Literature Cited

1.
Agard, D. A., Y. Hiraoka, P. Shaw and H. W. Sedat. 1989. Fluorescence microscopy in three dimensions. Methods in Cell Biology. 30:353-377.
2.
Anderson, D. A., J. C. Tannehill and R. H. Pletcher. 1984. Computational fluid mechanics and heat transfer. McGraw-Hill Book Co.: New York.
3.
Abidor, I. G., V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pastushenko and M. R. Tarasevich. 1979. Electric breakdown of bilayer membranes: 1. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6:37-52.
4.
Ayers, G. R., and J. C. Dainty. 1988. Iterative blind deconvolution method and its applications. Opt. Lett. 13:547-549.
5.
Barnett, A. and J. C. Weaver. 1991. Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Bioelectrochem. Bioenerg. 25:163-182.
6.
Benz, R., and U. Zimmerman. 1980. Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochem. Bioenerg. 7:723-739.
7.
Benz, R., and U. Zimmerman. 1981. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim. Biophys. Acta. 640:169-178.
8.
Blank, M. 1993. Eds: Electricity and magnetism in biology and medicine. San Francisco Press: San Francisco.
9.
Chang, D. C. and T. S. Reese. 1990. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58:1-12.
10.
Chang, D. C., B. M. Chassy, J. A. Saunders, and A. E. Sowers. 1992. Eds.: Guide to electroporation and electrofusion. Academic Press: New York.
11.
Chen, W., and R. C. Lee. 1994. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers. Biophys. J. 66:700-709.
12.
Chernomordik, L. V., S. I. Sukharev, I. G. Abidor, and Y. A. Chizmadzhev. 1983. Breakdown of lipid bilayer membranes in an electric field. Biochim. Biophys. Acta. 736:203-213.
13.
Chernomordik, L. V., S. I. Sukharev, S. V. Popov, V. F. Pastushenko, A. V. Sokirko, I. G. Abidor, and Y. A. Chizmadzhev. 1987. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim. Biophys. Acta. 902:360-373.
14.
Coster, H. G. L., and U. Zimmermann. 1975. The mechanism of electrical breakdown in the membranes of {\it Valonia utricularis. J. Membr. Biol. 22:73-90.
15.
Donoho, D., and I. Johnstone. 1992. Adapting to unknown smoothness via wavelet shrinkage. Technical Report. Department of Statistics. Stanford University.
16.
Freeman, S. A., M. A. Wang, and J. C. Weaver. 1994. Theory of electroporation of planar bilayer membranes: Predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys. J. 67:42-56.
17.
Gardiner, C. W. 1985. Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer-Verlag: New York.
18.
Gaylor, D. C., K. Prakah-Asante and R. C. Lee. 1988. Significance of cell size and tissue structure in electrical trauma. J. Theor. Biol. 135:223-237.
19.
Glaser, R. W., S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko, and A. I. Sokirko. 1988. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochem. Biophys. Acta. 940:275-287.
20.
Gowrishankar, T. R., R. C. Lee and C.-T. Chen. 1993. 3-D reconstruction of a skeletal muscle cell from optical sections. Proc. SPIE Int. Conf. Biomed. Image Processing, San Jose, CA 1905:152-157.
21.
Gruenbaum, Y., M. Hochstrasser, D. Mathog, H. Saumweber, D. A. Agard and J. W. Sedat. 1984. Spatial reorganization of the Drosophila nucleus: a three-dimensional cytogenetic study. J. Cell Sci.-Supp. 1:223-34.
22.
Hibino, M., M. Sigemori, H. Itoh, K. Nagayama, and K. Kinosita, Jr. 1991. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209-220.
23.
Hibino, M., I. Hiroyasu and K. Kinosita, Jr. 1993. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789-1800.
24.
Jack, J. J. B., D. Noble, and R. W. Tsien. 1975. Electric current flow in excitable cells. Clarendon Press: Oxford.
25.
Joyner, R.W., D. Picone, and R. Veenstra. 1983. Propagation through electrically couple cells: effects of regional changes in cell properties. Circ. Res. 53:526-534.
26.
Katz, B. 1966. Nerve, muscle and synapse. McGraw-Hill, Inc.:New York. pp. 73-75.
27.
Lee, R. C. 1991. Physical mechanisms of tissue injury in electrical trauma. IEEE Trans. Educ. 14:221-230.
28.
Lee, R. C., L. P. River, F. S. Pan, L. Ji, and R. L. Wollmann. 1992. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA. 89:4524-4528.
29.
Loew, L. M. 1992. Voltage-sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics Supplement 1:179-189.
30.
McNally, J. G., C. Preza, J-A. Conchello, and L. J. Thomas, Jr. 1994. Artifacts in computational optical-sectioning microscopy. J. Opt. Soc. Am. A. 11:1056-1067.
31.
Neumann, E., A. Sowers, and C. Jordan. 1989. Eds: Electroporation and electrofusion in cell biology. Plenum Press: New York.
32.
O'Neill, R. J., and L. Tung. 1991. Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys. J. 59:1028-1039.
33.
Orlowski, S., and L. M. Mir. 1993. Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim. Biophys. Acta. 1154:51-63.
34.
Ranck, J. R., Jr. 1963. Analysis of specific impedance of rabbit cerebral cortex. Expt. Neurol. 7:153-174.
35.
Rall, W. 1977. In: Handbook of physiology-the nervous system. Vol I. American Physiological Society. Bethesda, MD.
36.
Rohr, S., and B. M. Salzberg. 1994. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301-1305.
37.
Saulis, G. and M. S. Venslauskas. 1993. Cell electroporation. Part I. Theoretical simulation of the process of pore formation in a cell. Bioelectrochem. Bioenerg. 32:221-235.
38.
Starck, J-L. and A. Bijaoui. 1994. Multiresolution deconvolution. J. Opt. Soc. Am. A. 11:1580-1588.
39.
Sten-Knudsen, O. 1960. Is muscle contraction initiated by internal current flow. J. Physiol. 151:363-384.
40.
Sugar, I. P. and E. Neumann. 1984. Stochastic model for electric field-induced membranes pores: Electroporation. Biophys. Chem. 19:211-225.
41.
Serpersu, E. H., and T. Y. Tsong. 1983. Stimulation of a ouabain-sensitive Rb$^+$ uptake in human erythrocytes with an external electric field. J. Membr. Biol. 74:191-201.
42.
Teissie, J., and T. Y. Tsong. 1980. Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J. Membr. Biol. 55:133-140.
43.
Tien, H. T. 1974. Bilayer lipid membranes (BLM): Theory and practice. Mercel Dekker, Inc. New York.
44.
Tsong, T. Y. 1991. Electroporation of cell membranes. Biophys. J. 60:297-306.
45.
Weaver, J. C. and R. A. Mintzer. 1986. Conduction onset criteria for transient aqueous pores and reversible electrical breakdown in bilayer membranes. Bioelectrochem. Bioenerg. 15:229-241.
46.
Weaver, J. C. 1993. Electroporation: a general phenomenon for manipulating cells and tissue. J. Cell. Biochem. 51:426-435.