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Abstract
In this paper, we present numerical algorithms for
squaring a non-square system by finding -additional
columns in input matrix (for tall "stems) and by
finding additional rows in output matrix (for fat sys-
tems). Severa case are considered depending up the
requirements on the ra of the iput-output inter-
action matrix.

1. Introduction
In LQG/LTR controler de [1] of non-sqae sys-
tems, one is often forced to sqring the system.
This can be accomplished by a up the system
i.e., by finding additional peetdo-iXup or pueudo-
outputs such that the resulting square system has its
seros at desired locations in the complex haf plane.
Squang can also be accomplished by squarng the
system don such that the resulting squae system
has minimum-phase [2]. However, it is well known
that this is equivalent to solving an output feedback
compensation problem and may typicaly require dy-
namic compensation, thereby increasing the order
and complexity of the system.

This paper addrese the following problem:
"Given the state matix (A E R"xs, system dynam-
ics), the input matrix (B E RRXx, location of actua-
tors),- the output matriX (C E RXS, locati of the
sensors) and the input-output interaction matrix D
E RPx¶ p Mn. Determine a pseudo-output matrix
C E R("'-P)x' and possibly an input-output interac-
tion matri D E R(m-P)xum if p < m, such that the
resulting square system has its scros at the desired
locations in the left half plane.'

Note that1 the problem of determinig a pseudo-
input matrix B, when m < p is the dual of the above
problem and can be easily solved. In next two sec-
tions, we determine the conditions under which the
above problem can be solved and develop a compu-
tational scheme for its solution.

Depending upon the dynamics of the given sys-
tem, the following pomsible cases for selection of C

and D may arise:

1) Input-output interaction matrix D = 0.

a) Augmented D should remain sero
b) Agmented Dshould. have rankm-p.

2) Rank ofinput-output interaction matrix D = p.

a) Augmented D should have full rank
b) Augmented D should have rank p.

3) Rank of input-output interaction matrix D =
r(< p-

a) Augmented D should have rank = r+m-p.
b) Augmented D should have ra r.

Of course to this list of possibilities we can add others
where, for example, while the orilpnal D had full row
rank, the augmented D matrix has rank less than
m. However, such augmentation does not have any
practical application. In the next section we outline
the approach taken to determine the corresponding
C and D to solve the various caes outlined above.

2. Input-Output Interaction Matrix D = 0

In the sequel, we will discuss only the case when the
system is fat, ie., number ofinputs is more than num-
ber of outputs. The case of tall systems is true by
duality.
2.1. Augmented D remains sero
This case was treated in [4], however, for the sake of
completeness the reult is bnrefly summarisd here.
The following assumptions will be made on the
tem:

1) (A, B) is a controllable pair and B hs full col-
umn ran (=-n),

2) rank(CB) = p (same as the number of outputs
of the system).
For certain cases, additional requirements are

put upon the system and they will be outlined at
appropriate places.
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Provided that Assumptions 1 and 2 above are

satfied, theoretically it is always poible to trans-

form thesystem (A, B, C,O), bqymeasoforthogonal
state coordinate transformations, to the following for-
m [4]:

S(A) =

A12 B1

0
i-

011

C21

C12

C22

0

O

C0 0 IOj

The state space

tenised by
dcription of the sysem is charac-

3 4 1 3 0 3 1 4 4
3 5 2 1 1 1 2 3 1

A = 3 4 2 0 2 2 , B= 2 0 5
13 2 0 4 4 3 5 31

2 1 3 0 5 4 4 1 1
14 5 4 4 1 4 2 0 3

C
[f4 4 1 4=45 'D [ ° °

. (2.1)

where [621 C22] are to be determined. By Assump-
tion 2), the rank of C, iis p. Therefore [C21 C22]
can always be fond such that rank of [^li] is

Further, the system matrix can be written as

All A m

Spi) A21

where, [0C C21
note the rank of (.), then

All(-(= m

P(S(')) = P A21

1.

where A22 = A22-A21CO1C2. Since, by construction,

the rank of CO is m, clearly,

p(S(A)) =2in + p[AInm-A22+ A IC' 10C2 (2.4)

Further, rank(S(A)) < n + m at al eigenvalues of
the matrix [A22- A2lC10C2]. Knowing A22 and
A210Cj1, can be selected such that the mat

A22- A21CnjC2 has all its eigenvalues at desired 1-
cations in the left half plane. Equivalently, the prob-

lem of finding the augmented output matrix [Ci Cz]
such that the sytem (A, B, C, 0) ism phase,
which in turn solves the problem of sq g up a

non-square system, can be reduced to solving a state
feedback problem [5], [6].

