at
the time of their participation decision, they won’t participate for those states with large order imbalances.
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the risk-adjusted fundamental value, R−1
(

D̄ + P − ασ2
D

θ̂
)

, and the liquidity component,

p̃ ≡ −(ασ2
D
/R) δZ. (31)

We call the first term “the fundamental value” since it determines the stock price when the

expected future idiosyncratic risk (signal X) is zero. It is simply equal to the expected future

payoffs (dividend plus resale price) minus a risk premium. The liquidity component p̃, on the

other hand, captures the premium related to market illiquidity. It is non-zero only when agents

anticipate future idiosyncratic shocks since the symmetry between trader groups implies that

δ = 0 when X = 0. Moreover, it is proportional to the per-capita order imbalance, driven

by the asymmetric participation between buyers and sellers. Since our purpose here is to

understand the endogenous nature of order imbalances and its impact on asset prices, we will

focus our discussion on the liquidity component.

To understand the properties of the liquidity component p̃, we first solve the stationary

equilibrium described in Theorem 1. Then we derive the equilibrium prices at time t + 1/2 by

substituting in the stationary equilibrium price and optimal θi
t and θm

t . The p̃ in (31) depends

on the difference in market participation rate δ, which is determined after observing the signal

X, and the realized idiosyncratic shock Z, which is equal to the signal X plus some noise,

Z−X ∼ N (0, σ2
ẑ). The noise term makes the liquidity component more dispersed without

qualitatively changing the liquidity effect. In Figure 5, we average out the noise term and

report the expected liquidity component conditional on the signal X,

p̂ = E[ p̃ |X ] = −(ασ2
D
/R) δX. (32)

We plot p̂ as a function of X in panel (a), and plot its probability distribution in panel (b).

When traders face no participation costs, they all participate in the market and δ = 0.

There is no need for liquidity. By (31), the liquidity component p̃=0. The stock price equals

the fundamental value and does not depend on the idiosyncratic shocks individual traders

face. In the presence of participation costs, partial participation leads to non-synchronized

trades among traders, and δ 6= 0. There is a need for liquidity. The stock price has to adjust to

attract the market makers to provide the liquidity and to accommodate the trades. In general,

p̂ 6= 0 and the stock price becomes dependent on the idiosyncratic shocks of individual traders.

As Result 4 states, potential sellers are more willing to enter the market to sell the stock.

Thus, the order imbalance, as captured by −δX, is negative, which leads to a negative p̂. It

is important to note that the sign of p̂ is independent of the sign of X. In other words, it does
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Figure 5: The conditional liquidity component in price p̂. We define p̂ in (32) to capture the
expected price movement in excess of the “fundamentals.” Panel (a) plots p̂ as a function of the
signal X . Panel (b) plots the probability density function of p̂, except at the point 0 where the value
corresponds to the total probability mass at the point (since the density function should be infinity
at the point). Other parameters are set at the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36,
c = 0.09, σD = 0.3, σz = 0.7, σu = 0.7, µ = 1, ν = 5, and λ = 0.15.

not depend on the distribution of idiosyncratic shocks among the traders. Therefore, we have

the following result:

Result 5. The impact of liquidity needs always decreases asset prices.

The magnitude of the liquidity effect on price depends on the signal X. Figure 5(a)

plots p̂ against X. First, we note that the liquidity effect on the price is always negative, as

mentioned before. Second, the impact of liquidity on the stock price is highly non-linear in

X, the idiosyncratic shocks to the traders. In particular, for small values of X, gains from

trading are small for all traders and they do not enter the market. As a result, there is no

need for liquidity and the price is equal to the fundamental value. For large values of X, gains

from trading are sufficiently large for all traders and they all enter the market. As a result,

their traders are synchronized and there is no need for liquidity. The stock price also equals

the fundamental. For intermediate ranges of X, the gains from trading are large enough for

some traders to enter the market, but not for all traders to do so. It is in this case that trades

are non-synchronized and liquidity is needed in the market, which will in turn affect the stock

price. As Figure 5 shows, the price impact of liquidity reaches the maximum for a certain

magnitude of the idiosyncratic shock.

