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Design of Strictly Positive Real Systems
Using Constant Output Feedback

C.-H. Huang, P. A. Ioannou, J. Maroulas, and M. G. Safonov

Abstract—In this paper, the authors present a linear matrix inequality
(LMI) approach to the strictly positive real (SPR) synthesis problem:
find an output feedbackKKK such that the closed-loop systemT (s)T (s)T (s) is SPR.
The authors establish that if no such constant output feedbackKKK exists,
then no dynamic output feedback with a proper transfer matrix exists to
make the closed-loop system SPR.

The existence ofKKK to guarantee the SPR property of the closed-loop
system is used to develop an adaptive control scheme that can stabilize
any system of arbitrary unknown order and unknown parameters.

Index Terms—Adaptive control, H1 control, linear matrix inequality,
output feedback, positive real functions.

I. INTRODUCTION

The notion of a passive system is one of the oldest in system,
circuit, and control theory. Within control theory, a well-known
result is that a negative feedback connection of a passive dynamic
system and a stable strictly passive uncertainty is internally stable.
For finite-dimensional linear time-invariant (LTI) systems, passivity
is equivalent to positive realness.

Recently the positive real synthesis problem has been investigated
by several researchers (e.g., [1]–[5]). In [6], it has been shown that
the strongly positive real synthesis problem is equivalent to a bilinear
matrix inequality (BMI) feasibility problem. However, because BMI
problems are in general nonconvex and hence difficult to solve [7],
[8], there has been much interest in identifying special cases in which
the BMI problem can be reduced to a linear matrix inequality (LMI)
feasibility problem. So far, this has been possible only in the cases of:
1) full-order control [5] and 2) full-state feedback [3]. A main result
of the present paper is the addition of the special case of constant
output feedback to the list of positive real synthesis problems that
can be solved via LMI’s. The result, it turns out, has an interesting
application to a problem in adaptive control theory.

We consider the configuration in Fig. 1. This is a special case
of that in [1]–[5] in which the original plant matricesB1 = B2,
C1 = C2, and Dij = 0 for i; j = 1; 2. We derive an LMI
necessary and sufficient condition for the existence of a constant
output feedback matrixK for the closed-loop system in Fig. 1 to be
strictly positive real (SPR). We also develop a formula for all suchK

that solves the problem. The derivation leads to a parameterization of
all solutionsK with only one free matrix which is positive definite.
Further, we show that if no constant feedback can lead to an SPR
closed-loop system, then no dynamic feedback with proper feedback
transfer matrix can do it either. Hence, there exists an output feedback
such that the closed-loop system is SPR if and only if there exists
a constant output feedback rendering the closed-loop system SPR.
Finally, we demonstrate the use of the results by developing an
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Fig. 1. Closed-loop systemT (s).

adaptive control scheme that can stabilize and regulate the output of
any plant with arbitrary and unknown order and unknown parameters
to zero.

II. PRELIMINARIES AND NOTATION

Consider the systemT (s) shown in Fig. 1. In this figure,K is a
constant feedback andG(s) is the transfer function of the system

_x =Ax +Bu

y =C
T
x (1)

wherex 2 Rn; u 2 Rq; y 2 Rq; andA 2 Rn�n; B 2 Rn�q; C 2

Rn�q are constant matrices.
The equation of the closed-loop system of Fig. 1 can be expressed

as

_x =Akx+Bv

y =C
T
x (2)

whereAk = A � BKCT .
The following definitions and lemmas are referred to in our main

result.
Definition 1 [9], [10]: A square transfer function matrixX(s) is

SPR if:

1) X(s) is analytic in the closed right-half complex plane;
2) hermfX(j!)g > 0 for all ! 2 (�1; 1);
3) hermfX(1)g � 0;
4) lim!!1 !2hermfX(j!)g> 0 if hermfX(1)g is singular.

Lemma 1—SPR Lemma [11]–[14]:The closed-loop transfer func-
tion matrix T (s) = CT (sI � Ak)

�1B is SPR if and only if there
exists a matrixP = P T > 0 such that

PAk +A
T
k P <0 (3)

PB =C: (4)

Lemma 2—Positive Real Version of the Parrott’s Theorem:Let R,
U , V , andP be given matrices with appropriate dimensions where
U , V T are full column rank andP is invertible. Then there exists
a matrix Q such that

hermfR+ UQV
T g > 0 (5)

if and only if

hermfUT

?RU?g > 0; hermfV T

?RV?g > 0:

Moreover, the matrixQ in (5) is given by the equation

Q = (I � Y V
T (I +R)�1U)�1Y (6)
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TABLE I
NOTATION

where

Y = � U
y(I � L)�1RV yT

L =RV ?V
T

?R
T
U?U

T

?

