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Design of Strictly Positive Real Systems
Using Constant Output Feedback v O G(s) y

C.-H. Huang, P. A. loannou, J. Maroulas, and M. G. Safonov

Abstract—in this paper, the authors present a linear matrix inequality
(LMI) approach to the strictly positive real (SPR) synthesis problem:
find an output feedback K such that the closed-loop systerfl'(s) is SPR.  Fig. 1. Closed-loop systerif'(s).

The authors establish that if no such constant output feedbacl exists,
then no dynamic output feedback with a proper transfer matrix exists to . .
make the closed-loop system SPR. adaptive control scheme that can stabilize and regulate the output of

The existence ofK to guarantee the SPR property of the closed-loop any plant with arbitrary and unknown order and unknown parameters
system is used to develop an adaptive control scheme that can stabilizetg zero.
any system of arbitrary unknown order and unknown parameters.

Index Terms—Adaptive control, H°° control, linear matrix inequality,

output feedback, positive real functions. II. - PRELIMINARIES AND NOTATION

Consider the systerfi’(s) shown in Fig. 1. In this figureK is a
constant feedback an@(s) is the transfer function of the system

I. INTRODUCTION
The notion of a passive system is one of the oldest in system, * =Ax + Bu
circuit, and control theory. Within control theory, a well-known y=CTx (1)

result is that a negative feedback connection of a passive dynamic

system and a stable strictly passive uncertainty is internally stablgherex € R", v € R?, y € RY, andA4 € R"*", B€ R"*?, C €

For finite-dimensional linear time-invariant (LTIl) systems, passivity”*¢ gre constant matrices.

is equivalent to positive realness. The equation of the closed-loop system of Fig. 1 can be expressed
Recently the positive real synthesis problem has been investigatgd

by several researchers (e.g., [1]-[5]). In [6], it has been shown that

the strongly positive real synthesis problem is equivalent to a bilinear 2 =Arr + Bv

matrix inequality (BMI) feasibility problem. However, because BMI y=C"x )

problems are in general nonconvex and hence difficult to solve [7],

[8], there has been much interest in identifying special cases in whiglere 4, = 4 — BKC?.

the BMI problem can be reduced to a linear matrix inequality (LMI) The following definitions and lemmas are referred to in our main

feasibility problem. So far, this has been possible only in the cases gig|t.

1) full-order control [5] and 2) full-state feedback [3]. A main result pefinition 1 [9], [10]: A square transfer function matriX (s) is
of the present paper is the addition of the special case of constapir if:

output feedback' to the list of positivg real synthesis proplems t,hatl) X (s) is analytic in the closed right-half complex plane;
can be solved via LMI's. The result, it turns out, has an interesting 2) herm{X (jw)} > 0 for all w € (—oc, 00);
application to a problem in adaptive control theory. 3) herm{X(oo)} > 0 S

We consider the configuration in Fig. 1. This is a special case — .
of that in [1]-[5] in which the original plant matrice®, = B-,
C, = (Cy,and D;; = 0 for i, 5 = 1,2. We derive an LMI
necessary and sufficient condition for the existence of a const
output feedback matri¥ for the closed-loop system in Fig. 1 to be
strictly positive real (SPR). We also develop a formula for all shich
that solves the problem. The derivation leads to a parameterization of
all solutions K™ with only one free matrix which is positive definite. PB =C. 4)
Further, we show that if no constant feedback can lead to an SPR N )
closed-loop system, then no dynamic feedback with proper feedbackemma 2—Positive Real Version of the Parrott's Theoreret R,
transfer matrix can do it either. Hence, there exists an output feedbéék":'Ta”dP be given matrices with appropriate dimensions where
such that the closed-loop system is SPR if and only if there exidfs ¥ are full column rank andP is invertible. Then there exists
a constant output feedback rendering the closed-loop system SPRNatrix @ such that
Finally, we demonstrate the use of the results by developing an

4) limg,— oo w?herm{X (jw)} > 0 if herm{X (o)} is singular.
Lemma 1—SPR Lemma [11]-[14]The closed-loop transfer func-
lign matrix T'(s) = C"(sI — Ax)~'B is SPR if and only if there
exists a matrix? = P* > 0 such that