The result that the price impact of liquidity need is one-sided and highly non-linear arises

from the fact that liquidity needs are endogenous in our model. In most of the existing mod-

els of liquidity, such as that in Grossman and Miller (1988), liquidity needs are exogenously

specified; consequently, its price impact is linear in the exogenous liquidity needs and sym-
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metrically distributed. Our analysis shows that modelling the liquidity needs endogenously

is important for understanding the impact of liquidity on prices. After all, it is the same

economic factor, namely, the cost to participate in the market, that drives both the liquidity

needs of the traders and the liquidity provision of market makers.

The non-linearity in the price impact of liquidity leads to another interesting result: large

and frequent price movements in the absence of any aggregate shocks. Figure 5(b) plots the

probability distribution of p̂. As a benchmark, when participation is costless, the idiosyncratic

shock X does not affect stock prices and there is no liquidity effect. The distribution is simply

a delta-function at zero. When traders face costs to participate in the market, however, the

stock price also depends on the idiosyncratic shock X. Moreover, even though the underlying

idiosyncratic shocks that drive the individual traders’ trading needs are normally distributed,

their price impact as measured by p̂ is always negative and has a fat-tailed distribution. Aside

from a non-zero probability mass at the origin, the distribution peaks at a finite and negative

value, reflecting the fact that liquidity becomes important and affects the price for a range of

finite shocks. Moreover, the impact of liquidity gives rise to the possibility of a large price

movement in the absence of any shocks to the fundamentals of the stock. Since such a price

movement is associated with a large imbalance in trades and a surge of liquidity needs, it is

a market crash driven purely by liquidity needs. We call it a “liquidity crash.” Summarizing

the results above, we have the following:

Result 6. The impact of liquidity can lead to “liquidity crashes” in which large price drops

occur in the absence of any shocks to the fundamentals.

5.2 Price Distribution

The above discussion focuses on p̂, which gives the expected impact of liquidity need on the

stock price conditional on X, the signal on future idiosyncratic shocks. The actual price

at t + 1/2, as given in (31), will depend on Z, the actual realization of idiosyncratic shock.

Although the behavior of p̃ is qualitatively similar to that of p̂, its distribution is slightly

different from that of p̂ due to the additional noise in the realized idiosyncratic shock. Figure

6 plots the unconditional distribution of p̃.

From the figure, we observe that the distribution exhibits negative skewness and fat tails.

To confirm this observation, we report in Table 1 the moments of the liquidity component p̃

(for the same parameters,) along with the values of p̃ at the 1st and 5th percentiles. We can

interpret these values as the “Value-at-Risk” (VaR) for a portfolio invested only in the stock.
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Figure 6: The unconditional liquidity component in price p̃. We define p̃ in (31) to capture the price
movement in excess of the “fundamentals,” and plot the probability density function of p̃. Other
parameters are set at the following values: θ̄ = 1, α = 4, r = 0.05, D̄ = .36, c = 0.09, σD = 0.3,
σz = 0.7, σu = 0.7, µ = 1, ν = 5, and λ = 0.15.

Table 1: Characteristics of the liquidity component p̃ in the stock price.

Mean St. dev. Skewness Kurtosis VaR (5%) VaR (1%)

-0.024 0.047 -1.033 5.078 -0.119 -0.173

Note that in the absence of liquidity effect, the return distribution will simply be a delta

function at zero. If we were to include any news on the fundamentals (i.e., future dividends)

that is normally distributed, the return would be normal. Hence, we have the following result.

Result 7. The impact of liquidity can significantly increase the downside risk and lead to

negative skewness and fat tails in asset prices.

5.3 Cross-Sectional Implications

The effect of liquidity depends on two factors, investors’ trading needs, which is captured by

σz, and the cost of participation c. Both of these factors can vary substantially across markets,

so does the resulting market liquidity. Since the impact of σz is straightforward—it increases

the influence of liquidity on prices, we now consider the impact of the cost c.