R =(I �R)(I +R)�1

U = �
p
2(I +R)�1U

V = �
p
2(I +R

T )�1V:

Proof: See [15]–[17].
In [18], a formula for all symmetric matricesP satisfying (4) has

been introduced. In the following lemma, we develop a formula for
all positive definite matricesP satisfying (4).

Lemma 3: SupposeB andC are full rank. Then there exists a
matrix P = P T > 0 that satisfies (4) if and only if

B
T
C = C

T
B > 0: (7)

Furthermore, when (7) holds, all solutions of (4) are given by

P = C(BT
C)�1CT +B?XB

T

? (8)

whereX 2 Rn�q�n�q is an arbitrary positive definite matrix.
Proof: A matrixP satisfies (4) if and only ifP can be expressed

as

P = CB
y + Y B

T
? (9)

for somen � n � q matrix Y .
Premultiplying (9) by

BT

BT
?

and postmultiplying by its transpose, we obtain

BT

BT
?

P [B B? ] =
BTC BTY

BT
?C BT

?Y
:

Therefore,P = P T and (4) holds if and only if

B
T
C =C

T
B (10)

B
T
?C =Y

T
B (11)

and

B
T
?Y = Y

T
B?: (12)

Now, the matrixY satisfies (11) if and only ifY can be expressed
as

Y = B?Z
T + (By)TCT

B? (13)

for somen � q � n � q matrix Z.
Substituting (13) into (12), we obtain

Z = Z
T = B

T
?Y: (14)

Since we can always chooseZ = ZT so that (10)–(12) are
satisfied, we conclude thatP = P T and therefore (4) holds if and
only if BTC = CTB. Now, substituting (13) into (9), all solutions
P = P T of (4) are given by

P = CB
y + (By)TCT

B?B
T
? +B?ZB

T
? (15)

whereZ is an arbitrary symmetric matrix. Note that (15) has also
been introduced in [18].

Further,P > 0 if and only if

BT

BT
?

P [B B? ] =
BTC BTY

BT
?C BT

?Y

=
BTC CTB?
BT
?C Z

> 0:

Applying a Schur complement argument, it can be shown that

BTC CTB?
BT
?C Z

> 0

if and only if (7) holds and

X
�
= Z �B

T
?C(B

T
C)�1CT

B? > 0: (16)

Since it is always possible to chooseZ so that (16) holds, we can
conclude that there existsP = P T > 0 such that (4) holds if and
only if (7) holds.

Moreover, substituting (16) into (15), all solutionsP = P T > 0
to (4) are given by

P =CB
y +B?B

T
?C(B

T
C)�1CT

B?B
T
?

+ (By)TCT
B?B

T
? +B?XB

T
? (17)

whereX is an arbitrary positive definite matrix.
SubstitutingBy = (BTB)�1BT andB?BT

? = I � BBT into
(17), we obtain (8).

III. A LL SOLUTIONS TO THE SPR SYNTHESIS PROBLEM

In this section, we develop the necessary and sufficient conditions
for the existence of the constant feedbackK rendering the closed-
loop system with transfer function matrixT (s) in Fig. 1 SPR. Once
the Lyapunov matrixP in Lemma 1 is determined, a formula for all
solutionsK to the SPR synthesis problem is presented. Further, we
study the SPR synthesis problem where instead of constant output
feedback we use a dynamic one, i.e., the transfer function of the
controller is a proper transfer matrix.

Without loss of generality, we assumeB andC are full rank.
Theorem 1: There exists a constant matrixK such that the closed-

loop transfer function matrixT (s) in Fig. 1 is SPR if and only
if

B
T
C = C

T
B > 0 (18)

and there exists a positive definite matrixX such that

C
T
?hermfB?XBT

?AgC? < 0: (19)
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Furthermore, when (18) and (19) hold, all such solutionsK are
given by

K =CyhermfPAg(I � C?(C
T

?hermfPAgC?)
�1

� CT

?hermfPAg)CyT + S (20)

whereP = C(BTC)�1CT+B?XB
T

? andS is an arbitrary positive
definite matrix.

