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1 Introduction

Liquidity is of critical importance to the stability and the efficiency of financial markets. The lack of

it has often been blamed for exacerbating market crises such as the 1987 stock market crash, the 1998

near collapse of the hedge fund Long Term Capital Management (LTCM) and the current upheaval

in the credit market.1 Yet there is much less consensus about exactly what market liquidity is, what

determines it, and how it affects asset prices and welfare. Views become even more divergent when it

comes to appropriate policies with respect to liquidity, such as lowering barriers of entry in securities

trading, setting margin and capital requirements for broker-dealers, coordinating market participants

and supplying liquidity during crises. The ongoing debate on the interventions by the central banks

and the U.S. Treasury to inject liquidity into the market during the current credit market crisis is

an excellent case in point. The purpose of this paper is to present a simple theoretical framework to

facilitate the discussions on these issues.

We start with the observation that the lack of full participation in a market is at the heart of

illiquidity. Imagine a situation in which all potential buyers and sellers are constantly present in the

market and can trade without constraints and frictions, i.e., fully participate. Then all agents face

the full demand/supply at all times and security prices will depend only on the fundamentals such

as payoffs and preferences. To the extent that illiquidity reflects forces beyond these fundamentals,

a market with full participation can be considered as perfectly liquid. Thus, illiquidity only arises

when frictions prevent full participation of all agents.

To capture this notion of illiquidity in a simple way, we assume that agents face participation

costs that prevent them from constant, active and unfettered participation in the market. We then

develop an equilibrium model of both liquidity demand and supply in the presence of such costs.

The endogenous demand for liquidity arises when participation costs prevent potential buyers and

sellers with matching trading needs from coordinating their trades. The same costs also hinder

the supply of liquidity. As a result, purely idiosyncratic shocks can cause infrequent but large

deviations in prices from the fundamentals. Moreover, we show that in general, market forces fail

to achieve efficient supply of liquidity. However, different policy interventions can lead to divergent

consequences. For example, direct injection of liquidity when it is in shortage can actually reduce

welfare, while coordinated supply of liquidity by market participants can improve welfare. We also

show that different costs of market presence give rise to distinctively different market structures

and price/volume behavior, and the welfare consequences of the same policy interventions heavily

1See the report by the Presidential Task Force on Market Mechanisms (Brady and et al. (1988)), the review by
the Committee on the Global Financial System (CGFS (1999)), and the report by the International Monetary Fund
(GFSR (2008)) for events in 1987, 1998, and 2007, respectively.
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depends on the structure of the market.

To model the need for and the provision of liquidity in a unified framework, we start with

an economy in which agents face both idiosyncratic and aggregate risks. It is the desire to share

the idiosyncratic risks that gives rise to their need to trade in the asset market. By definition,

idiosyncratic risks sum to zero across all agents. Thus, underlying trading needs are always perfectly

matched among agents.

When market presence is costless, all agents will stay in the market at all times. The market price

adjusts to coordinate all buyers and sellers. In particular, buy and sell orders, driven by idiosyncratic

risks, are always in balance. In this case, asset prices are fully determined by the fundamentals, in

particular the level of aggregate risk, and are independent of agents’ idiosyncratic trading needs.

When market presence is costly, however, not all agents are in the market at all times. An agent

can incur an ex ante cost to be a market maker and then trades constantly, or pay a spot cost to trade

after observing their trading needs. Such a cost structure is motivated by the market structure we

observe: a subset of agents—such as dealers, trading desks, and hedge funds—maintain a constant

market presence and act as market makers, while most agents—such as the majority of individual

and institutional investors, whom we refer to as traders—only enter the market when they need to

trade. By the cost of market presence we intend to capture not only the costs of being in the market,

but also any costs associated with raising needed capital or adjusting existing positions, in other

words, any costs or hurdles that prevent the free flow of capital in the market.

As they trade only infrequently, traders are forced to bear certain idiosyncratic risk. This extra

risk makes them less risk tolerant and less willing to hold their share of the aggregate risk. For

traders receiving an additional idiosyncratic risk in the same direction as the aggregate risk, they

are farther away from their desired position and thus are more eager to trade. Consequently, more

of them will enter the market than those with the opposite idiosyncratic risk (which partially offsets

their exposure to the aggregate risk). Thus, despite perfectly matching trading needs, traders fail to

coordinate their trades, leading to order imbalances.

The endogenous order imbalances exhibit several distinctive properties. First, it is always in the

same direction as the impact of the aggregate risk on asset demand, as traders with higher than

average risk are more likely to enter the market. Second, order imbalances are always of significant

magnitudes when they occur. This is simply because for small idiosyncratic shocks, gains from

trading are small and all traders choose to stay out of the market. It is only with sufficiently large

idiosyncratic shocks that gains from trading exceed participation costs for some traders, leading to

the mismatch in their trades. The resulting order imbalance will also be large. Third, the magnitude

of possible order imbalances depends on the level of the aggregate risk, which affects the asymmetry
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in trading gains between different traders.

By endogenizing the order imbalance, we are able to characterize the impact of liquidity on asset

prices. In particular, purely idiosyncratic shocks can generate aggregate liquidity needs and cause

price to deviate from its fundamental value. Moreover, the impact of liquidity on price is in the same

direction as that of the aggregate risk and is of significant magnitudes. Consequently, it leads to

higher price volatility and fat tails.

Under exogenous liquidity demand, Grossman and Miller (1988) find that higher costs of market

making lead to lower levels of liquidity in the market and more volatile prices. We show that, when

liquidity demand is endogenously determined, it becomes interdependent with liquidity supply and

prices are not necessarily more volatile in less liquid markets.

In particular, we obtain two different market structures. Only when the cost of market making

is below a threshold do we have the usual market structure in which liquidity is supplied by mar-

ket makers. When the cost of market making exceeds this threshold, a different market structure

emerges—there will be no market makers in the market and all liquidity is supplied by traders them-

selves on the spot. Under such a market structure, the liquidity supply is extremely low but so is the

observed need for liquidity—traders choose to stay out of the market most of the time. They only

enter when shocks are large and participation is sufficiently symmetric. In this case, prices actually

become less volatile. In such a market, conventional measures of price impact fails to be informative

about liquidity. Instead, the lack of trading volume properly reveals the low level of liquidity. Thus,

our results also provide a theoretical justification for incorporating trading volume into measures of

market liquidity.2

In our model, trading and liquidity provision generate externalities. A trader’s participation in

the market also benefits his potential counter-parties while a market maker’s supply of liquidity helps

all potential traders. We show that in general market mechanism fails to properly internalize these

externalities and thus leads to inefficient supply of liquidity in the market. Such an inefficiency leaves

room for policy interventions. However, given the endogenous nature of both liquidity demand and

supply, we demonstrate that different policy choices can lead to surprising consequences. We show

that it is possible to improve overall welfare of the economy by simply forcing all agents to pay the

cost and participate in the market. In this case, the extra liquidity generated by broad participation

yields benefits for all agents, which can outweigh the extra costs they pay. We also show that in

a market with insufficient liquidity supply, decreasing participation costs, in particular, the cost to

enter the market on the spot, can actually reduce welfare. This is because lowering the cost to enter

2For empirical evidence on the role of volume in measuring liquidity, see, for example, Campbell, Grossman, and
Wang (1993), Brennan, Chordia, and Subrahmanyam (1998) and Amihud (2002).
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the market on the spot reduces the incentive to be in the market a priori, i.e., to become a market

maker. The level of liquidity in the market will then decrease, which hurts everyone, including those

who now pay lower costs.

During market crises, such as the 1998 LTCM debacle and the current credit market upheaval,

central banks have resorted to relaxing their lending conditions, e.g., by cutting the rates charged

and broadening the collateral accepted, in order to increase liquidity into the market. This can be

interpreted as cutting the cost of spot market participation in our model. Government agencies, such

as the New York Federal Reserve Band in the case of LTCM crisis and the U.S. Treasury in the case

of current credit market crisis, have also coordinated market participants to collectively supply pools

of liquidity. Such an action is related to the forced spot participation in our analysis. Similarly,

regulations such as designated market makers and high capital requirements can be interpreted as

forced ex ante participation in our model. Our analysis shows that an equilibrium setting with both

endogenous demand and supply of liquidity allows us to identify the sources of market inefficiencies

and examine the tradeoffs of a particular policy tool and its overall welfare implications under

different circumstances.

The paper proceeds as follows. Section 2 describes the basic model. Section 3 solves for the

intertemporal equilibrium of the economy. In Section 4, we examine how the need for liquidity

affects asset prices and trading volume. Section 5 describes the endogenous determination of liquidity

provision in the market and how it influences prices and volume. In Section 6, we consider the welfare

implications of liquidity need and provision. Section 7 further explores the policy implications of our

analysis. Section 8 gives a more detailed discussion on the related literature and Section 9 concludes.

The appendix contains all the proofs.

2 The Model

We construct a simple model that captures two important elements in analyzing liquidity, the need

to trade and the cost to trade. We will be parsimonious in the description of the model and return

at the end of this section to provide more discussion of the model, especially motivations for its

different components.

A. Securities Market

The economy has three dates, 0, 1 and 2. There is a competitive securities market, which consists

of two securities, a riskless bond, which is also used as the numeraire, and a risky stock. The bond

yields a sure payoff of 1 at date 2. The stock yields a risky dividend D at date 2, which has a mean

of zero and a volatility of σ.
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B. Agents

There is a continuum of agents of measure 1 with identical preferences and zero initial holdings of the

traded securities. Each agent i receives a non-traded payoff N i at date 2, which is correlated with

the payoff of the stock. Depending on their non-traded payoff, agents fall into two equally populated

groups, denoted by a and b. All agents in group i, i = a, b, receive the same non-traded payoff

N i = Y iu (1)

where Y a and Y b have the same distribution and are independent of u. For simplicity, we use i to

refer to both an individual agent as well as agents in group i where i = a, b.

Summing over all agents’ non-traded payoff yields the the aggregate non-traded payoff
∫

i
N i = 1

2(Y a+Y b) u.

Let Y ≡ 1
2(Y a+Y b) and Z ≡ 1

2(Y a−Y b). We can rewrite each agent’s non-traded payoff as follows:

N i = (Y + λiZ) u (2)

where λa = 1, λb = −1 and Y , Z are uncorrelated.3 Thus, Y gives the aggregate exposure to

the non-traded risk and λiZ gives the idiosyncratic exposure. By definition, agents’ idiosyncratic

exposures sum to zero. For simplicity, we assume that Y , Z and u are jointly normal with zero mean

and volatility of σY , σZ and σu, respectively. In addition, we let u = D.4

Agents first receive information about their non-traded payoff at date 1. In particular, they

observe Y , λi and a signal S about Z:

S = Z + ε (3)

where ε is a noise in the signal, normally distributed with a volatility of σε > 0.

In the absence of idiosyncratic risks (i.e., when Z = 0), all agents are identical and they have

no trading needs. In the presence of idiosyncratic risks (i.e., when Z 6= 0), however, agents want to

share these risks. In particular, given the correlation between the non-traded payoff and the stock

payoff, they want to adjust their stock positions in order to hedge their non-traded risk. Thus,

agents’ idiosyncratic risks give rise to their trading needs.

An agent’s preference is described by an expected utility function over his terminal wealth. For

tractability, we assume that he exhibits constant absolute risk aversion. In particular, agent i has

3Since Y a and Y b have the same distribution, their covariance is Cov[Y, Z] = 1
4

(
Var[Y a]−Var[Y b]

)
= 0.