PAL+ AP <0 €)

herm{R+UQV"} >0 (5)
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TABLE | Now, the matrixY” satisfies (11) if and only i¥” can be expressed
NOTATION as
Y =8B,2"+BH "B, (13)
I, The identity matrix, the n x n identity
matrix. for somen — ¢ x n — ¢ matrix Z.
Substituting (13) into (12), we obtain
X7 Matrix transpose.
z=27"=nBlY.
X* Complex conjugate transposc. + (14)
Xt The Moore-Penrose pscudo-inverse of X Since we can always ChOOS@T = 7" so that (10)-(12) are
o A . satisfied, we conclude thd® = P* and therefore (4) holds if and
- art; =z X . ’ - . .
herm{-}  Hermitian part; herm{X} = 3(X +X) only if BTC = CTB. Now, substituting (13) into (9), all solutions
X, Orthonormal null space of X, XTX =0, P = PT of (4) are given by
[X, X ] invertible and X{ X, = I. P:CBT—F(BT)! ! BLBi-FBLZBi (15)
X3 Squarc root matrix of X such that

XiTX: =X

State space realization

A B
¢ D

G(s)=C(ls—A)'B+DE

where Z is an arbitrary symmetric matrix. Note that (15) has also
been introduced in [18].
Further, P > 0 if and only if

B* B'Cc B'Y
{B{}P[B BL]_{BEC BIY}

r T
_ {B c C BL} 0.

~|BicC Z
where Applying a Schur complement argument, it can be shown that
v=-Ud-D7 R B'C "B,
L=RV.VIR'T.T] {B{c z } >0
R=(I-B)I+ R’j it and only if (7) holds and
U= - V2I+ R0 X2 7_BTc(BTC)*CTB. > 0. (16)

V=—-V20+R") 'V

Proof: See [15]-{17].

Since it is always possible to choogeso that (16) holds, we can

N
In [18], a formula for all symmetric matriceB satisfying (4) has conclude that there exist8 = P" > 0 such that (4) holds if and
been introduced. In the following lemma, we develop a formula f@nly if (7) holds.
all positive definite matriced® satisfying (4). Moreover, substituting (16) into (15), all solutiofs= P" > 0
Lemma 3: SupposeB and C' are full rank. Then there exists ato (4) are given by

; T T . . , ,
matrix P = P* > 0 that satisfies (4) if and only if P=cB'+B,BTC(BTC) "B, BT

T T I . s
B'C=C"B>o. @) +(B""'C¢"B.Bl + BLXB] 17
Furthermore, when (7) holds, all solutions of (4) are given by

N N where X is an arbitrary positive definite matrix.
P=C(B'C)'Cc" +B.XB] (8)

SubstitutingB" = (B"B)™'B” and B, BT = I — BB" into

where X € R"~7*"~% is an arbitrary positive definite matrix. (17), we obtain (8). .

Proof: A matrix P satisfies (4) if and only i can be expressed
as . ALL SOLUTIONS TO THE SPR SNTHESIS PROBLEM
P=CcB ' +YB' 9) In this section, we develop the necessary and sufficient conditions

for the existence of the constant feedbadgkrendering the closed-

loop system with transfer function matrik(s) in Fig. 1 SPR. Once

the Lyapunov matrix” in Lemma 1 is determined, a formula for all

BT solutions K™ to the SPR synthesis problem is presented. Further, we

{Bﬂ study the SPR synthesis problem where instead of constant output
C . . feedback we use a dynamic one, i.e., the transfer function of the

and postmultiplying by its transpose,v ‘we obtaln controller is a proper transfer matrix.

BY PIB Bi]= B'c B'Y Without loss of generality, we assunizand C are full rank.