Example 2.1: For the sake of illustration, we con-

sider a 6-th order system with 3 inputs and 2 outputs.

A12 B

A22-- U - I

For this "stem, sing the results outlined about,
to asign the ion seros of the squared

sytem at -1, -2 and -3, the required third
vector in the output matrix was fond to be

c=[0.3542 -0.4597 0.0342
1.1739 0.2095 0.7600]

and the input-output mat was a nll matnix of or-

der 3. ThetranmsionserosWrfound tobe atthe

desired locations.
2.2. Rank of Augmted D should be m- p

While in the previous case the squared sytem could

have only n-m transmission seros, the number of se-

ros ass ble wle sqnaring the stm incraes to

n- p. The augmented system can be trrmed by

means of orthogoa state coordinate trnsformations

to the following form:
UQ4S(A)V(A)

(2.2)

C2 IoJ

A22

Cl

Now, let p(.) de-

A12 B1]

-At-l, 0

C2
All - m-p

A21

Cii

C21

A12

A22 A,p

C12

C22

B11 B12

0 B22

0

0

0

D22

(2.5)

where U(A) and V(A) are unimodula matrices and
the- matnrces C21, C22 and D2b need to be de-
termined. In order for the trami sson seros

to be asgeds, we need the following assump-
tion on the -transformed system: The rank both
of C0I as wel as B 1 should be p. Now, since

rank of C0, and B11 is p, applying some block
row and column operations, it can be shown that

p(S(A)) = 2p

[A22- A21Cl1C02 - AI-, B22

C22 D22

[A DD22

Since we can always select D2 to be a full rank ma-

trix, if (A, B) is a controllable pair, then all n- p
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= rankA21 A22-AIA-m I

0 . (2.3)

I I

I. I

_-

I

_ ;L

C,

C12.
Ift

C22 '



transmission zeros of the augmented system can be
aied at desired locations.
Example 2.2: Consider the same system as in Ex-
ample 2.1. In this case D is required to have rank
(m- p). For sake of simplicity, the augmented sys-
tem was chosen to have

r.000D 0 0 0
O O 1!

With this choice of D, to aign the ed
system's transmission zeros at -1, -2, -3 and
-4, the additional output vector was fond to be
c = (-3.6037 - 24.073 - 4.3615

17.759 - 2.1623 7.92201.
It should be noted that, (to the best of the

author's knowledge) the assumptions on the trans-
formed system cannot be stated in terms of any spe-
cific assumptions on the original system.
3. Rank of Input-Output Matrix D is p
Here again, we will consider two cases. First,
where the ra of augmented input-output matrix is
changed -to the maximum possble and second where
the D matrix of the squared system is left nchanged.
3.1. Augened D should have r m

This case is fairly straightforward. Using singular ml-
ue decomposition, it is always poedble to find D such
that the augmented D has fill rank (= m). Once
that is done, all n transmission zeros of the squared
system can be assigned by solving the state feedback
problem A - BD-C, where C is partly unknown.
This is a trivial case and therefore, we have not in-
cluded an example to illustrate it.
3.2. Augmented,D should have rank p
In this case, it is required that D = 0. A-
gain assume that using uaimodular transformations
U(A) and V(A), the system has been transformed to
U(A)S(A)V(A) =

A12

A2- *XI,

A11 - -p

A21
C11

C21

I

C12

C22

B11 B12

0 Bu
D11 0

00

a (3.1)

Using D1, as a pivot, we get
p(S(A)) = p

Now, provided (A, B) is a controllable par, and B
has fui column rank, this case can be resolved in a
manner similar to that treated in Section 2.1., Le.,
we first perform row compression on A and then us-
ing block row and column operations determine the
square invertible subsystem whose seros will be the
transmision zeros of the original system. Further, as
before, these zeros can be assigned at desired loca-
tions in the complex pane.

Example 3.1: Once ag, the same system triple
(A, B, C) as in Example 2.1 is considered. However,
the D matrix (again for sake of simplicity of presen-
tation) is selected to be

0 1 0]

Is clear that the compensted system has five
transmisson zeros. The locations of the desired
transmission zeros were selected to be -1, -2,
-3, -4 and -5. Using the results presented
above, it w fond that if C is augmented by

c = [4.5304 12.840 5.3000
-7.5324 - 3.9470 - 7.7026],

then the resulting squared system will have the de-
sired set of transmission zeros. Note that in this cae,
the augmented input output matrix is

1 0 0^
D= 1 1 0

LO 0 0

4. Rank of D = r(< p)
This case is a combination of results developed in Sec-
tions 2. and 3. Here again, we will consider the fol-
lowing two situations: First, the ran ofinput-output
matrix of the squared system is mamum (in this
case rank(D) = m +r - p. The resulting D matrix
rem rank deficient. Second, where D is left n-
changed.
4.1. Augmented D has rank m + r-p
Since D is assumed to have ran r (< p), the giv-
en system can be transformed by mean of state
coordinate tranformations to the following form:
U(A)3()V(A) =