4We only need the correlation between u and D to be non-zero. The qualitative nature of our results are independent
of the sign and the magnitude of the correlation. To fix ideas, we set it to 1.
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the following utility function:

−e−αW i
(4)

where W i denotes his terminal wealth and α is the absolute risk aversion. We further require

α2σ2(σ2
Y +σ2

Z) < 1 (5)

to guarantee a bounded expected utility in the presence of non-traded payoffs.

C. Participation Costs

At date 0, all agents are identical and thus need not trade. For simplicity, we allow them to trade in

the market at no cost. Agents’ trading needs arise at date 1 after they observe their risk exposures

(Y , λi and S). In order to trade at date 1, an agent has to pay a cost. He can either pay a cost

cm at date 0 before learning about his own trading needs, which allows him to trade at any time, or

wait until after observing his shocks and pay a cost c to trade in the market if he chooses.

Those who pay the ex ante cost will be in the market at all times, ready to trade with others.

We call them “market makers,” denoted by m. Those who only pay the spot cost when they trade

are called traders, denoted by n. Traders will demand liquidity when they cannot meet their own

trading needs and market makers provide it in these circumstances. In actual markets, institutional

or individual investors usually behave as traders in our model while dealers and hedge funds serve

as market makers. By explicitly modeling the choice of becoming a trader or a market maker, we

fully endogenize the need for liquidity as well as its supply. This allows us to examine the pricing

and welfare implications of liquidity in a full equilibrium setting.

D. Time Line

For the economy defined above, we now detail the sequence of events, agents’ actions, and the

corresponding equilibrium. At date 0, agents first trade in the market to establish their initial

position θi
0 and the equilibrium stock price P0. Given that they are identical, the equilibrium is

reached at θi
0 = 0.

Each agent then decides if he wants to pay the cost cm to become a market maker. Let ηi
m denote

his choice, with ηi
m = 1 for being a market maker and ηi

m = 0 for not. A participation equilibrium

determines the fraction of agents who become market makers, which we denote by µ.

At date 1, agents learn about their non-traded risks, and decide whether to pay a cost c to enter

the market to trade. Let ηi denote the entry choice of agent i, with ηi = 1 for entry and ηi = 0 for

no entry. Since market makers are already in the market, they need not pay c. That is, ηi = 0 for

all market makers. For traders, this entry decision depends on their draw of λi, the signal S on the
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magnitude of the idiosyncratic risk, as well as the aggregate risk Y . The participation equilibrium

of traders at date 1 determines the fraction of each group that chooses to enter the market, which

we denote by ω ≡ {ωa, ωb}.
After the traders’ participation decisions, all market makers and participating traders trade in the

market to choose their stock holdings. Let θi
1(η

i
m, ηi) denote the stock shares held by a group-i agent

(whose participation decisions are ηi
m and ηi, respectively) after trading at date 1. Hence, θi

1(1, 0)

denotes the holding of a group-i market maker and θi
1(0, 1) denotes the holding of a participating

group-i trader. For the non-participating traders, ηi
m = ηi = 0 and θi

1(0, 0) = θi
0 = 0. The trading

among the market makers and the participating traders determines the market equilibrium at date

1 and the stock price P1. For simplicity, we assume that agents actually observe Z when they trade

after the participation decisions at date 1. Thus, there is no more need to trade afterwards.5

Given his participation decisions ηi
m and ηi and his stock holding θi

1(η
i
m, ηi) at date 1, agent i’s

terminal wealth W i is given by

W i = −ηi
mcm − ηic + θi

1 (D−P1) + N i (6)

where N i is his non-traded payoff given in (2).

Summarizing the description above, Figure 1 illustrates the time line of the economy.

-
0 1 2 time

Shocks Y, λi, S; Z D, N i

Choices θi
0; ηi

m ηi; θi
1(η

i
m, ηi)

Equilibrium P0; µ ω ; P1

Figure 1: The time line of the economy.

E. Discussions of the Model

In this subsection, we provide additional discussions and motivations about several important fea-

tures of the model. The two key ingredients of the model are the need to trade and the cost to trade

in the market. Little justification is necessary for modeling agents’ trading needs, given the large

trading volume observed in the market. In order to model trading needs, we must allow for certain

forms of heterogeneity among agents. For example, trading can arise from heterogeneity in endow-

ments (e.g., Diamond and Verrecchia (1981) and Wang (1994)), preferences (e.g., Dumas (1992) and

Wang (1996)), or beliefs (e.g., Harris and Raviv (1993) and Detemple and Murthy (1994)). Our

5Alternatively, we can assume that Z is realized at date 2 and our results remain qualitatively the same but the
solution becomes more tedious.
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modeling choice of heterogeneity in agents’ endowments in the form of non-traded payoffs is mainly

for tractability. Agents thus trade for risk-sharing motives. Our main results are not sensitive to

this particular choice.

Another key component of our model is the cost to participate in the market. This cost is

intended to capture in a reduced form manner any frictions that prevent agents from constant,

active, and unfettered participation in the market. The lack of such a full participation is at the

heart of illiquidity and distinguishes it from other fundamentals.

There is an extensive literature on the nature of these costs and its significance. For example,

Merton (1987) points out that most agents are prevented from active market presence due to costs of

gathering and processing information, devising trading strategies and support systems, and raising

capital.6 Shleifer and Vishny (1997) argue that, even for agents who are actively participating in

the market, capital constraints often limit their abilities to take on large positions.7 For instance,

typical market makers such as trading desks and hedge funds all have limited capital, which is costly

and time-consuming to raise but hard to maintain in needy times; most institutional investors face

external and internal constraints such as regulations and risk controls, which limit their flexibility

in choosing asset allocations and risk budgets. Thus, the participation cost in our model should be

interpreted broadly as costs or hurdles that hinder the free flow of capital in the market place, in

addition to the direct costs of physical presence and information processing.

Mounting empirical evidence suggests that these costs not only exist but can be substantial. For

example, Coval and Stafford (2007) find that selling by financially distressed mutual funds leads to

significantly depressed prices for the stocks sold, which persist over multiple quarters before recov-

ery. This effect occurs despite the fact that these stocks are widely held by other mutual funds who

are not suffering outflows. Mitchell, Pedersen, and Pulvino (2007) examine several markets such as

convertible bonds and mergers and acquisitions, in which hedge funds actively pursue pricing anoma-

lies. They show that when hedge funds in a particular market face large redemptions, prices deviate

significantly from the fundamentals. Capital returns only slowly, leaving the price deviations persist

for long periods of time. The documented persistence of large price deviations caused by liquidity

events implies that significant costs exist in preventing instantaneous capital flow or participation.8

In our model, we further recognize that in an intertemporal setting, the magnitude of participation

6See also Brennan (1975), Hirshleifer (1988), Leland and Rubinstein (1988), and Chatterjee and Corbae (1992).

7See also Kyle and Xiong (2001), Gromb and Vayanos (2002), and Brunnermeier and Pedersen (2008), among others,
for the impact of capital constraints on liquidity supply and asset prices.

8The evidence on the limited mobility of capital is quite extensive. See, for example, Harris and Gurel (1986) and
Shleifer (1986) on the price effect of stock deletions from the S&P index, Frazzini and Lamont (2007) on the price
impact of capital flows to mutual funds, and Tremont (2006) on market behavior and hedge fund flows.
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costs also depends on the time scale over which agents establish market presence. For costs of the

same nature, e.g., costs of gathering and processing information or raising capital, they can be

substantially higher when less time is allowed. If we interpret c and cm in the model as these same

costs of participation, paid on the spot and ex ante, respectively, it is reasonable to assume that c is

higher than cm.

If, however, the nature of the ex ante and spot costs are different, cm can be higher than c. For

example, if cm is the cost to set up operations to become a market maker while c is merely the cost

of occasional trading, then we would expect cm to be much higher than c. In this case, however, the

market maker expects to trade many times down the road. He has to weigh the total cost cm with

the total benefit from all his future trades. For a trader, he weighs the cost c for each of his trade.

If a market maker trades frequently, as he should, on a per trade basis, his cost should be lower.9

Since our model has only one trading cycle, the costs cm and c should be interpreted as costs for

each trade. Thus, we expect cm < c.

We also note that our use of the term “market makers” is broader than its most common use. In

addition to designated dealers in a market, we also include agents who maintain an active presence

in the market and provide liquidity as market makers such as trading desks and hedge funds.

It is well recognized that more capital in a market tends to reduce the risk aversion of marginal

investors (e.g., Grossman and Vila (1992)) and thus improves the supply of liquidity. In our setting,

all agents have constant risk aversion and the amount of capital each of them has does not matter.

But the participation of more agents brings in more capital and lowers the effective risk aversion of

market makers as a group (which is their average risk aversion divided by the total number of them).

In this sense, the number of market makers in our model is effectively playing the same role as the

amount of total capital in the market.

In addition, the assumption that Z is not fully observed at the time of participation decision

is important in our model. It implies that agents do not anticipate to trade away all their future

idiosyncratic risks if they participate. As shown in Lo, Mamaysky, and Wang (2004), in a fully

intertemporal setting, agents always expect to bear certain idiosyncratic risks since they only trade

infrequently. By assuming partial information on Z when deciding on participation, we capture this

dynamic aspect in a simple setting. Otherwise, the model becomes effectively static. As long as Z

is realized after the participation decision, the exact timing of its revelation is unimportant.

9Otherwise potential market makers are strictly better off trading only on the spot and no one would choose to
become a market maker.
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3 Equilibrium

We solve for the equilibrium in three steps. First, taking as a given agents’ initial stock holdings

θi
0, the fraction µ of market makers, and the participation decision of traders, we solve for the stock

market equilibrium at date 1. Next, we solve for individual traders’ participation decisions and the

participation equilibrium, given the market equilibrium at 1. Finally, we solve for individual agents’

decision to become market makers and their equilibrium population µ as well as the stock market

equilibrium at date 0.

3.1 Equilibrium with Costless Participation

We start with the special case of no participation costs, i.e., cm = c = 0. This case serves as a

benchmark when we examine the impact of participation costs on liquidity and market behavior.

In this case, agents are indifferent between being market makers or traders, i.e., any µ ∈ [0, 1] is

an equilibrium. They will be in the market at all times, i.e., ωa = ωb = 1. The equilibrium price

and agents’ equilibrium stock holdings are:

P0 = 0, θi
0 = 0

P1 = −ασ2 Y, θi
1 = −λiZ

(7)

where i = a, b.

The initial price of the stock is P0 = 0 because its expected dividend is normalized to zero and

it is in zero net supply. Since the non-traded payoff is perfectly correlated with the stock payoff, the

aggregate (per capita) risk exposure Y is equivalent to an aggregate supply shock for the stock, and

thus affects its price at date 1. The aggregate risk, however, does not affect agents’ share holdings

in equilibrium.

Their idiosyncratic risk exposure λiZ, on the other hand, affects individual holdings. In par-

ticular, agents’ stock holdings are given by −λiZ, which reflects their hedging demand to offset

their idiosyncratic risk exposure. Because agents’ underlying trading needs are perfectly matched

(λa = −λb), so are their trades when they are all in the market. In this case, there is no need for

liquidity. The market is perfectly liquid in the sense that trading has no price impact. Stock prices

do not depend on the idiosyncratic shock Z.

3.2 Stock Market Equilibrium at Date 1

We now present equilibrium with participation costs, starting with the market equilibrium at date 1.