Figure 7(a) plots the first three central moments—the mean, standard deviation and

skewness—of price impact of liquidity p̃ for different values of c. When the cost is close

to zero, everyone participates and there is no liquidity effect. As the cost increases, the liquid-

ity effect becomes more pronounced, as reflected by the larger moments of p̃. The fact that

the mean and skewness are always negative reflects the one-sided nature of endogenous order

imbalances. However, when the cost is sufficiently high, the dotted line in Panel (a) indicates

that the average liquidity effect goes to zero.
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Figure 7: Participation cost and liquidity. Panel (a) plots the first three central moments of the
liquidity component p̃, which is defined in (31) and captures the price movement in excess of the
“fundamentals.” Panel (b) plots the 1st- and 5th-percentile values of p̃, which correspond to the
“Value-at-Risk” for a portfolio invested only in stocks. Panel (c) plots the average volume (the dotted
line) along with the 1st- and 5th-percentile volumes. Other parameters are set at the following values:
θ̄ = 1, α = 4, r = 0.05, D̄ = 0.36, σD = 0.3, σz = 0.7, σu = 0.7, µ = 1, ν = 5, and λ = 0.15.

However, it would be misleading to declare the high-cost market liquid based only on the

average liquidity effect. In fact, such a market is very illiquid in the sense that most of the

time they are too costly for any traders to participate. Liquidity events, although rare, may

still occur and when they do, the magnitudes are large. In Figure 7(b) and (c), we show how

p̃ and the trading volume, which is defined as

V ≡ µ |δZ| + λ ν
∑

i=a,b

ωi|δZ−λiZ|, (33)

change with c. The dotted lines in Panels (b) and (c) plot the average price impact of

liquidity and volume for different values of c. Clearly, as c increases, trading volume decreases

monotonically. When c reaches 0.4, the average price impact of liquidity becomes very small.

However, such a market is far from being liquid. In fact, the volume is negligible, despite large

trading needs from idiosyncratic shocks (σz stays at 0.7). Moreover, large liquidity events can

still occur. The solid lines in Panels (b) and (c) indicate that at c greater than 0.4, with 1%

chance, liquidity events can move the price drastically, accompanied by heavy trading volume.

Our analysis shows that in markets with relatively small participation costs, expected price

impact provides a good measure of market liquidity. In markets with larger participation costs,

however, expected price impact alone may provide a misleading signal of market liquidity.

Therefore, we have the following result.

Result 8. Higher-order moments of the price, Value-at-Risk measures, and trading volumes

provide valuable information for market liquidity.
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6 Conclusion

In this paper, we show that frictions such as participation costs can induce non-synchronization

in agents’ trades even when their trading needs are perfectly matched. Each trader, when

arriving at the market, faces only a partial demand/supply of the asset. The mismatch in the

timing and the size of trades creates temporary order imbalances and the need for liquidity,

causing asset prices to deviate from the fundamentals. Purely idiosyncratic shocks can affect

prices, introducing additional price volatility. Moreover, the price deviations tend to be highly

skewed and of large sizes. In particular, the shortage of liquidity always causes the price to

decrease and when this happens, the price tends to drop significantly, resembling a crash due

to a sudden surge in liquidity needs.

A few additional comments are in order. First, our analysis takes as given the population

weight of market makers, which determines the amount of liquidity they can provide and

thus the equilibrium impact of liquidity needs. As shown in Huang and Wang (2006), the

population weight of market makers can be endogenized. In particular, they assume that all

agents can either pay a low cost ex-ante to become a market maker or a high cost ex-post

when trading needs arise. They show that typically only a small fraction of agents will choose

to become market makes. In light of their analysis, we can interpret the relative population

weight of market makers and traders as an equilibrium outcome. Second, in our model the

idiosyncratic shocks are transitory. Thus, when a liquidity crash occurs, the stock price tanks

but eventually recovers. The possibility of such a price pattern might seem puzzling since it

seems to leave profitable opportunities. However, this is not so given the costs. With a small

probability for such an event to happen, it is profitable for only a small number of market

makers to enter the market ex-ante even if the cost for becoming a market maker is rather

small. For others, the significant cost to jump in on the spot prevents them from taking

advantage of the opportunities. Finally, in our setting, the cost to jump into the market on

the spot does impose an upper bound on the potential impact of liquidity on prices. But, this

is true only in the absence of aggregate shocks as we assumed in the model. In the presence

of aggregate shocks, the potential impact of endogenous liquidity needs on prices becomes

unbounded.
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A Appendix

Proof of Proposition 1

Given Pt+1, participating agent i maximizes his expected utility over his terminal wealth W i
t+1

given in (8), which is obtained by integrating over the distribution of Dt+1 given θi
t+1/2