Bl 7 Blc BIY [ Theorem 1: There exists a constant mat such that the closed-

for somen x n — ¢ matrix Y.
Premultiplying (9) by

Therefore,” = P* and (4) holds if and only if :?op transfer function matrix@’(s) in Fig. 1 is SPR if and only
B'c=c"B (10) . .
BIC -v"RB (11) B'C=C"B>0 (18)
and and there exists a positive definite matfix such that
By =Yv'B,. (12) Clherm{B, XBlA}C, < 0. (19)
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Furthermore, when (18) and (19) hold, all such solutidisare 1) Remark: In the single-input/single-output (SISO) case, the nec-
given by essary conditionB”'C’ > 0 implies the relative degree df(s) is

-t AV(T T ) 1 one.
K=C hTerm{PA}(I LC;L(CLherm{PA}CL) 2) Remark: Inequality (19) is essentially an LMI problem which
~Ciherm{PA})C"™ + 5 (20)  can be solved using the LMI toolbox [19].

Let us now consider the SPR synthesis problem using dynamic

P=CB"C)"'C"+B.LXB] i i iti . :
where C(B*C)~'C" +B.XB] andS is an arbitrary positive output feedback, i.e.. we consider

definite matrix.
Proof: From Lemma 3, there exists a matrix = P” > 0 u=—H(s)y
satisfying PB = C if and only if where
B'C=Cc"B>o. s[A. B
H(s)= |:C:Cp Dc:|'
Further, a formula forP satisfying PB = C'is given by c
Theorem 2: If no constanti” in Theorem 1 exists, then there exists

_ T =1 ~T T
P=C(BC)"C +B.XB, (21) no dynamic controller with proper transfer matrix which renders the
where X is an arbitrary positive definite matrix. closed-loop systerd'(s) SPR.
From Lemma 2, there exists a matd¥ such that Proof: In the dynamic controller case, the state-space form of
- the closed-loop system, can be expressed as
herm{P(A — BKC")} <0 r
0 0:|+|:[m O}Q{Ln 0} {0}
if and only if T(s)=|l0 A4 0 B]“l0 (1 B
CTherm{PAYC, <0 and (PB) herm{PA}(PB), < 0. 0 ¢’ |0
. T . . where
SincePB = C, herm{P(A — BKC")} < 0 if and only if (4. B.
CTherm{PA}C, < 0. (22) @= |G Dc}
Substituting (21) into (22), we obtain (19). and m is the order of the controller.

From Lemma 17'(s) is SPR if and only if there exists a positive

Now we prove (20). Suppos®”C > 0 and there exists a o i
definite matrix P such that

positive definite matrixX satisfying condition (19), then we can

generateP by (21). Further (see (22a), shown at the bottom of 0|_|0
7 T ~\—(1/2) ~T T ~\—(1/2) P - (24)

the page), W = (C7C)~"/?CTherm{PA}C(CTC)~/?) — B ¢

(CctC)Y M Dherm{ K }(C*'C)/?. Applying the Schur complement gng

argument, we can verify that 0 0 I 0 T 0
. - . . he P " i : .
CTherm{PA}C, Oiherm{PA}C(OTC)_“/Z)} mm{ QO A} + [0 B}Q{ 0 CTD} <0 (29
L (1/2) L ) ) . .
(©0) ¢ herm{PA}CL 4 Applying the same technique as in the proof of Theorem 1, we can
<0 show that there exists a positive definite matRxsatisfying (24) if
if and only if and only if )
B'C>o.

CTherm{PAYC) <0
Moreover, when a solutio® exists, then all solution# to (24)
and are given as

crey D herm{PAYC(CT )/ T
(( ) erm{ PA}C ) b {g}(BTC)fl[O cT)+ {I 0 }X {I 0 } (26)

—(CTO)Y 2 herm{ K }(CT Y2 — (¢T o)y~ /DT 0 BL] [0 By
-herm{PA}C, (CTherm{PA}C )™ where X is an arbitrary positive definite matrix.
T T e —(1/2) From Lemma 2
- CTherm{PA}C(CTC) ) <0. (23)
0 0 I7n 0 IVVL O
herm< P + Q T <0
Equation (20) follows. [ ] 0 4 0 B 0 cC

herm{P(A — BKC")} =herm{PA - CKCT}
i

Tyt herm{PA — CKC"}[CL c(cTC)=/?]