Assume a population µ of agents becomes market makers. The remaining population 1−µ is evenly

split between group-a and -b traders, with ω = {ωa, ωb} fraction of each trader group participating.
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Together with Y and Z, µ and ω define the state of the economy at date 1. We introduce

δ ≡




1
2(1−µ)(ωa − ωb)/

[
µ + 1

2(1−µ)(ωa+ωb)
]
, for µ > 0 or ω > 0

λi, for µ = ω = 0.
(8)

as a measure of asymmetry in participation between the two groups of traders. When µ > 0 or

ω > 0, the numerator gives the net population imbalance between the two trader groups and the

denominator is the total population in the market. When µ = ω = 0, there is no agent in the market

other than the agent under consideration (in group i), and δ is defined as the limiting ratio when

µ = 0, ω−i = 0 and ωi → 0. Since ωa and ωb are bounded in [0, 1], we have δ ∈ [−δ̄, δ̄], where

δ̄ =
1−µ

1+µ
(9)

gives the maximum amount of participation asymmetry between the two trader groups.

Taking µ and δ as given, we solve the market equilibrium at date 1, which is given below:

Proposition 1. The equilibrium stock price at date 1 is

P1 = −ασ2 Y − ασ2 δZ (10)

and the equilibrium stock holdings of market makers and participating traders are

θi
1 = δZ − λiZ, (11)

where i = a, b.10

Contrasting to the benchmark case when participation is costless and symmetric between the two

trader groups, both individual holding and the equilibrium price now have an extra term related to

δZ. When δ 6= 0, the participation of the two groups of traders is asymmetric. The buy and sell

orders are no long perfectly matched. The order imbalance leads to an additional net risk exposure,

which is δZ on a per capita basis. All participating agents equally share this risk and increase their

holding by δZ. The idiosyncratic shock Z now affects the equilibrium price as (10) shows. Thus, even

though traders face offsetting shocks, asymmetry in their participation can give rise to a mismatch

in their trades and cause the price to change in response to these shocks.

So far, we have taken traders’ participation rate ω and the resulting δ as given. In the next

subsection, we show that when individual participation decisions are made endogenously, asymmetric

participation occurs as an equilibrium outcome.

10When µ = ω = 0, there is no agent in the market and the market equilibrium allows a range of prices. Choosing
the specific price in the proposition does not affect the overall equilibrium.
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3.3 Traders’ Optimal Participation Decisions at Date 1

Given the stock market equilibrium at date 1, we now solve the participation equilibrium of traders

in two steps. First, taking as a given the participation decision of other traders, we derive the optimal

participation policy of an individual trader. Next, we find the competitive equilibrium for traders’

participation decisions.

At the time of their participation decisions, all traders have a stock holding of θi
0 = 0 (i = a, b).

Moreover, they observe Y , λi and a signal S on Z. We denote by X the expectation of Z conditional

on signal S, σ2
X the variance of X, and σ2

z the variance of Z conditional on S. Then,

X ≡ E[Z|S] = βS, σ2
X ≡ Var[X] = βσ2

Z , σ2
z ≡ Var[Z|S] = (1−β)σ2

Z (12)

where β ≡ σ2
Z/(σ2

Z + σ2
ε). Under normality, X is a sufficient statistic for signal S. Thus, we will use

X to denote agents’ information about the magnitude of the idiosyncratic risk.

For trader i, let J i
P and J i

NP denote his indirect utility function given his decision to participate

(P) or not to participate (NP), respectively. Under constant absolute risk aversion, trader i’s indirect

utility function takes the form of J = −I(·) e−αW , where W is his wealth and I(·) depends on the

initial stock holding θi
0, market condition δ, and non-traded risk exposure Y , X and λi (see Appendix

A). The net gain from participation for group-i traders can be defined as the certainty equivalence

gain in wealth,

g(θi
0; Y,X, λi; δ) ≡ − 1

α
ln

J i
P

J i
NP

, i = a, b. (13)

The minus sign on the right-hand side adjusts for the fact that J i
P and J i

NP are negative. The following

proposition describes individual traders’ optimal participation policy.

Proposition 2. The net gain from participation for trader i is

g(θi
0; Y,X, λi; δ) ≡ g1(θi

0; Y, X, λi; δ) + g2(λi; δ)− c, i = a, b (14)

where

g1(·) ≡ ασ2(1−kλiδ)2

2(1−k)[1−k+k(1−λiδ)2]
(
θi
0 − θ̂i

)2
, g2(·) ≡ 1

2α
ln

[
1 +

(1−λiδ)2k
(1−k)

]
(15)

and

θ̂i ≡ − 1−λiδ

1−kλiδ
(kY +λiX), k ≡ α2σ2σ2

z . (16)

He participates if and only if g(·) > 0.11

When µ = ω = 0, g(·) = −c < 0 for both traders. Without any agent in the market at date 1, a

11Parameter restriction (5) guarantees that k < 1.
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trader has no one to trade with if he chooses to participate and he will end up with the same stock

position except that he is now c dollars poorer. Hence, he never participates.

When µ > 0 or ω > 0, a trader can benefit from trading. His net gain from participation consists

of three terms, g1(·), g2(·) and −c. The first term, g1(·), represents the expected trading gain in

response to his current shocks. We can interpret θ̂i as trader i’s desired holding after the shocks.

Unless θi
0 = θ̂i, he expects a positive net gain from trading. The second term, g2(·), captures the

expected trading gain from offsetting future shocks to non-traded risks. This term depends only on

the market condition δ and k, which is proportional to future trading needs as captured by σ2
z . The

last term, −c, reflects the cost of participation.

For future convenience, we define

gi(δ; Y,X) ≡ g(0;Y, X, λi; δ), i = a, b, (17)

by substituting in the initial holding θi
0 = 0. In general, trading gains are asymmetric between the

two trader groups. This is true even when participation is symmetric (i.e., when δ = 0), since

gi(0;Y, X) =
ασ2

2(1−k)
(
θ̂i

)2 − 1
2α

ln(1−k)− c (18)

where θ̂i = −(kY +λiX). Clearly, ga 6= gb (except for Y = 0 or X = 0), and ga ≥ gb whenever Y

and X have the same sign.

In order to understand this asymmetry, we first consider the special case when X = 0. With

zero current idiosyncratic shocks, all agents (market makers and traders) receive equal share of the

aggregate risk. However, given the future idiosyncratic shocks, as represented by Z, traders still

desire to trade. In particular, the prospect of bearing these risks makes them effectively more risk

averse. Consequently, they prefer to bear less of the aggregate risk. Their desired position becomes

θ̂i = −kY , which is different from their initial position θi
0 = 0. Hence, traders would like to sell the

stock to unload k fraction of their exposure to the aggregate risk. This desire is independent of the

realization of the idiosyncratic shock X.

When X 6= 0, the desire to partially unload the aggregate risk is combined with the desire to

unload their idiosyncratic risks. For those traders whose idiosyncratic shock λiX is in the same

direction as the aggregate shock Y , their initial position (θi
0 = 0) is further away from their desired

position θ̂i = −(kY + λiX). For example, when Y and X have the same sign, θ̂a = −(kY + X)

is further away from 0 than θ̂b = −(kY − X). The gains from trading, which is proportional to

(θ̂i)2, is then larger for group-a traders than for group-b traders.12 We thus have the following result:

12It is worth pointing out that in general the gain from trading also depends on the initial position θi
0. In a setting

like ours, θi
0 is always different from θ̂i since the latter depends on the current shocks while the former does not. In

a stationary setting similar to ours, Lo, Mamaysky, and Wang (2004) show that the gain from trading is asymmetric

13



When participation in the market is costly, the gains from trading are in general asymmetric between

traders with perfectly matching trading needs. In addition, the gains are larger for those traders

with idiosyncratic shocks in the same direction as the aggregate shock.

We shall emphasize that the asymmetry in trading gains is a general phenomenon. To see this,

let u(θ) denote the utility from holding θ and θ∗ be the optimal holding. Then, u′(θ∗) = 0. For

a small deviation x = θ− θ∗ from the optimum, we can drop the higher order terms from the

Taylor expansion and obtain the gain from trading as u(θ∗) − u(θ∗+x) ' −u′′(θ∗) x2/2, which is

the same for an opposite deviation −x. When trading is costless, traders constantly maintain the

optimal position, and the gains from trading for traders with small offsetting shocks are always the

same. This symmetry breaks down when trading is costly. Facing a cost, traders no longer trade

constantly. They only trade when the deviation from the optimal is sufficiently large. As Figure

2 illustrates, the trading gain is no longer symmetric for finite deviations from the optimum since

u(θ∗)− u(θ∗+x) 6= u(θ∗)− u(θ∗−x) for a finite x. Hence, as long as trading is infrequent, the gains

from trading become different between traders with perfectly offsetting trading needs.

Θ

uHΘL

Θ
*

Θ
*
+xΘ

*
-x

uHΘ*L-uHΘ*-xL uHΘ*L-uHΘ*+xL

Figure 2: Asymmetry in utility gain from costly trading.

The result that trading gains are larger for traders receiving more (than average) risks is also

fairly robust. It only requires traders to become effectively more risk-averse when faced with un-

hedged idiosyncratic risks. As Kimball (1993) shows, all preferences with “standard risk aversion”

exhibit such a behavior.13

3.4 Participation Equilibrium for Traders at Date 1

Given the asymmetric participation decisions of the two groups of traders, we show in the following

proposition that the participation equilibrium is also asymmetric.

around the optimal holding due to the fact that traders only trade infrequently.

13Standard risk aversion is defined as the class of utility functions that exhibit both decreasing absolute risk aversion
(DARA) and decreasing absolute prudence. In our setting, the underlying utility function, with constant absolute risk
aversion, does not exhibit standard risk aversion, but the indirect utility function, i.e., the value function does.
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Proposition 3. A participation equilibrium for traders exists. When Y and X have the same sign,

the equilibrium (ωa, ωb) is given by

A. For gb(0;Y,X) ≤ ga(0;Y,X) ≤ 0, ωa = ωb = 0;

B. For ga(0;Y, X) ≥ gb(0;Y,X) ≥ 0, ωa = ωb = 1;

C. Otherwise, either ωa = 1 and ωb ∈ [0, 1) or ωa ∈ (0, 1) and ωb = 0, and ωa > ωb,

When Y and X have opposite signs, the equilibrium (ωa, ωb) is given by exchanging subscripts a

and b in A-C. Moreover, the above equilibrium is unique when µ> 0. When µ=0, there also exists

an autarky equilibrium with ωa = ωb = 0 for all Y and X, which is Pareto dominated by the above

equilibrium.

We consider only the non-dominated equilibrium when µ=0 in future discussions. When X and Y

have the same sign, we know from (18) that group-a traders enjoy larger gains from trading when

the participation is symmetric (δ = 0). As a result, in equilibrium there are more group-a traders

entering the market than group-b traders, causing an order imbalance.

(a) Participation equilibrium (b) Participation asymmetry
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Figure 3: Participation equilibrium. Panel (a) illustrates the participation equilibrium in the Y > 0 and X > 0
quadrant. The other quadrants can be obtained by symmetry. Region A represents states of no participation
(ωa = ωb = 0); region B represents states of full participation (ωa = ωb = 1); region C represents states with
asymmetric participation (ωa >ωb). Panel (b) illustrates the degree of asymmetry in participation between the
two groups of trades, δ, for different values of Y and X. The market maker population is fixed at µ = 1/3.
Parameters are set at the following values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, σY = 0.7, and c = 0.09.