An - tIn-P.
+Pp A21 A2

A-XIS

A12 B12

22 - B22 I
(3.2)

A1 - U*, A12
A22-AI,r

C11

C21
C31

C12

C22
C32

B11- B12 B12

0 B22 B22

.Dil O

0 0

0 0

0

0

D22
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C22 0]

(4.1)
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Performing some block row
umn operations on (4.1), it can
p((A)) =

All - ul-Ir
A21

C21
C31

A12
A22-AMr

C22

C32

and block col-
be shown that

B12 B13

B22 B23
0

0

0

D33

where, All = All - BjD-'CIl and A1n = A1 -
Bn1DijCi2 At this stage the situation becomes i-
dentical to that studied in Setion 2.2. Hence using
the resuls from there, we can as n-m+r trans-
m on saos at desired locations. Specifically, let the
ym matrix be defined as

8(A)

Al1 - -r

A12
C01

C31

A12

A22- J

012

C32

A11 A12
A§22 A623
0

0

0

Now, ming that p[Cnl, (12][41 f21]T has rank
(p-r), we can apply the results of Section 2.1. to S(A)
and get the desired output submatrix that will square
the system while asgnng (a-m + r) transmission
eros at desired locations.

Since the results are practically the same as those
presented in Sections 2 and 3, we are not including
inuerical examples for this case.
4.2. Augmented D has rank r

Clearly, in this case the D matrix is left un-
chAnged. Looking at the transformed system matrix
U(A)S(A)V(A) =

where All = All - BiD'Cil and A12 = A12 -
BIIDfl'Cl2 Therefore, if the reduced order subsys-
tem (4.3) satisfies the conditions in Section 2.1., the
(n-m+r) transamision can be assged at the desired
locations in the complex plane, subject to complex
conjugate pairing.
5. Computation of C and 1D
Here we show the computation of the C for one of the
cas. The remaining cases, apart from state trans-
formations folow much the same procedure. Under
the assumption that rn of Cl0 = p, it is easy to
see that C21 can be chosen such that the matrix Ci
has full rank. Any C21 lying in the nul space of Cl0
will accomplish this goal. Numerical algorithms such
as ingular value decomposition can be employed to
determine C21.

Determination of C2 is not so straightforward.
Note that it is required that the matrix A22-
A21C7'C2 have all its eigenvalues at desired loca-
tions. To see how this may be accomplished, let us
write C2 C2 + 02, where

Cl=2 C12 and O2=[px(n-m) ,
C

(m-p)x(n-m)
an

C22
(5.1)

where the subscript of 0 denotes its dimension and
Co2 E R(m-P)x(n-m).

Next, let A22 -A2 A21C71C2. Then,
the problem of determining C22 reduces to find-
ing a state feedback matrix C22 such that the ma-
trix A22 - A2C1C2 has desired eigenvalues, where

C2 - [0px(nnm)1m
The above problem can be solved provided the

subsystem (A22, A21) is controllable. Note that the
orignal system is assumed to be controllable. It is
well known that for a controllable system

All- -r

A21

C02

C21

A12

A22-AI,r
C12

C22

C32

Bil B12 B12

0 B22 B22

D0,
0

O

0

0

0

0

0

0

it is easy to see that
p(S(A)) = r+

p

All - l-r

A21
C0l

C21

A12

i

B12 B13

B22 B23
0

0

0

0

rank Al~ Xm

A21

A12 B

A22-AInn-m 0

(5.2)
Knowing that rankk B1 = m by assumption, the rank
of [A21, A22 - AIn.-.] must be n-m. Equivalent-
ly (A22, A21) is a controllable pair. Therefore, it is
always possble to find a C22 and hence C2 such that

(4.2)

S(A) =

A (4.3)

All-AI A12

A21 A22-AI
C02

C21

C12

C22

El
0 2
0

0

(5.3)

has its zeros at the desired location in the left half
plane. It should be emphasized that if the given sys-
tem did possess any t sranission zeros, they can be
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reassigned to the originl lcatio. (if required) by
utte feedba rpr d by A2- A2 Cj1C2.
6. Concluding Remarks
In this paper, we dised the problem of sang-
up an non-square system. Since squaring-up can be
transformed into certain state feed problems, it
has some practical benefits over squaring the sytem
don where the problem can be equated to an output
feedb problem (oftea rui dynamic compen-
sation for complete solution). Numericl examp
were provided to illustate the popCed results.
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