:

max
θi

t+1/2

−e
−α

[

R2Wt−R ci+R θi
t(Pt+1/2−RPt)+θi

t+1/2
(D̄+Pt+1−RPt+1/2)−

1
2
ασ2

D
(θi

t+1/2
+λiZ)2

]

. (A1)

His optimal holding is calculated by solving the first order condition with respect to θi
t+1/2

,

θi
t+1/2

=
1

ασ2
D

(D̄ + Pt+1 − RPt+1/2) − λiZ, i = a, b, m. (A2)

Solving the market clearing condition (10) yields the equilibrium price Pt+1/2. Using δ and θ̂

defined in (14) yields the expression of Pt+1/2 in the proposition. The optimal holding in the

proposition is obtained by substituting the equilibrium price Pt+1/2 back into (A2).

Proof of Proposition 2

First, we substitute the equilibrium price Pt+1/2 and holding θi
t+1/2

back into (A1), and integrate

over the distribution of Z conditional on X to derive the (indirect) utility function JP in (17a)

for the participating traders,

JP (·) = − 1
√

1−k+k (1−λiδ)2
e
−α

[

R2Wt−R ci+θi
t(D̄+Pt+1−R2Pt)−

ασ
2
D

2(1−k)
(θi

t
+λiX)2+g1(·)

]

(A3)

where g1(·) and k are defined in (20) and (21). Next, we calculate the value function for

non-participating traders JNP in (17b) by integrating over Dt+1 and Z conditional on X,

JNP (·) = − 1√
1 − k

e
−α

[

R2Wt+θi
t(D̄+Pt+1−R2Pt)−

ασ
2
D

2(1−k)
(θi

t
+λiX)2

]

. (A4)

Finally, we substitute JP and JNP into (18) to derive the gains from participation. Obviously,

trader i chooses to participate in the market if and only if g(·) > 0.

Proof of Proposition 3

We first introduce two lemmas.

Lemma 1. When traders’ initial stock holdings satisfy (23), the gain from participation

ga(ωa, ωb) for group-a traders decreases with ωa and increases with ωb, while the opposite

is true for group-b traders’ gain gb(ωa, ωb).

33



Here is the proof of Lemma 1. Given the definition of g(·) in (19), we compute its partial

derivative with respect to ωa and ωb. Define δi ≡ λiδ and di ≡ 1−k+k(1−δi)2. Following

(22), let gi ≡ g(θi
t; λ

i, X; θ̂, δ). Then,

∂gi

∂ωj
=

(

∂g1

∂δi
+

∂g2

∂δi

)

∂δi

∂ωj
+

∂g1

∂θ̂

∂θ̂

∂ωj
, j = a, b

where

∂g1

∂δi
= −ασ2

D
(1−k δi)

(di)2

[

k δiθi
t+k (1−δi)θ̂+λiX

]

(

θi
t −

1−k

1−k δi
θ̂ +

1−δi

1−k δi
λiX

)

∂g2

∂δi
= −(1−δi) k

αdi

∂δi

∂ωj
= λi (λj − δ)λ̂, λ̂ ≡ λν

µ + λν(ωa + ωb)

∂g1

∂θ̂
= −ασ2

D
(1−k δi)

di

(

θi
t −

1−k

1−k δi
θ̂ +

1−δi

1−k δi
λiX

)

∂θ̂

∂ωj
= λ̂ (θi

t − θ̂).

We can further simplify the expression for ∂gi/∂ωj by considering the cases of j = i and j 6= i

separately. In particular, if j = i, then λiλj = 1 and

∂gi

∂ωi
= −ασ2

D
λ̂ (1−δi)2

(di)2

[

λiX + k θ̂ +
1−k δi

1−δi
(θi

t − θ̂)

]2

− kλ̂ (1−δi)2

αdi
.

From (14), δ increases in ωa and decreases in ωb. Hence, δ ∈ [−δ̄, δ̄], where δ̄ = λν
µ+λν

< 1, and

so is δi. As a result, ∂gi/∂ωi < 0. If j 6= i, then λiλj = −1 and

∂gi

∂ωj
=

ασ2
D
λ̂ (1−δ2)

(di)2

[

λiX + k θ̂ +
(1+k) δi − 2k δ2

1−δ2
(θi

t − θ̂)

]2

+
ασ2

D
λ̂

1−δ2

[

k (1−δ2)2

α2σ2
D
di

− (θi
t − θ̂)2

]

.