Figure 3(a) illustrates the states, i.e., realizations of X and Y , for which there is no participation

of traders (Case A in Proposition 3), full participation (Case B), and asymmetric participation (Case

C). For any given level of the aggregate risk, Y , the asymmetric participation occurs for a range of X

with finite values (region C). Figure 3(b) plots δ, the degree of asymmetry in participation between

the two groups of traders, for different values of Y and X. For any given Y , the range of X over

which asymmetry occurs (δ 6= 0) in Panel (b) corresponds exactly to the intersection of a horizontal

line at this Y level and region C in Panel (a).
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3.5 Participation Equilibrium for Market Makers at Date 0

Up until now, the population of market makers µ is taken as given. We now study how it is

determined in equilibrium. Our analysis shows that costly participation gives rise to mismatch in

trades between traders with perfectly matching trading needs. The resulting order imbalance (or

the need for liquidity) thus calls for market makers to supply liquidity. The market makers have

to pay the participation cost ex ante. In return, they benefit from supplying liquidity by absorbing

order imbalances in the market at favorable prices. When the benefit dominates, agents want to

become market makers. But the benefit diminishes as the population of market makers increases

and competition intensifies. An equilibrium population of market makers (or an equilibrium level of

liquidity supply) is reached when the cost and benefit balance out.

In order to solve for the equilibrium level of liquidity supply, we first compute the value function of

individual agents who choose to become market makers (Jm) or traders (Jn), for a given population

of market makers. In particular, we have

Jm(µ, cm) ≡ E
[
J i

P | ci =cm

]
, Jn(µ, c) ≡ E

[
max{J i

P , J i
NP} | ci =c

]
(19)

where the expectation is over the realizations of Y , X, and λi, and the indirect utility functions J i
P

and J i
NP are defined in Section 3.3.

The participation equilibrium for market makers is reached if one of the following three conditions

is satisfied: (i) all agents choose to become market makers, i.e., µ = 1 and Jm(1, cm) ≥ Jn(1, c),

(ii) for some µ ∈ (0, 1), agents are indifferent between being a market maker or a trader, i.e.,

Jm(µ, cm) = Jn(µ, c), and the fraction of agents choosing to become market makers is exactly µ, or

(iii) no agent chooses to become market makers, i.e., µ = 0 and Jm(0, cm) ≤ Jn(0, c). The following

lemma is useful in obtaining the equilibrium population of market makers:

Lemma 1. For any given population of market makers µ, there exists a unique κ(µ) ∈ [ 0, c ] such

that Jm(µ, κ) = Jn(µ, c). Moreover, κ(µ) strictly decreases with µ for µ ∈ (µ, 1] and remains constant

for any µ ∈ [0, µ], where

µ ≡ max
{

0, min
{√

4k/[(e2αc−1)(1−k)]− 1, 1
}}

. (20)

The quantity κ(µ) is the break-even cost for an agent to become a market maker, taking as given

the existing population of market makers µ. The second part of the lemma states that the benefit of

becoming a market maker diminishes as the total population of market makers increases, but may

remain constant for sufficiently small µ.

The participation equilibrium of traders at date 1 is given in the proposition below.
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Proposition 4. Let cm ≡ κ(0), cm ≡ κ(1), and κ−1(·) be the inverse function of κ(·) defined in

Lemma 1. The equilibrium population of market makers µ is determined as follows:

(i) µ = 1, if cm < cm

(ii) µ = κ−1(cm) ∈ ( µ, 1 ] if cm ≤ cm < cm

(iii) any µ ∈ [ 0, µ ], if cm = cm

(iv) µ = 0, if cm > cm.

(21)

Except when cm = cm, the equilibrium is unique. Moreover, as cm approaches cm from below, µ

changes drastically with cm. In particular, for µ > 0, µ drops discretely from µ to 0. For µ = 0,

∂µ/∂cm = −O
(
e1/µ2)

, that is, µ decreases to 0 at an exponential rate.

Thus, in terms of equilibrium liquidity supply, the market exhibits two distinctive regimes. For

cm < cm, µ > 0 and there is a finite amount of liquidity supplied by market makers. For cm ≥ cm,

however, µ = 0 and there is zero liquidity supplied by market makers. Moreover, the equilibrium

market making capacity µ is not robust at low levels. When µ > 0, there is a discrete drop in µ from

µ to 0 as the cost goes from slightly below cm to slightly above. When µ = 0, even though there is

no discrete drop, µ decreases to 0 at exponential speed for small µ. In both cases, low levels of µ

are not sustainable in equilibrium—a slight increase in cm can shift the equilibrium into a state with

no market makers. We will return in Section 5 to discuss in more details the properties of these two

different market regimes.

We conclude the solution of the equilibrium with the following proposition, including the market

equilibrium at date 0:

Proposition 5. When cm <cm, there exists a unique equilibrium in which P0 =0, θi
0 =0, and µ>0.

When cm > cm, there exists a stationary equilibrium with P0 = 0, θi
0 = 0, µ = 0, and ω > 0. When

cm =cm, there exist multiple equilibria with different values of µ, which are Pareto equivalent.

3.6 Properties of the Equilibrium

The equilibrium obtained above exhibits several striking features. First, despite the fact that the

two trader groups have perfectly matching trading needs, their actual trades are not matched when

participation in the market is costly. A set of traders may bring their orders to the market while

traders with offsetting trading needs are absent, creating an imbalance of orders and a need for

liquidity. Second, the order imbalance causes the stock price to adjust in order to induce the market

makers to absorb it. As a result, the stock price not only depends on the fundamentals (i.e., its

expected future payoffs and the aggregate risk), but also depends on idiosyncratic shocks market

participants face. Third, the market making capacity, determined endogenously in equilibrium,
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exhibits two distinctive regimes, one at a finite level and another at zero, depending on the costs of

trading and market making. In the following sections, we examine in more detail these results, the

economic mechanism driving them and their welfare implications.

4 Price and Volume

As self-interest fails to coordinate traders’ costly participation, perfectly matching trading needs give

rise to unbalanced buy and sell orders. The sign and the magnitude of the order imbalance depend

on the asymmetry in traders’ participation δ and their idiosyncratic shock Z. In fact, we can define

q ≡ − δZ (22)

to be the (normalized) order imbalance at date 1. At the time of participation decision, the ex-

pected order imbalance is E[−δZ|Y, X] = −δX, which is mostly determined by δ, the asymmetry in

participation between traders.

The endogenous order imbalance exhibits two interesting properties. First, it is often zero, but

whenever it occurs, it has large magnitudes. For small values of Y and X, which represent most likely

states, the gains from trading are small and no trader enters the market. As stated in Proposition

3 and shown in Figure 3, the order imbalance is zero and there is no need for liquidity. Only for

sufficiently large Y and X do some traders start to participate in the market. Their asymmetric

participation leads to an order imbalance proportional to X, which is also of significant sizes.

Second, the order imbalance is always in the same direction as the impact of the aggregate shock

on the demand of the stock. For example, when Y > 0, the aggregate non-traded risk is positive,

which is equivalent to an extra endowment of the stock, and the stock demand decreases. From

Proposition 3 and Figure 3, δX is positive in this case and the expected order imbalance is negative,

further decreasing the demand. The reason that the order imbalance always exacerbates the impact

of the aggregate shock is because traders whose idiosyncratic shock is in the same direction as the

aggregate shock Y always have higher trading gains and are more likely to enter the market. We

thus summarize our main results on the endogenous need of liquidity as follows.

Result 1. The endogenous order imbalance arises in significant magnitudes when occurs. Moreover,

it is always in the same direction as the impact of aggregate risk on asset demand.

The need for liquidity affects prices. From (10), we see that the equilibrium stock price consists

of two components, the “fundamental value,” −ασ2 Y , and a component driven by liquidity needs,

p ≡ −ασ2 δZ (23)
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Naturally, we focus on this liquidity component. As mismatched trades give rise to order imbalances

and the need for liquidity in the market, the stock price has to adjust to attract the market makers

to provide liquidity and to accommodate the order imbalance. It is important to note that the price

deviation p is driven by agents’ idiosyncratic shocks and arises only when participation is costly.

For convenience, we consider the expected value of p conditional on Y and X, which we refer

to as the average “liquidity impact on price.” From (23), the average liquidity impact is simply

proportional to the expected order imbalance and exhibits the same properties. In particular, it

depends on idiosyncratic shocks and such a dependence is mostly for shocks of finite sizes. These

properties lead to interesting predictions about price and return distributions.

(a) Distribution of p given Y (b) Unconditional distribution of p
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Figure 4: Impact of illiquidity on price. Panel (a) reports the probability distribution of the liquidity impact p,
given different values of the aggregate exposure Y . The solid line is for Y = 1 and the dotted line is for Y = −1.
Panel (b) reports the unconditional probability distribution of p. In both panels, the value at p = 0 represents
the total probability mass and at everywhere else represents the probability density. The market maker fraction
is fixed at µ = 1/3. Parameters are set at the following values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, σY = 0.7,
and c = 0.09.

Figure 4(a) plots the probability distribution of the liquidity impact p given a level of aggregate

risk Y and Figure 4(b) plots the unconditional probability distribution of p. The discrete nature of

the liquidity needs gives rise to the high likelihood of large price movements. Note that the liquidity

impact is always zero under costless participation, which corresponds to a probability mass of 1 at

p = 0. Hence, Figures 4(a) and 4(b) clearly demonstrate that prices of the stock can significantly

deviate away from its fundamental value, leading to additional variability and fat tails in the price.

These deviations are caused by a surge in the liquidity need in the market, which is driven by

idiosyncratic shocks among agents. Thus, we have the following result:

Result 2. The impact of liquidity increases the price volatility of the stock and leads to fat tails in

its returns.

In addition to its impact on price, we can also examine how liquidity affects the level of trading
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volume in equilibrium, which is given by

V ≡ 1
2
(1−µ)

∑

i=a,b

ωi|δZ−λiZ|+ 1
2

µ
∑

i=a,b

|δZ−λiZ|. (24)

In the absence of participation costs, the volume is simply V = |Z|. In the presence of participation

costs, the volume is lower.

An exogenous order imbalance is the starting point for most models of market liquidity such as

those in market microstructure analysis (e.g., Ho and Stoll (1980) and Glosten and Milgrom (1985)).

By studying the need and the supply of liquidity in a unified framework, we show that the endoge-

nous need for liquidity exhibits distinctive properties, including its highly nonlinear dependence on

idiosyncratic shocks and its correlation with the aggregate risk. These properties lead to interesting

implications on equilibrium prices and volume, which we examine in more detail in the next section.

5 Equilibrium Liquidity

The impact of liquidity needs on asset prices clearly depends on the amount of liquidity available in

the market, which is supplied by market makers. Thus, the population of market makers measures

the ex ante supply of liquidity.14 In our setting, this is determined endogenously. Two factors are

important in determining the equilibrium level of liquidity, the ex ante cost to be a market maker

cm and the spot cost c to jump in the market when needed. The cost c affects the potential need

for liquidity and thus the benefit to supply liquidity as a market maker. We now consider how these

two factors influence the equilibrium level of liquidity.

5.1 Supply of Liquidity

Figure 5 reports the equilibrium population of market makers µ as a function of their cost cm,

given traders’ participation cost c. Consistent with Proposition 4, when cm is small, i.e., less than

cm = 0.179, all agents choose to become market makers and µ = 1. When cm is large, i.e., more

than cm = 0.247, no agent chooses to become a market maker and µ = 0. For in-between values of

cm, the fraction of market makers µ decreases as cm increases. For the set of parameter values in

the figure, µ in (20) is zero. By Proposition 4, there is no discrete change in µ as cm approaches

cm. However, in the figure, it appears that the value of µ drops from about 0.09 to 0 at cm = 0.247.