- <[cL ccro)=

ct ]
’ (CYC)_(l/Q)CI
_(1c. cwcreyam ) C’JT_hermr{vPA}CJ_ CTherm{PA}C(CTC)=/2
(T )y~ VDT herm{PA}YC w

cT 1
. (CTO)‘“/Q)CT (22a)
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if and only if we have
{Im : Th“m{ {0 O}P_] } {Im 0} <0 (@ V=a(PA"+ A" Pa <.
0 BJ, 0 A 0 BJ, _
and SinceV is a quadratic function anti’ < 0, we conclude that”
. 0]” 0 0 I, 0 is a Lyapunpv functi.on for t.he syste.m (30),.(31).
{0 C‘} herm{[’|:0 4} } { 0 C‘} <0. (28) Since V is a nonincreasing function of time, then, ., V(t)
- - exists. Therefore, we obtain, K € L., andx € L,. Since
Also K = Tyy” andy = CT« wherex € L., we havek € L...
I, 0 Sinced € Lo, due toK, , y € L., we conclude fromi € L.
|:0 C:| andz € L, [23] thatz(t) — 0 ast — oo.
+ Hence,u = —K(t)y with K = I'yy” can stabilize any system
can be represented by the following: of any order and drive), = to zero as long as the assumption of
I, 0 0 the existence ofi* that makes the closed-loop plant transfer matrix
{ 0 C} = {Cl } SPR is satisfied. Theorem 1 gives necessary and sufficient conditions
+ for this assumption to hold.
Applying (26) to (28), we find that (28) is satisfied if and only if
Clherm{B, X2, BT A}C1 <0 (29) V. CONCLUSION
where X: is a (2, 2) block ofX and is positive definite. In this paper we developed necessary and sufficient conditions

We have shown thaB’C > 0 and (29) are the necessaryfor the plant state-space matrices that guarantee the existence of

conditions for the existence of the dynamic controller rendering tife constant output feedback gain matiX so that the closed-
closed-loop transfer function matrig(s) SPR. AlsoB”C > 0 and loop system is SPR. The necessary and sufficient conditions are

(29) are the necessary and sufficient conditions given by Theorenfepresented in the form of LMI. In addition we developed a procedure

for the constant output feedback case. m for calculating suchi’ from the knowledge of the system matrices.
Theorem 2 shows that if we cannot find a constant output feedbaf¥e established that if no such™ exists then no dynamic output

controller to make the closed-loop transfer function matrix Sprgedback with proper transfer function matrix can make the closed-

then there is no dynamic feedback controller with a proper transf@PP System SPR. . ,

function matrix that can make the closed-loop transfer function matrix W& Showed that the existence &f for the closed-loop system to

SPR. The results obtained have interesting applications in adapfRfe SPR can be used to generate an adaptive control regulator that
control as demonstrated in the following section. can stabilize any plant with arbitrary order and unknown parameters

and regulate its output vector to zero.
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Path-Clearing Policies for Flexible Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In practical manufacturing settings it is often possible to
obtain, in real-time, information about the operation of several machines
in a flexible manufacturing system (FMS) that can be quite useful in
scheduling part flows. In this brief paper the authors introduce some
scheduling policies that can effectively utilize such information (something
the policies in [1] do not do) and they provide sufficient conditions for
the stability of two such policies.

Index Terms—Boundedness, manufacturing systems, scheduling, sta-

bility, traffic control.
Il. SYSTEM DESCRIPTION AND NOTATION

Let there beN “paths” within the FMS. The three important
attributes of any path are: 1) all of its buffers may be serviced at
In this paper, we consider the use of global information for schethe same time; 2) its buffers are directly connected in the network;
uling flexible manufacturing systems (FMS) of the type considered &nd 3) if a buffer is on one path it cannot be on another path, and
all buffers must be on a path. For example, in the network of Fig. 1
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buffer in the path, respectively. Let each buffer be referred to by
a coordinate(7, j), wherei is the path number and is the buffer
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