Since δ2 ∈ [0, δ̄2], (1 − δi)2 ∈ [0, 1 + δ̄2], and k = α2σ2
D
σ2

ẑ ∈ [0, 1], we have

k (1−δ2)2

α2σ2
D
di

≥ σ2
ẑ (1−δ̄2)2

1 − k + k (1+δ̄)2
> σ2

ẑ (1−δ̄)2.

On the other hand, θ̂ in (14) is a weighted average of θi
t and θm

t with weights in-between 0

and 1. We have

(θi
t − θ̂)2 ≤ (θi

t − θm
t )2 <

(

µ σẑ

µ + λν

)2

= σ2
ẑ(1−δ̄)2
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where the second inequality is due to condition (23). Thus, ∂gi/∂ωj > 0 for j 6= i, proving

the lemma.

Lemma 2. When traders’ initial stock holdings satisfy (23), under symmetric participation,

sellers always enjoy larger gains from trading than buyers, i.e., ga(ω, ω) ≥ gb(ω, ω) ∀ ω ∈ [0, 1].

Here is the proof of Lemma 2. When ωa = ωb, δ = 0 and g(·) in (19) reduces to

g(θi
t; λ

i, X; θ̂, 0) =
ασ2

D

2(1−k)

[

θi
t − (1−k) θ̂ + λiX

]2

− 1

2α
ln(1−k) − Rci.

Hence,

ga(ωa, ωb) − gb(ωa, ωb) =
ασ2

D

1−k

[

θi
t−(1−k) θ̂

]

(λa − λb)X.

If group-a traders are sellers and group-b are buyers, then λaX ≥ 0 ≥ λbX. Since θ̂ is weighted

average of θi
t and θm

t , θi
t − (1−k) θ̂ ≥ θi

t − (1−k) θm
t > 0, where the last inequality comes from

(23). Hence, ga(ωa, ωb) ≥ gb(ωa, ωb) when ωa = ωb, which is the lemma.

Now we prove Proposition 3. First, from Lemma 1, we know that ga(ωa, 0) is a monotoni-

cally decreasing function of ωa. If ga(0, 0) > 0 > ga(1, 0), then there exists an sa ∈ (0, 1) that

solves ga(sa, 0) = 0. Similarly, gb(1, ωb) is monotonically decreasing in ωb and gb(1, 0) > 0 >

gb(1, 1) guarantees that the solution sb ∈ (0, 1). Hence, ŝa, ŝb ∈ [0, 1].

We now consider the three possible cases, which are exhaustive. In case A, there are three

subcases depending on the value of ŝb: First, if ŝb = 0, then gb(1, 0) ≤ 0 ≤ ga(1, 0). The

market condition ωa = 1 and ωb = 0 is the most favorable for buyers and the least favorable

for sellers. Yet the gain from participation is still positive for potential sellers and negative for

potential buyers. Hence, ωa = 1 and ωb = 0 is the solution. Second, if ŝb = 1, then gb(1, 1) ≥ 0

and Lemma 2 implies ga(1, 1) ≥ 0 as well. Hence, all traders participate and ωa = ωb = 1.

And third, if ŝb = sb ∈ (0, 1), then gb(1, ŝb) = 0. The condition ga(1, ŝb) ≥ 0 confirms

that sellers enjoy positive gains in this case. Hence, at equilibrium participation ωa = 1 and

ωb = ŝb, trader a enjoys positive gain and trader b is indifferent between participating or not.

In case B, there are only two subcases depending on the value of ŝa. Note that ŝa = 1 is not

feasible under the condition ga(1, ŝb) < 0, since ga(1, 0) ≤ ga(1, ŝb) < 0 according to Lemma 1,

while ŝa = 1 requires ga(1, 0) ≥ 0. The first subcase is when ŝa = 0. Then ga(0, 0) ≤ 0. Since

gb(0, 0) < ga(0, 0) by Lemma 2, ωa = ωb = 0 is the only solution. The second subcase is when

ŝa = sa ∈ (0, 1) and solves ga(ŝa, 0) = 0. At ŝa, trader a is indifferent between participating

or not. The condition gb(ŝa, 0) ≤ 0 confirms that trader b does not want to participate when