This is consistent with the extreme sensitivity of µ to cm at small µ (of order −O
(
e1/µ2)

) described

in the proposition.

14Given the assumption of constant absolute risk aversion, each market maker’s investment in the stock is independent
of his wealth. Therefore, their total population also reflects the amount of capital they put in the stock market.
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Figure 5: Equilibrium population of market makers. The figure reports the population of market makers µ as a
function of ex ante cost cm. The spot participation cost for traders is set at c = 0.4. Other parameters are set
at the following values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, and σY = 0.7.

The drastic decrease in µ indicates that low levels of market making capacity is in general not

robust—a slight increase in the cost of supplying liquidity pushes the market into an equilibrium

with no market makers. This result is driven by the externality in ex ante liquidity provision.

As cm increases, there are fewer market makers and traders can only expect to trade more with

each other. This forces the participation decisions of the two groups of traders to become more

correlated and their trades to become better matched. Better matching in their trades reduces

potential order imbalances and further diminishes the need for market makers. Such an interaction

between endogenous liquidity needs and endogenous liquidity provision makes low levels of liquidity

provision (µ < 0.09 in the above example) unsustainable, as Figure 5 illustrates. We summarize this

result as follows:

Result 3. When both the need and the supply of liquidity are determined endogenously, the level of

ex ante supply of liquidity is not robust at low levels.

Our result contrasts with that of Grossman and Miller (1988), in which the benefit for market

makers decreases smoothly with their total population, and the number of market makers decreases

gradually as the cost increases. The difference comes from how liquidity needs are modeled. They

take the liquidity need as exogenously given. We model the liquidity need endogenously, together

with the endogenous liquidity supply by the market makers. We show that, as the supply decreases,

the need for liquidity observed in the market also decreases, leading to a low liquidity equilibrium.

5.2 Two Market Structures: Dealer Market and Trader Market

The two regimes, one with market makers (when cm ≤ cm) and the other with no market makers

(when cm >cm), correspond to two different market structures. Since the role of market making is

often acclaimed by dealers, we refer to the market with market makers as a dealer market and that

without market makers as a trader market. We now consider how these two markets behave.
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(a) Price volatility (σp) (b) Volume (E[V ])
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Figure 6: Price volatility and volume. Panel (a) reports the volatility of liquidity component σp and Panel (b)
reports the average trading volume E[V ] as functions of the ex ante cost cm, respectively. The vertical dotted
lines mark the point of cm = 0.247, above which µ = 0. The spot participation cost for traders is set at c = 0.4.
Other parameters are set at the following values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, and σY = 0.7.

Figure 6 reports the volatility of the liquidity component in price p and the average trading volume

for different values of cm, both of which exhibit different behavior under the two market structures.

For cm≤cm, which equals 0.247, we have the dealer market. Under this market structure, the supply

of liquidity decreases as cm increases, leading to an increase in the price impact, as measured by σp,

and a decrease in the trading volume. For cm >cm, we have the trader market, in which traders only

trade among themselves. There is no liquidity supplied by market makers. Since no one chooses to

pay the cost cm, neither the price nor the volume depends on the level of cm. The participation of

traders with off-setting trading needs can still be asymmetric in some states. The price adjusts in

order to clear the market, giving rise to a positive σp. Of course, the benefit from participation is

drastically reduced in the absence of market makers, and the average trading volume is very low (at

about 0.007 in the figure).

Comparing the two market structures, we make two additional observations. First, even though

there is a drastic drop in µ at cm = cm = 0.247 in Figure 5, there is no discrete change in price

volatility. In fact, the volatility remains constant beyond a threshold level of cm =0.238<cm. The

reason for this result is as follows. When µ decreases, a given order imbalance has a larger impact

on price. However, the large price impact also reduces the chance of order imbalances. In particular,

traders with lower trading gains will participate more to act as market makers, while traders with

higher trading gains will reduce their participation in anticipation of the low market making capacity.

Although the equilibrium participation rate of each trader group varies with µ, the difference in their

participation rates, δ, is maintained at a level such that the marginal group is indifferent between

participating or not. The resulting price impact becomes independent of µ.

Second, while in the literature higher volatility σp due to liquidity shocks is usually associated

with lower liquidity in the market (see, e.g., Kyle (1985)), our analysis shows that it is important

to incorporate volume into the description of liquidity (see, e.g., Amihud (2002)). Although in a
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partial equilibrium analysis, the lack of ex ante liquidity supply usually leads to large price volatility,

our example above clearly indicates that volatility alone can be misleading. While the level of σp

remains the same for all costs cm > 0.238, the market structure is different for 0.238 ≤ cm ≤ 0.247

(the dealer market) and cm > 0.247 (the trader market), and so is the level of liquidity. This can be

seen from the gap in the level of trading volume between the two markets. The average volume is

significantly higher in the dealer market (E[V ] > 0.1) than in the trader market (E[V ] = 0.007). The

reason that σp does not necessarily increase as liquidity drops is that traders optimally stay out of

the market most of the time. The need for liquidity that actually arrives at the market can be quite

low given the lack of its ex ante supply.

5.3 Demand of Liquidity

Given the importance of the interaction between the demand and supply of liquidity, we now take

cm as given and examine how the cost of spot participation c affects the need for liquidity and the

resulting equilibrium. Figure 7(a) plots the equilibrium level of liquidity µ for different values of c.

For small values of c, everyone can jump into the market on the spot at relatively low cost and thus

no one chooses to become a market maker (i.e., µ = 0). The equilibrium is a trader market. As c

reaches a critical value of 0.281, the market maker fraction µ increases significantly and the market

becomes a dealer market. It is worth noting that the critical value of the spot participation cost,

0.281, is higher than the cost to become a market maker, which is set to cm = 0.2. The reason for

this difference is clear. Spot participation allows agents not to pay the cost in the event of low ex

post trading needs. The value of this option is offset only when the cost of ex ante participation

is significantly lower. As c keeps increasing, more agents choose to become market makers (i.e., µ

increases with c). When c becomes sufficiently high (greater than 0.510), all agents become market

makers and µ is always 1.

(a) Equilibrium µ (b) Price volatility σp (c) Trading volume E[V ]
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Figure 7: Equilibrium and the cost of spot participation c. Panel (a), (b) and (c) report how equilibrium
liquidity supply µ, price impact of liquidity σp and trading volume depend on c, respectively. The vertical
dotted lines mark the point of c = 0.281, below which µ = 0. The cost to become a market maker is fixed at
cm = 0.2. Other parameters are set at the following values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, and σY = 0.7.
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Figure 7(b) demonstrates how the price impact of liquidity, as measured by σp, varies with the

spot participation cost. When c ≤ 0.281, we have a trader market (µ = 0). Surprisingly, even

within this market structure, the price volatility is not monotonic in c. For very small c, all agents

participate, leading to perfectly matched trades and no need for liquidity. Consequently, σp = 0.

As c increases, asymmetric participation occurs between traders. The stock price has to adjust in

order to balance the buyers and the sellers. The increasing price volatility reflects an increase in

participation asymmetry and a need for liquidity. When c increases further, the price volatility σp

becomes decreasing with c. It will be misleading, however, to interpret the reduction in σp as an

indication of an improving market liquidity. Similar to the result of Figure 6, this is due to the

endogeneity of liquidity needs. An increase in c reduces spot liquidity, which forces traders to enter

the market more symmetrically and reduces the observed need for liquidity. The much steeper drop

in trading volume in Figure 7(c) confirms the reduction in market liquidity. We summarize the result

as follows.

Result 4. When the need for liquidity is endogenous, a less liquid market may exhibit lower observed

price impact of liquidity as traders refrain from trading, accompanied by lower trading volume.

When c reaches a critical value, 0.281 in the figure, the market switches to a dealer market (µ > 0).

As Figure 7(a) indicates, further increase of c encourages more agents to become market makers.

Figure 7(b) and (c) show that the price volatility continues the decreasing trend as the participation

cost increases, while the volume starts to increase with the participation cost. Therefore, both price

volatility and volume reflect an increasing market liquidity as participation cost increases. The

reason for this counterintuitive result is that lower ex post costs hinder the incentive for agents to

participate ex ante (to provide liquidity). In summary, we have the following result.

Result 5. When both the demand and supply of liquidity are endogenous, lowering the cost of spot

participation can reduce market liquidity by discouraging agents to participate ex ante.

This result reflects the negative liquidity externality when agents withdraw from the market. We

discuss this externality in the next section.

6 Externality and Welfare of Liquidity

In this section, we consider the welfare implications of the externality from trading. We measure

an agent’s welfare by his certainty equivalence gain from participating in the market. Using the

value functions of market makers and traders in (19), we can define the certainty equivalence gain

as CEi ≡ − 1
α ln Ji

JNP
, for i = m,n, where JNP = E [Jn

NP ] is the value function of an agent who never
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participates. Since all agents are ex ante identical and have the choice of becoming a market maker

or a trader, their ex ante welfare is also identical, which is given by CE ≡ max{CEn, CEm}.
In Figure 8, we plot CE for different values of c (the solid line) when both liquidity demand (δ)

and supply (µ) are determined endogenously. In the absence of any externalities, one might expect

the welfare to decrease with c. Figure 8 clearly indicates that the opposite can be true. That is,

when the spot participation cost increases, agents’ welfare can actually improve. Indeed, the dashed

line is a horizontal line that marks the CE level at c = 0.6. We see that it is higher than (or equal

to) the CE for all c > 0.13, indicating that agents are better off at c = 0.6 than at 0.13 < c < 0.6.

This is a surprising result, which arises from the externality generated by those who supply liquidity

by becoming market makers.

0.1 0.2 0.3 0.4 0.5 0.6
c

0.1

0.2

0.3

CE

Figure 8: Welfare and the cost of spot participation c. The solid line reports the certainty equivalent gain CE
from optimal participation (hence CE =CEn =CEm) as a function of spot participation cost c. The horizontal
dashed line marks the level of CE at c = 0.6. The vertical dotted line marks the point of c = 0.281, below which
µ = 0. The cost to become a market maker is fixed at cm = 0.2. Other parameters are set at the following
values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, and σY = 0.7.

In order to see how liquidity provision influences welfare, we note from Figure 7(a) that the market

structure changes around c = 0.281—the population of market makers increases steeply from zero to

about 0.17 as c increases from slightly below 0.281 to slight above. The increase in the population of

market makers increases the liquidity supply in the market, which enhances the welfare of all agents

as Figure 8 demonstrates. Moreover, the point at which µ becomes positive (c = 0.281) coincides

with the point at which the welfare of agents starts to increase with c.

Note that at c = 0.281, the market structure changes from a trader market to a dealer market.

Although the population of market makers increases drastically from zero to 0.17, the change in

the welfare level of the economy is smooth at this point. The continuity in welfare, however, does

not imply that the change in market structure is immaterial. Figure 8 demonstrates a clear regime

shift at this point—there is a discrete change in the relation between welfare and primitives of the

economy such as the cost of spot participation. In particular, when c < 0.281, decreasing the spot

participation cost does not change the market structure (µ remains 0) and always improves welfare.

When c > 0.281, however, decreasing the spot participation cost reduces ex ante liquidity provision
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and hence decreases welfare. Such change in the properties of the market has important policy

implications, which we discuss in Section 7. We summarize this result as follows:

Result 6. When both the demand and the supply of liquidity are determined endogenously, lowering

the cost of spot participation can have the adverse effect of reducing welfare.