ωa = ŝa. Hence, ωa = ŝa and ωb = 0 in equilibrium.
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In case C, the condition is that ga(1, ŝb) < 0 < gb(ŝa, 0). Similar to case B, the condition

ga(1, ŝb) < 0 still rules out the possibility that ŝa = 1. In addition, gb(ŝa, 0) > 0 rules out the

possibility that ŝb = 0, since 0 < gb(ŝa, 0) < gb(1, 0) by Lemma 1. Similarly, we can rule out

ŝa = 0 and ŝb = 1. Hence, the condition in case C reduces to ga(1, sb) < 0 < gb(sa, 0). Note

that ga(sa, 0) = 0 and gb(sa, 0) > 0 implies that in equilibrium, ωb > 0. To prove this, assume

by contradiction that ωb = 0. Then at the optimal ωa = sa, trader a is indifferent while trader

b can gain from participating. Thus ωb = 0 cannot be the equilibrium. Similarly, ga(1, sb) < 0

and gb(1, sb) = 0 implies ωa < 1 in equilibrium. Lemma 2 guarantees that both ωa and

ωb are interior solutions. Both traders need to be indifferent between participating or not,

i.e., ga(ωa, ωb) = 0 and gb(ωa, ωb) = 0. The monotonicity of ga and gb functions ensures the

existence of a solution in this case. Finally, to prove that ωa ≥ ωb, we assume by contradiction

that ωa < ωb. Then 0 = ga(ωa, ωb) > ga(ωa, ωa) > gb(ωa, ωa) > gb(ωa, ωb) = 0, yielding a

contradiction. Note that the first inequality is because ga(ωa, ωb) increases in ωb, and the last

is because gb(ωa, ωb) decreases in ωb. The middle inequality is because of Lemma 2.

Proof of Proposition 4

We first calculate the value function for traders with λi = 0. Conditional on the signal X, the

utility if they choose to participate is:

JP (λi = 0) = − 1√
1+k δ2

e
−α

[

R2Wt−R ci+θi
t(D̄+Pt+1−R2Pt)− 1

2
ασ2

D
θi
t

2
+ 1

2

ασ
2
D

1+k δ2
(θi

t
−θ̂−δX)2

]

. (A6)

If they choose not to participate, the utility is

JNP (λi = 0) = −e−α[R2Wt+θi
t(D̄+Pt+1−R2Pt)− 1

2
ασ2

D
θi
t

2]. (A7)

By substituting in the participation and market equilibrium from Propositions 1 and 3, and

integrating over X, we can derive the unconditional value function JL and JNL in (24) and (25).

Hence, the ex-ante value function J i(·) in (26) is well defined for all traders. Moreover, the

utility conditional on X for the market maker is the same as JP (λi = 0) except for his initial

holding θm
t and cost cm = 0:

Jm
P

(X) = − 1√
1 + k δ2

e
−α

[

R2Wt+θm
t (D̄+Pt+1−R2Pt)− 1

2
ασ2

D
θm
t

2+
ασ

2
D

2(1+kδ2)
(θm

t
−θ̂−δX)2

]

. (A8)

Integrating over X then yields the ex-ante utility Jm(·) = E[Jm
P

(X)].

With market clearing condition (9), stationarity condition (11), and three first order con-

ditions in (29), we have five equations in total and five unknowns, i.e., {θa
t , θ

b
t , θ

m
t , Pt, Pt+1}.

36



A solution to the system gives a full equilibrium of the economy.

Proof of Theorem 1

When traders face no idiosyncratic shocks, i.e., λ = 0, it is easy to show that traders never

participate whenever ci > 0, that is, ωi = 0 ∀ i = a, b. The equilibrium prices are deter-

mined by market makers as representative agents, and are identical to those derived in (13).

Equilibrium holdings of the stock for all agents are always equal to the per capita supply θ̄.

Proposition 4 describes conditions for an equilibrium. The ex-ante symmetry between

the two groups of traders implies that Ja = J b and θa
t = θb

t . For simplicity, we use index i

to denote traders a or b. Substituting in the stationarity condition (Pt+1 = Pt) directly, we

are left with three variables to solve for the equilibrium {Pt, θ
i
t, θ

m
t } from three equilibrium

conditions: two first order conditions (29) for agents i and m, respectively, and one market

clearing condition (9).