This result suggests that in the presence of trading externality, the market equilibrium—in which

agents optimally choose whether and when to enter the market—can be suboptimal. In particular,

the equilibrium supply of liquidity can be inefficient. In order to illustrate this point, we show

that agents’ welfare in the market equilibrium can be improved by simply forcing agents to pay the

participation cost to be in the market. The forced participation can be carried out either ex ante

or on the spot. In the former case all agents are forced to pay cost cm and become market makers

while in the latter case all traders are forced to pay cost c to participate in the market on the spot.

We consider these two cases separately.

We define the “welfare gain under forced participation” as the difference between the welfare

levels in the equilibrium under forced participation and under optimal participation,

G ≡ CEFP − CE, (25)

where CEFP is defined as the CE in the forced participation equilibrium.

We first consider the case of forced ex ante participation. Figure 9(a) reports the welfare gain

G in this case. When c is very small, forcing agents to pay the high cost cm, which is set at 0.2, is

clearly inefficient and reduces welfare. Interestingly, for the range of 0.13 < c < 0.20, the gain G > 0,

indicating that forcing all agents to pay cost cm can improve welfare, even though all agents have the

option to pay a lower cost c in the spot market in the competitive equilibrium. The improvement in

welfare reflects the fact that each agent’s participation brings additional liquidity to the market and

thus improves the welfare of others. In the competitive market equilibrium, an agent is not sufficiently

compensated for such a social benefit. Thus, their individual decisions can be different from what

is socially optimal. In the equilibrium under forced participation, enough gains are generated to be

shared equally among all agents, which can outweigh the extra costs paid. In summary, we have the

following result.

Result 7. Individual participation choices can lead to insufficient liquidity supply in the market and

the resulting welfare loss can outweigh total participation costs.

We now consider the case of forced spot participation, in which all traders pay cost c to participate,

independent of their trading needs. We first consider the welfare gain, holding the population of
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(a) Forced ex ante particpation (b) Forced spot participation (c) Forced spot participation
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Figure 9: The welfare improvement of forced participation. The figure reports the change in the certainty
equivalent wealth G as a function of spot participation cost c. Panel (a) reports the case of ex ante intervention,
in which all agents are forced to pay the ex ante cost cm. Panel (b) and (c) report the case of spot intervention,
in which all potential traders are forced to pay the spot cost c. The forced participation comes as a surprise
in Panel (b) and is fully anticipated in Panel (c). The vertical dotted lines mark the point of c = 0.281, below
which µ = 0. The cost to become a market maker is fixed at cm = 0.2. Other parameters are set at the following
values: α = 4, σ = 0.25, σz = 0.7, σε = 1.2, and σY = 0.7.

market makers the same as that under the competitive equilibrium. This is equivalent to assuming

that the forced participation is unanticipated so that agents don’t adjust their decisions to become

market makers in the first place. Figure 9(b) shows the welfare gain in this situation.15 For c < 0.057,

agents optimally choose to always participate as traders, yielding the same outcome as in the forced

participation equilibrium. Hence G = 0. For c ranges from 0.057 to 0.295, forced spot participation

improves welfare. From Figure 7(a), the equilibrium population of market makers is small for this

range of c. Forcing spot participation improves market liquidity significantly, leading to the welfare

gain.

In the case of forced spot participation, if agents are allowed to adjust their ex ante participation

decisions in anticipation of forced participation, their welfare will be further increased. In particular,

they rationally choose to pay the spot cost c for all c < cm and to pay the ex ante cost cm for

all c > cm. Thus, the welfare gain G is simply the maximum of the G’s in Figures 9(a) and 9(b),

which is given in Figure 9(c). In this case, the gain G is always positive, indicating that forced spot

participation always improves social welfare when all agents rationally anticipate the policy. The

gain is driven mainly by the increased ex ante liquidity provision. Thus, we have the following result:

Result 8. Forcing agents to participate in the market can improve social welfare, especially if it

encourages ex ante liquidity provision.

Despite the simplicity of our setting, the mechanism we have identified for a market failure in

coordinating costly liquidity provision is rather general: Each agent not only benefits from his own

15In this situation, the ex ante welfare of market makers and traders are no longer the same. G is then defined as
the population weighted average of their ex ante welfare measured in certainty equivalence.

27



trades but also brings liquidity to the market. Bearing the full cost alone, each agent may not be able

to efficiently internalize the benefit he creates for the market. As a result, the traders’ participation

decisions, while optimal at the individual level, may well be socially sub-optimal.

It is well recognized in the literature that markets may not always achieve efficient outcomes when

frictions are present. For example, Diamond (1982) examines markets in which trading is conducted

through a search process and shows that the resulting equilibrium can be inefficient. Pagano (1989)

and Allen and Gale (1994) show the possibility of Pareto-dominated equilibria in markets with ex

ante participation costs. Our results are different in nature. These papers focus on the multiplicity

of equilibria and the Pareto inefficiency of some of these equilibria relative to others. We focus on the

equilibrium that is not dominated and our results are on its inefficiency (as stated in Section 3.4, we

ignore the dominated equilibrium). Our welfare comparison is between equilibrium under different

primitives such as c and cm (i.e., between different economies), not between different equilibria of a

given economy.

7 Policy Implications

Liquidity in the market, especially at the time of crises, has been an important issue for regulators

and policy makers. For example, during unusual times, such as the LTCM crisis in 1998, the days

around Y2K, the time after 9.11, and the recent sub-prime mortgage crisis, the Federal Reserve Bank

took direct actions to ensure sufficient level of liquidity in the market when needed. These actions

range from the coordination of major dealers in providing liquidity (e.g., for the LTCM crises) to

the direct injection of liquidity (e.g., for Y2Y, 9.11 and the sub-prime crisis). The current surge of

the hedge fund industry also raises new challenges. On the one hand, facing fewer constraints than

most existing financial intermediaries, hedge funds often play the role of market makers and supply

liquidity. On the other hand, the risk taking nature of their business tends to put hedge funds in

volatile situations especially when crises hit. There are increasing concerns about their impact on

market stability if they become liquidity constrained themselves. Tightening margins and restricting

exposures of major banks to hedge funds have been proposed as preventive measures to restrain

potential liquidity crunches.

Arguments have been presented both for and against these actions and proposals. But a com-

prehensive theoretical foundation for these policy discussions remains lacking. Although a detailed

policy discussion is not the focus of this paper, our model nonetheless provides a useful framework

to consider the determinants of market liquidity and to examine the welfare impact of certain inter-

vention policies. A full analysis of the model’s policy implications is beyond the scope of this paper,
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our discussion below is only exploratory.

Our theory predicts that lowering the cost of ex ante participation in general increases liquidity

supply and welfare. Therefore, policies that lower the entry cost and restrictions for dealers/market

makers are welfare improving. To the extent that hedge funds perform the market making role,

relaxing their margin constraints may decrease the cost for them to maintain their constant presence

and improve market liquidity. On the other hand, we find that lowering the cost of spot participation

does not necessarily increase liquidity supply and welfare, especially if it is anticipated by market

participants. This suggests that an anticipated government policy of relaxing margin constraints or

injecting liquidity during crises is not always optimal. It tends to reduce the incentive for agents to

establish themselves as market makers and thus lowers the level of liquidity supplied by the market.16

Our discussion above is based on the interpretation of spot liquidity injection as lowing the cost

of spot participation to lure those who are holding back to jump in. In the time of crisis, however,

liquidity injection often takes the form of relaxing capital constraints for existing market makers.

Although in our model capital plays no explicit role in agents’ behavior, as discussed in Section 2.E,

the population of market makers plays the same role as the total amount of capital in the market

in terms of affecting the overall risk taking capacity. From this perspective, increasing capital is

equivalent to adding more market makers ex post, which can reduce the profit for existing market

makers. This effect is similar to that of lowering the spot participation cost in the model, which

encourages traders with offsetting trading needs to provide liquidity and to compete away the profit

for existing market makers. In both cases, the new liquidity reduces the ex ante incentive to become

a market maker (or to stock capital).

If, however, the capital is targeted directly at the existing market makers, then it becomes a

subsidy to them. The resulting impact can be complex, depending on factors such as how the capital

is raised and distributed. Suppose, for example, that the capital is distributed evenly among market

makers free of charge. Then, this liquidity insurance amounts to a government handout. It will

induce more agents to become market makers. Of course, this subsidy needs to be paid, say, through

an ex ante tax over all agents. The net effect will depend on the trade off between the gain from more

market makers (and more liquidity) and the cost to induce them. Suppose, however, the liquidity is

offered to the market makers through a market mechanism, like the new credit facilities the U.S. Fed

offered to banks and security firms during the current credit crisis. We then face the same situation

16Before Y2K, the Federal Reserve Bank of New York sold loan options to depository institutions and Treasury bond
dealers (Special Liquidity Facility and Special Financing Facility) in order to guarantee sufficient liquidity during the
Y2K transition. This is in the spirit of a state-contingent liquidity injection considered here. Interested readers are
referred to Sundaresan and Wang (2006) for a more detailed account of the Y2K options and the market behavior
during that time.
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in which market makers choose to buy inefficient amount of liquidity.

Our findings by no means rule out the possibility of positive intervention during crises. If instead,

the government can coordinate traders to participate in the market in the event of severe liquidity

shortage, liquidity and welfare can be improved under certain circumstances.17 In general, our theory

suggests that mechanisms that resemble “forced spot participation” (e.g., coordination of trading),

especially if they are anticipated by the market, are better at improving liquidity than those that

resemble “subsidized spot participation” (e.g., direct injection of liquidity or relaxation of ex post

margin constraints). The reason is that agents do not expect to gain by waiting for spot participation,

and hence the anticipation of future interventions does not hinder their ex ante liquidity provision

motive.

Our analysis also shows that policy implications can be different under different market structures.

For example, as shown in Figure 8, while lowering the spot participation cost can improve welfare in

a trader market (when c < 0.281), it decreases welfare in a dealer market (when c ≥ 0.281).

8 Related Literature

The literature on liquidity and its impact on the securities market is extensive. In this section, we

discuss those work that are closest to this paper. Most of the previous work has focused on the

supply of liquidity, taking its demand as exogenous. The theory on market microstructure, which

studies the actual trading process, starts with an exogenous order flow process and examines how

market makers provide liquidity by accommodating order imbalances (e.g., Ho and Stoll (1980), Stoll

(1985), Glosten and Milgrom (1985), and Kyle (1985)). Grossman and Miller (1988) further point

out that it is costly for market makers to maintain market presence. They analyze how these costs

determine the level of liquidity supply and its impact on prices under exogenous liquidity shocks. In

this paper, we show that the same costs actually give rise to the need for liquidity in the first place.

By explicitly modeling the endogenous need for liquidity, we obtain important insights on how it

behaves, how it interacts with the supply of liquidity in equilibrium, and how liquidity affects prices

and welfare.

Our paper expands the work of Grossman and Miller (1988), Pagano (1989) and Allen and Gale

(1994). By observing that the same participation cost causes the need for liquidity in the first place,

we fully endogenize the liquidity need (or order imbalance). Instead of relying on exogenous liquidity

shocks at the aggregate level, we show how liquidity need arises from purely idiosyncratic shocks.

This allows us to gain additional insights into its properties, which can be quite different from those

17During the LTCM crisis, the Federal Reserve Bank of New York facilitated the formation of a consortium of
investment banks which provided the new capital to prevent the hedge fund from collapsing.
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assumed for exogenous liquidity shocks. It also allows us to examine how the demand and supply of

liquidity interact with each other in equilibrium, leading to different market structures and different

relations between liquidity and price behavior. It further allows us to study how liquidity affects

welfare.

The model we use shares many features with the model of Lo, Mamaysky, and Wang (2004), who

consider the impact of fixed transactions costs on trading volume and the level of asset prices. The

main difference is that we focus on the possible imbalance in liquidity needs and its impact on prices

while they do not. They allow the cost to be allocated endogenously so that the trades of different

market participants are always synchronized in equilibrium and there is no order imbalance and net

liquidity need. As we show in this paper, it is the order imbalance that leads to changes in liquidity

needs and instability in asset prices.

A closely related paper is Huang and Wang (2007), which uses a similar setting to arrive at

endogenous liquidity need. The main differences are two-fold. In Huang and Wang (2007), the

supply of liquidity is taken as given while analyzing the demand for liquidity. In this paper, we also

endogenize the supply of liquidity. As we have shown, the interaction between the two when both

are endogenous, has a fundamental influence on the behavior of liquidity in the market. Second,

Huang and Wang (2007) focuses on the impact of liquidity on prices. In this paper, we focus on

market structure, welfare and policy implications concerning liquidity. It is also for this purpose that

we have to endogenize liquidity supply in a unified setting. At a more technical level, the aggregate

risk is assumed to be positive and constant in Huang and Wang (2007). This is needed in modeling

markets with positively supplies such as the equity market. For our purpose, we do not need this

restrictive assumption, which simplifies the analysis.

In our model, costs to transact in the market take the simple form of participation costs. The

organization of the market still takes the form of a centralized exchange. This is a reasonable

description for major securities markets, such as the New York Stock Exchange or Chicago Mercantile

Exchange, but less so for others, such as over-the-counter (OTC) markets for long term options and

corporate bonds. For these OTC markets, costs to transact may take different forms. For example,

Duffie, Garleanu, and Pedersen (2005) solve for equilibrium prices in an OTC market with search

and bargaining among market participants.18

Our paper is also related to a growing literature that studies the welfare implications of different

market structures. Brusco and Jackson (1999) show that competitive ex post trading reduces the

incentive for agents to participate ex ante to become market makers and can lead to Pareto inef-

18The literature that utilizes the search framework to model financial market transactions include Rubinstein and
Wolinsky (1987), Gale (1987), and Vayanos and Wang (2007), among others.
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ficiency. They argue that giving market makers ex post market power can increase their ex ante

participation and improve social welfare.

9 Conclusion

In this paper, we show that frictions such as participation costs can induce imbalances in agents’

trades even when their trading needs are perfectly matched. Each trader, when arriving at the

market, faces only a partial demand/supply of the asset. The mismatch in the timing and the size

of trades creates temporary order imbalance and the need for liquidity, which causes asset prices to

deviate from the fundamentals. By endogenously determine both the demand and supply of liquidity,

we are able to show that purely idiosyncratic liquidity shocks can affect prices, introducing additional

price volatility. The price deviations always amplify the price impact of aggregate shocks, and is of

large sizes whenever they occur, leading to fat tails in returns.

Moreover, we find that traders optimally refrain from participating in less liquid market, leading

to lower observed liquidity needs. As a result, prices do not necessarily exhibit higher liquidity impact

or higher volatility in less liquid markets, rendering it necessary to incorporate trading volume into

measures of market liquidity.

Finally, we show that partial participation in the market by a subset of traders can have important

welfare implications. In particular, the withdrawal of a subset of traders from the market reduces

market liquidity, which further reduces the incentive for others to participate in the market. The

fact that participating agents cannot fully internalize the benefit from their liquidity provision leads

to sub-optimal provision of liquidity despite the optimizing behavior at the individual level.

This inefficiency in the market mechanism leaves room for policy intervention. However, the

design of efficient intervention is far from obvious as it affects the demand and supply of liquidity in

intricate ways. For example, lowering the cost of supplying liquidity on the spot (e.g., through direct

injection of liquidity or relaxation of ex post margin constraints) can decrease welfare by reducing

the profit opportunities for market makers and thus the ex ante incentive for them to be there. On

the other hand, forcing more liquidity supply (e.g., through coordination of market participants)

during times of crises can improve welfare. The key distinction is that agents do not expect to be

subsidized during crises, and hence the anticipation of future interventions does not hinder their ex

ante incentive to supply liquidity.
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A Appendix

Proof of Proposition 1

Participating agent i maximizes his expected utility over his terminal wealth W i
2, defined in (6).

Integrating over the distribution of D, we have the following:

max
θi
1

−e−α[−ci+θi
0(P1−P0)+θi

1(−P1)− 1
2
ασ2(θi

1+Y +λiZ)2] (A1)

The optimal holding is obtained by solving the first order condition with respect to θi
1:

θi
1 = −P1/(ασ2)− Y − λiZ, i = a, b. (A2)

Given initial holding θi
0 = 0 and (ωa, ωb), the market clearing condition at time 1+ is

1
2µ (θa

1 + θb
1) + 1

2(1−µ) (ωaθa
1 + ωbθb

1) = 0 (A3)

Substituting θi
1 into (A2) and the definition of δ in (8) yields the equilibrium price P1. The optimal

holding in the proposition is obtained by substituting the equilibrium price P1 back into (A2).

Proof of Proposition 2

To calculate J i
P , we substitute θi

0 = 0, the equilibrium P1, and θi
1 into (A1) and integrate over Z

conditional on Y , X and λi, which yields

J i
P (·) = − 1√

1−k+k (1−λiδ)2
e
−α

[
−ci− ασ2

2(1−k)
(Y +λiX)2+

ασ2(1−λiδ)2

2(1−k)[1−k+k(1−λiδ)2]
(kY +λiX)2

]
. (A4)

To calculate J i
NP , we set θi

1 = θi
0 and ci = 0 in (A1) and integrate over Z conditional on Y , X, and

λi:

J i
NP (·) = − 1√

1− k
e
−α

[
− ασ2

2(1−k)
(Y +λiX)2

]
. (A5)

Substituting J i
P and J i

NP into (13) yields the trading gain g(·). Clearly, J i
P >J i

NP iff gi(·)>0.

Proof of Proposition 3

For brevity, we denote gi(δ) ≡ gi(δ;Y, X). We prove the result when X and Y have the same sign.

The case of different signs can be proved by switching the indexes a and b.

Lemma A.1. The gains ga(δ) strictly decreases with δ and gb(δ) strictly increases with δ.

Proof: Using (14), we compute the partial derivative of gi(·) with respect to δ,

∂gi(δ)
∂δ

= −λi(1−λiδ)
[
ασ2(k Y +λiX)2

(di)2
+

k

αdi

]
, di ≡ 1−k+k(1−λiδ)2. (A6)

Since k > 0, di > 0, δ < 1, and λa = −λb = 1, we have ∂ga/∂δ < 0 and ∂gb/∂δ > 0. QED.
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Lemma A.2. When δ = 0, ga(0) ≥ gb(0).

Proof: gi(0) =
ασ2

2(1−k)
(k Y + λiX)2 − 1

2α
ln(1−k)− c, i = a, b.

Whenever X has the same sign as Y , we have ga(0) ≥ gb(0). QED.

From Lemma A.2, the state space has 3 regions, (A) 0≥ga(0)≥gb(0), (B) ga(0)≥gb(0)≥0, and

(C) ga(0) > 0 > gb(0), which correspond to the three cases in the proposition. In region A, we can

show that ωa =ωb =0 is the unique equilibrium. If instead ωa >ωb, then δ >0 and ga(δ)<ga(0)≤0

from Lemma A.1 and the condition for region A. Hence, some group-a traders will exit and ωa

decreases. Similarly, if ωa < ωb, then δ < 0 and gb(δ) < gb(0)≤ 0. Group-b traders will exit and ωb

decreases. Hence, in equilibrium, ωa =ωb and δ = 0. Since both gi(0)≤0, ωa =ωb =0 is the unique

equilibrium. Similarly, in region B, we can show that ωa =ωb =1 and δ = 0 is the unique equilibrium.

Note that ga(0) = gb(0) = 0 is included in both regions A and B. In fact, any ωa = ωb ∈ [0, 1] is a

solution. We do not separate out this case for conciseness, as it occurs only for a single realization

of X and Y .

In region C, we consider three subcases based on gi(δ̄), where δ̄ ≡ (1−µ)/(1+µ) is the maximum

possible δ in (8) (since ωa and ωb are bounded in [0, 1]).

(i) If ga(δ̄)>0>gb(δ̄), then Lemma A.1 yields ga(δ)≥ga(δ̄)>0>gb(δ̄)≥gb(δ) for any feasible δ.

Thus, ωa =1 and ωb =0 is the unique equilibrium, and δ= δ̄.

(ii) If ga(δ̄) > 0 and gb(δ̄) > 0, then there exists a unique sb ∈ (0, δ̄) that solves gb(sb) = 0.

(Lemma A.1 and gb(0) < 0 in region C.) Since ga(δ)≥ ga(δ̄)≥ 0 for any feasible δ, we always have

ωa = 1 in equilibrium. Let ω̂b ≡
1−µ

2
(1−sb)−µsb

1−µ
2

(1+sb)
, then for any ωb > ω̂b, δ < sb and gb(δ) < gb(sb) = 0,

some group-b will stop participating and ωb decreases. For any ωb <ω̂b, δ>sb and gb(δ)>gb(sb)=0,

and more group-b will participate and ωb increases. Hence, ωa =1, ωb = ω̂b ∈ [0, 1), and δ=sb is the

unique equilibrium.

(iii) If ga(δ̄) ≤ 0, there exists a unique sa ∈ (0, δ̄] that solves ga(sa) = 0. If gb(sa) ≤ 0, then

a similar argument to case (ii) shows that ωa = ω̂a ≡ µ sa

1−µ
2

(1−sa)
∈ (0, 1] and ωb = 0 is the unique

equilibrium and δ = sa. If gb(sa) > 0, there exists a unique sb ∈ (0, sa) that solves gb(sb) = 0. Since

ga(sb)>ga(sa)=0, ωa =1, ωb = ω̂b ∈ [0, 1), and δ=sb is the unique equilibrium.

We now consider the case of µ = 0. First, ωa = ωb = 0 is always an equilibrium. Assume the

equilibrium belief is ωa = 0, then Jb
P = Jb

NP eαc < Jb
NP and ωb = 0 is the only equilibrium outcome.

Similarly, a belief of ωb = 0 leads to a unique equilibrium of ωa = 0. Second, in the above positive

participation equilibrium, since kY +X can be arbitrarily large, ga(0) > 0 is always possible. Hence,

region A does not cover the full state space and we have ωa =1 for at least some realizations of X

and Y . Whenever ωa = 1, the trading gain ga ≥ 0. Since ga = 0 when ωa = ωb = 0, the equilibrium
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without participation is always Pareto dominated by the one with participation.

Proof of Lemma 1

We first prove the existence and uniqueness of κ. From (19) and (A4), we have

∂Jm(µ, cm)
∂cm

=αJm <0. (A7)

Also, we show that Jm(µ, c)≤Jn(µ, c)≤Jm(µ, 0), where the first inequality is because of (19) and

the fact that J i
P ≤max{J i

P , J i
NP}, and the second inequality is because Jm(µ, 0)=Jn(µ, 0)>Jn(µ, c)

for any c≤0. Hence, there exists a unique κ ∈ [0, c] such that Jm(µ, κ)=Jn(µ, c).

To show that κ decreases with µ, we take derivative of Jm(·)=Jn(·) w.r.t. µ on both sides.