For small λ, we expand the solution to equilibrium in λ to the first order:

Pt = P̄ + Pλλ + o(λ) (A9a)

θi
t = θ̄ + θi

λλ + o(λ) (A9b)

θm
t = θ̄ + θm

λ λ + o(λ) (A9c)

where P̄ is defined in (13) and o(λ) denotes terms of higher order of λ. We then solve the

equilibrium up to the first order of λ.

Given (A9), we first solve δ and θ̂ to the first order of λ. Note that both µ σẑ/(µ + λν)

and k θm in condition (23) are of order O(1) while θi
t − θm

t = λ(θi
λ − θm

λ ) are of order O(λ),

where O(·) denotes terms of the same order. Condition (23) is satisfied when λ is small (i.e.,

to the first order of λ) and Proposition 3 holds. In particular, the trading gain in (19) can be

simplified to

gi(·) = − 1

2α
ln(1 − k) +

ασ2
D

2(1−k)
(kθ̄ + λiX)2 + O(λ)

Thus, trader i participates iff gi(·) > 0, which occurs iff X > X i
+ or X < X i

−, where

X i
± = −λi k θ̄ ± h + O(λ)

and

h ≡
{

1
ασD

√

(1 − k)[2αciR + ln(1 − k)], if 2αciR + ln(1−k) ≥ 0

0, if 2αciR + ln(1−k) ≥ 0
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Since δ and θ̂ depends on ωi only through term λωi, we can ignore all O(λ) terms for the

calculation of ωi. The equilibrium participation in Proposition 3 can be simplified to










































ωa = ωb = 1, δ = 0, if X ≤ −k θ̄ − h

ωa = 0, ωb = 1, δ = −δ̄, if −k θ̄ − h < X ≤ −|k θ̄ − h|
ωa = ωb = 1, δ = 0, if −|k θ̄ − h| < X ≤ |k θ̄ − h| and k θ̄ > h

ωa = ωb = 0, δ = 0, if −|k θ̄ − h| < X ≤ |k θ̄ − h| and k θ̄ < h

ωa = 1, ωb = 0, δ = δ̄, if |k θ̄ − h| < X < k θ̄ + h

ωa = ωb = 1, δ = 0, if X ≥ k θ̄ + h.

(A10)

Since δ̄ is of order O(λ), so is δ. The following equation linearizes δ and θ̂:

δ(θi
t, θ

m
t , X) = δλ(X)λ (A11a)

θ̂(θi
t, θ

m
t , X) = θ̄ +

µθm
λ + λ ν(ωa+ωb)θi

λ

µ + λ ν(ωa+ωb)
λ + o(λ) = θ̄ + θm

λ λ + o(λ). (A11b)

Using (A9) and (A11) and the definition of P̄ in (13), the first order condition for market

makers can be written as

0 =
∂Jm

∂θm
t

= E

[

−αJm
P

(X)

(

D̄ + Pt+1 − R2Pt − ασ2
D
θm

t − ασ2
D

1 + kδ2
(θ̂ − θm

t + δX)

)]

= E
[

−αJ0 eαrθ̄Pλ λ+o(λ)
[

− (rPλ + ασ2
D
θm

λ + ασ2
D
δλX)λ + o(λ)

]

]

= E
[

αJ0

(

rPλ + ασ2
D
θm

λ + ασ2
D
δλX

)]

λ + o(λ)

where Jm
P

(X) is defined in (A8), and J0 ≡ −e−α (R2Wt+
1
2
ασ2

D
θ̄2). Or equivalently,

rPλ + ασ2
D

θm
λ + c1 = 0 (A12)

where

c1 ≡
ν

µ
ασ2

D
σx

√

2

π

(

e−h2
1 − e−h2

2

)

, h1 ≡
k θ̄ − h√

2 σx

, h2 ≡
k θ̄ + h√

2 σx

and σ2
x = σ4

z

σ2
z+σ2

u

. Since h1 ≤ h2, we know that c1 ≥ 0.