∂Jm(µ, κ)
∂µ

+
∂Jm(µ, κ)

∂κ

∂κ

∂µ
=

∂Jn(µ, c)
∂µ

. (A8)

Given (A7), we only need to calculate ∂Jm/∂µ and ∂Jn/∂µ in order to sign ∂κ/∂µ.

Following the proof of Proposition 3, we separate the state space (X, Y ) into 5 regions: (A)

ωa =ωb =0, (B) ωa =ωb =1, (C1) ωa =1, ωb =0, (C2) ωa ∈ (0, 1), ωb =0, and (C3) ωa =1, ωb ∈ (0, 1).

Regions A and B are the same as those in Proposition 3, and combining regions C1, C2 and C3 yields

region C. Let Gi ≡ J i
P − J i

NP , then Gi = J i
NP (e−αgi(δ) − 1), where gi(δ) ≡ gi(·) in (14). Thus, Gi >0

iff gi >0, which occurs only if ωi =1. Hence, we can write Jn(·) as JNP plus the gains from trading

in regions with ωi =1. That is,

Jn(µ, c) = 1
2 E

[
Ja

NP + Jb
NP

]
+ 4× 1

2

(
E{B,C1,C3}[G

a] + EB[Gb]
)

,

where the factor 1
2 reflects averaging over realizations of λi and the factor 4 reflects the symmetric

gain in the four quadrants while we focusing only on the X >0, Y >0 quadrant.

To calculate ∂Jn(µ, c)/∂µ, note that J i
NP is clearly independent of µ. Since gi(·) depends on µ

only through δ, so does Gi. Moreover, in regions A and B, δ=0 and is clearly independent of µ. In

regions C2 and C3, δ solves either ga(δ)=0 or gb(δ)=0 and is also independent of µ. Therefore, Gi

depends on µ only in region C1, in which δ = δ̄. Let No be the boundary of any region N , then

∂EN[Gi]
∂µ

= Gi(No)
∂No

∂µ
+ EN

[
∂Gi

∂µ

]
. (A9)

Hence the second term is nonzero only in region C1. To calculate the first term, note that N =

{B, C1, C3} for agent a. From the proof of Proposition 3, the boundary No is ga(δ) = 0. Hence,

Ga(No)=0. For agent b, N ={B} and the boundary is gb(0)=0, which is independent of µ. Hence,

∂No/∂µ=0. So the first term of (A9) is always 0. Therefore,

∂Jn(µ, c)
∂µ

= 2EC1

[
∂Ga

∂µ

]
. (A10)
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Similarly, to calculate ∂Jm(µ, c)/∂µ, we write Jm as JNP plus trading gains and apply (A9).

Jm(µ, cm) = 1
2 E

[
Ja

NP + Jb
NP

]
+ 4× 1

2 EN [ Ga + Gb ]
∣∣∣
ci=cm

, N = {A,B, C1, C2, C3}.

Since N is the full space, the first term of (A9) is also zero. Hence,

∂Jm(µ, cm)
∂µ

= 2
(

EC1

[
∂Ga

∂µ

]
+ EC1

[
∂Gb

∂µ

])
. (A11)

Combining (A7), (A8), (A10), and (A11), we have

∂κ

∂µ
= − 2

αJm
EC1

[
∂Gb

∂µ

]
≤ 0, (A12)

where the inequality follows from Jm <0, ∂Gb

∂µ = ∂Gb

∂δ
∂δ̄
∂µ , and ∂Gb

∂δ >0 (from Lemma A.1) and ∂δ̄
∂µ <0

(from the definition of δ̄).

The condition for the strict inequality can be derived in three steps. First, given the strict

negativity of ∂Gb

∂µ , the inequality is strict iff there exists a region C1. Second, there exists a region C1

in which ga(δ̄)>0>gb(δ̄) iff gb
2 <c, where gb

2 is in (A13d). We plug δ̄ into (14) to derive the following

trading gains in region C1,

ga(δ̄) = ga
1(X + kY )2 + ga

2 − c (A13a)

ga
1 ≡

2α σ2 µ2

(1−k)[(1+µ)2 − k(1−µ)(1+3µ)]
, ga

2 ≡
1
2α

ln
[
1 +

4 k µ2

(1−k)(1+µ)2

]
(A13b)

gb(δ̄) = gb
1(X − kY )2 + gb

2 − c (A13c)

gb
1 ≡

2α σ2

(1−k)[(1+µ)2 + k(1−µ)(3+µ)]
, gb

2 ≡
1
2α

ln
[
1 +

4 k

(1−k)(1+µ)2

]
. (A13d)

To prove this second step, note that if gb
2 ≥ c, then gb(δ̄) ≥ 0 and there does not exist region C1.

On the other hand, if gb
2 <c, gb(δ̄)< 0 for X close enough to kY , while it is always possible to find

sufficiently large X + kY such that ga(δ̄)>0. Hence, there always exists a region C1. Third, gb
2 <c

iff µ>µ, defined in (20). If µ ∈ (0, 1), the result holds since µ solves gb
2 =c and gb

2 strictly decreases

in µ. If µ=0, then gb
2(0)≤c. Hence, for any µ>µ=0, gb

2 <gb
2(0)≤c, proving the result. Similarly, if

µ=1, the result holds since for any µ<µ=1, gb
2 >gb

2(1)≥c.

Proof of Proposition 4

If cm < cm ≡ κ(1), then for any µ ≤ 1, we have cm < κ(µ) by Lemma 1. Hence, Jm(µ, cm) >

Jm(µ, κ(µ))=Jn(µ, c), where the equality is the definition of κ(µ). Thus, equilibrium is reached only

when µ=1. Similarly, if cm >cm ≡ κ(0), we have cm >κ(µ) and Jm(µ, cm)<Jm(µ, κ(µ))=Jn(µ, c)

for any µ≥0, and µ=0 is the unique equilibrium.

If cm = cm ≡ κ(0), we have κ(0) = κ(µ) for any µ ∈ [0, µ] and κ(0) > κ(µ) for any µ > µ

from Lemma 1. At any µ > µ, Jm(µ, cm) = Jm(µ, κ(0)) < Jm(µ, κ(µ)) = Jn(µ, c), and µ decreases
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in equilibrium. At any µ ∈ [0, µ], Jm(µ, cm) = Jm(µ, κ(0)) = Jm(µ, κ(µ)) = Jn(µ, c). Hence, any

µ ∈ [0, µ] is an equilibrium. As a special case, if µ=0, then µ=0.

If cm ≤ cm < cm, we can show that µ = κ−1(cm) is the unique equilibrium. Since cm < cm =

κ(0) = κ(µ), we have κ−1(cm) > µ from Lemma 1. For any µ < κ−1(cm), we have κ(µ) > cm and

Jm(µ, cm)>Jm(µ, κ(µ))=Jn(µ, c). Hence, µ increases in equilibrium. Similarly, for any µ>κ−1(cm),

we have κ(µ)<cm and Jm(µ, cm)<Jm(µ, κ(µ))=Jn(µ, c) and µ decreases in equilibrium. As a result,

µ=κ−1(cm) is the unique equilibrium.

We now derive the speed of decrease in optimal µ when µ = 0, especially for small µ. Since

µ=κ−1(cm) in this case, we have ∂µ/∂cm =1/(∂κ/∂µ). From (A12), both the size of region C1 and

the value of ∂Gb/∂µ in region C1 affect ∂κ/∂µ.

We first bound the size of region C1. From (20), µ=0 requires gb
2(0)≤c. Combining with (A13),

we have ga
2(µ)≤gb

2(µ)≤gb
2(0)≤c for any µ. Define ga

3 ≡
√

(c− ga
2)/ga

1 and gb
3 ≡

√
(c− gb

2)/gb
1. When

X, Y >0, the condition ga(δ̄)>0>gb(δ̄) (for region C1) requires

X >−kY + ga
3 and kY − gb

3 <X <kY + gb
3, (A14)

which requires Y > 1
2k (ga

3 − gb
3). From (A13), when µ → 0, ga

3 =O(1/µ) and gb
3 =O(1). Hence,

PC1 ≡ Prob[X, Y ∈ C1]<Prob[Y >(ga
3 − gb

3)/(2k)] = 1− Φ[O(1/µ)] = O
(
e−1/µ2

)

gives the size of region C1, where Φ(·) is the cumulative normal density.

Next, we bound the term ∂Gb

∂µ in (A12) within region C1. From the definition of Gi,

∂Gb

∂µ
= αJb

NP e−αgb(δ̄) 2 (1+µ)(1−k)
(1+µ)2 + k(1−µ)(3+µ)

[
gb
1(X − kY )2 +

2 k

α(1−k)(1+µ)2

]
.

Since gb(δ̄)<0 in region C1, from (A13), we have 0≤gb
1(X−kY )2≤c−gb

2. Thus, there exists positive

constants F1, F2 such that −F1 < ∂Gb

∂µ <−F2, and EC1 [
∂Gb

∂µ ] ∈ (−F1 PC1 , 0). Combining this bound

with (A12), we have ∂κ/∂µ=−O
(
e−1/µ2)

. Thus, ∂µ/∂cm =−O
(
e1/µ2)

for small µ.

Proof of Proposition 5

From Proposition 4, when cm <cm, the equilibrium for market makers is unique and µ>0. Taking

µ as given, we derive the first order condition for a market maker, using (A4):

∂Jm

∂θi
0

= E
[

1
2

(
∂Ja

P

∂θi
0

+
∂Jb

P

∂θi
0

)∣∣∣∣ ci =cm

]
(A15)

where

∂J i
P

∂θi
0

= −αJ i
P (−P0) + αJ i

P Di
P , Di

P ≡
ασ2

[
k δ2θi

0+δX+(1−k λiδ+k δ2)Y
]

1− k + k (1− λiδ)2
, i = a, b.
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Given Proposition 3 and the symmetry between group-a and -b traders, we have

δ(X, Y ) = δ(−X,−Y ) = −δ(X,−Y ) = −δ(−X, Y ).

At θi
0 = 0, J i

P (X, Y ) = J i
P (−X,−Y ) and Di

P (X,Y ) =−Di
P (−X,−Y ). Thus, E

[
J i

P Di
P | θi

0 =0
]
= 0,

and (A15) simplifies to ∂Jm

∂θi
0
|θi

0=0 = −α (−P0) E
[
(Ja

P + Jb
P )/2 | ci = cm

]
. Market clearing requires that

∂Jm

∂θi
0
|θi

0=0 =0. Hence, P0 =0 and θi
0 =0 is the unique equilibrium.

When cm >cm, from Proposition 4, µ=0 is the unique equilibrium. From Proposition 3, we know

that the autarky equilibrium for traders with ωa = ωb = 0 is Pareto dominated by the equilibrium

with participation. In the positive participation equilibrium, δ is still well defined, and all the above

derivation applies. Hence, P0 =0 and θi
0 =0 is still the equilibrium.

When cm =cm, from Proposition 4, there are multiple equilibria for µ ∈ [0, µ) when µ>0. From

the proof of Lemma 1, we know that µ≤µ is the necessary and sufficient condition for gb
2≥c, which is

the necessary and sufficient condition to rule out the existence of region C1. From (A10) and (A11),

we see that the utility for both traders and market makers is independent of µ in the absence of

region C1, which coincides with the above condition for multiple equilibria. Hence, even though there

are multiple equilibria for µ when cm =cm, the welfare level remains constant across these equilibria.

Similar to the cm >cm case, if µ=0, there exist an additional autarky equilibrium, which is Pareto

dominated by all the positive participation equilibria.
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