We now consider the first order condition for trader i. First, we verify that traders with

λi = 0 never participates. Combining (A6) and (A7), the gain from participation for these

traders becomes:

gNL(θi
t; θ) = − 1

α
ln

E[JP (λi = 0)]

JNP (λi = 0)
= − 1

α
lnE





e
− 1

2

α
2

σ
2
D

1+kδ2
(θi

t
−θ̂−δX)2

√
1 + kδ2



 − R ci (A13)
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where E[·] is taken with respect to X. Given (A9) and (A11) and the fact that θi
t − θ̂ and δ

are both of the order O(λ), we have

gNL(θi
t; θ) = O(λ) − Rci

which is negative as long as ci is finite and λ is small enough. Thus, JNL = E[JNP (λi = 0)].

When λi 6= 0, a trader’s first order condition can be written as

0 = λ
∂JL

∂θi
t

+ (1 − λ)
∂JNL

∂θi
t

= λ
∂E[JNP ]

∂θi
t

+ λ
∂E[1{g(·)>0} (JP − JNP )]

∂θi
t

+ (1 − λ)
∂JNL

∂θi
t

(A14)

where JNL = E[JNP (λi = 0)] is given in (A7), JP and JNP are defined in (A3) and (A4), and

g(·) is the trading gain in (19).

λ
∂E[JNP ]

∂θi
t

= λ
α

(

D̄ + Pt+1 − R2Pt − ασ2
D

θi
t

1−k̄

)

√

1−k̄
e
−α

[

R2Wt+θi
t(D̄+Pt+1−R2Pt)− 1

2

ασ
2
D

1−k̄
θi
t

2
]

= λ J0 α c2 + o(λ), c2 ≡
k̄ ασ2

D
θ̄

(1 − k̄)3/2
e

1
2

k̄

1−k̄
α2σ2

D
θ̄2

where k̄ = α2σ2
D
σ2

z captures the total uncertainty in idiosyncratic shocks. Since JP = JNP

when g(·) = 0, for the second term in (A14), we have

λ
∂E[1{g(·)>0} (JP − JNP )]

∂θi
t

= λ E

[

1{g(·)>0}
∂(JP − JNP )

∂θi
t

]

= E

[

−1{g(·)>0} J0
α2σ2

D
(k θ̄ + X)

(1 − k)3/2
e

α
2

σ
2
D

2(1−k)
(k θ̄2+2θ̄X+X2)

λ + o(λ)

]

= −J0 α c2c3 λ + o(λ)

where

c3 ≡
√

1 − k̄

2π(1 − k)

σx

k̄ θ̄

(

e−h2
3 − e−h2

4

)

− 1

2
(Erf(h3) + Erf(h4) − 2)

h3 ≡
h(1 − k̄) − k̄(1 − k)θ̄
√

2(1−k)(1−k̄) σx

, h4 ≡
h(1 − k̄) + k̄(1 − k)θ̄
√

2(1−k)(1−k̄) σx

.

Note that ∂c3
∂h

= − h√
2π k̄ σx θ̄

(

1−k̄
1−k

)3/2

(e−h2
3 −e−h2

4) ≤ 0 (since h3 ≤ h4.) Since h ≥ 0, and c3 = 1
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when h = 0, we have c3 ≤ 1. For the third term in (A14), we have

(1−λ)
∂JNL

∂θi
t

= (1−λ) α
(

D̄+Pt+1−R2Pt−ασ2
D
θi

t

)

e−α[R2Wt+θi
t(D̄+Pt+1−R2Pt)− 1

2
ασ2

D
θi
t

2]

= J0 α(rPλ + ασ2
D

θi
λ) λ + o(λ).

Hence, to the first order of λ, the first order condition for trader i reduces to

rPλ + ασ2
D

θi
λ + c2(1 − c3) = 0. (A15)

Finally, the market clearing condition (9) is reduces to

µ θm
λ + 2ν θi

λ = 0. (A16)

Solving system (A12), (A15), and (A16), we derive the linear stationary equilibrium

Pλ = −µ C1 + 2 ν c2(1 − c3)

r (µ + 2ν)
(A17a)

θi
λ =

µ [c1 − c2(1 − c3)]

ασ2
D

(µ + 2ν)
(A17b)

θm
λ = −2 ν [c1 − c2(1 − c3)]

ασ2
D

(µ + 2ν)
(A17c)

Since c1 ≥ 0, c2 ≥ 0, and c3 ≤ 1, Pλ is always negative.
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