Proof: From Lemma 3, there exists a matrixP = P T > 0
satisfyingPB = C if and only if

B
T
C = C

T
B > 0:

Further, a formula forP satisfyingPB = C is given by

P = C(BT
C)�1CT +B?XB

T

? (21)

whereX is an arbitrary positive definite matrix.
From Lemma 2, there exists a matrixK such that

hermfP (A�BKC
T )g < 0

if and only if

C
T

?hermfPAgC? < 0 and (PB)T?hermfPAg(PB)? < 0:

SincePB = C, hermfP (A � BKCT )g < 0 if and only if

C
T

?hermfPAgC? < 0: (22)

Substituting (21) into (22), we obtain (19).
Now we prove (20). SupposeBTC > 0 and there exists a

positive definite matrixX satisfying condition (19), then we can
generateP by (21). Further (see (22a), shown at the bottom of
the page),W = (CTC)�(1=2)CThermfPAgC(CTC)�(1=2) �
(CTC)(1=2)hermfKg(CTC)1=2: Applying the Schur complement
argument, we can verify that

CT
?hermfPAgC? CT

?hermfPAgC(CTC)�(1=2)

(CTC)�(1=2)CThermfPAgC? W

< 0

if and only if

C
T
?hermfPAgC? < 0

and

(CT
C)�(1=2)

C
ThermfPAgC(CT

C)�(1=2)

� (CT
C)1=2 hermfKg(CT

C)1=2 � (CT
C)�(1=2)

C
T

� hermfPAgC?(C
T
?hermfPAgC?)

�1

�CT
?hermfPAgC(CT

C)�(1=2)
< 0: (23)

Equation (20) follows.

1) Remark: In the single-input/single-output (SISO) case, the nec-
essary conditionBTC > 0 implies the relative degree ofG(s) is
one.

2) Remark: Inequality (19) is essentially an LMI problem which
can be solved using the LMI toolbox [19].

Let us now consider the SPR synthesis problem using dynamic
output feedback, i.e., we consider

u = �H(s)y

where

H(s)
ss
=

Ac Bc

CT
c Dc

:

Theorem 2: If no constantK in Theorem 1 exists, then there exists
no dynamic controller with proper transfer matrix which renders the
closed-loop systemT (s) SPR.

Proof: In the dynamic controller case, the state-space form of
the closed-loop system, can be expressed as

T (s)
ss
=

0 0
0 A

+
Im 0
0 B

Q
Im 0
0 CT

0
B

[0 CT ] 0

where

Q =
Ac Bc

CT
c Dc

andm is the order of the controller.
From Lemma 1,T (s) is SPR if and only if there exists a positive

definite matrixP such that

P
0
B

=
0
C

(24)

and

herm P
0 0
0 A

+
Im 0
0 B

Q
Im 0
0 CT < 0: (25)

Applying the same technique as in the proof of Theorem 1, we can
show that there exists a positive definite matrixP satisfying (24) if
and only if

B
T
C > 0:

Moreover, when a solutionP exists, then all solutionsP to (24)
are given as

P =
0
C

(BT
C)�1[0 CT ] +

I 0
0 B?

X
I 0
0 B?

T

(26)

whereX is an arbitrary positive definite matrix.
From Lemma 2

herm P
0 0
0 A

+
Im 0
0 B

Q
Im 0
0 CT < 0

hermfP (A�BKC
T )g =hermfPA � CKC

Tg

= [C? C(CTC)�(1=2) ]
CT
?

(CTC)�(1=2)CT
hermfPA � CKC

Tg[C? C(CTC)�(1=2) ]

�
CT
?

(CTC)�(1=2)CT

= [C? C(CTC)�(1=2) ]
CT
?hermfPAgC? CT

?hermfPAgC(CTC)�(1=2)

(CTC)�(1=2)CThermfPAgC? W

�
CT
?

(CTC)�(1=2)CT (22a)
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if and only if

Im 0
0 B

T

?

herm
0 0
0 A

P
�1 Im 0

0 B
?

< 0 (27)

and

Im 0
0 C

T

?

herm P
0 0
0 A

Im 0
0 C

?

< 0: (28)

Also

Im 0
0 C

?

can be represented by the following:

Im 0
0 C

?

=
0
C?

:

Applying (26) to (28), we find that (28) is satisfied if and only if

C
T

?hermfB?X22B
T

?AgC? < 0 (29)

whereX22 is a (2, 2) block ofX and is positive definite.
We have shown thatBTC > 0 and (29) are the necessary

conditions for the existence of the dynamic controller rendering the
closed-loop transfer function matrixT (s) SPR. AlsoBTC > 0 and
(29) are the necessary and sufficient conditions given by Theorem 1
for the constant output feedback case.

Theorem 2 shows that if we cannot find a constant output feedback
controller to make the closed-loop transfer function matrix SPR,
then there is no dynamic feedback controller with a proper transfer
function matrix that can make the closed-loop transfer function matrix
SPR. The results obtained have interesting applications in adaptive
control as demonstrated in the following section.

IV. A PPLICATIONS TO ADAPTIVE CONTROL LAW DESIGN

In this section we apply the results of the previous sections to
develop an adaptive control scheme that can stabilize and regulate
the output to zero of any plant with arbitrary and unknown order and
unknown parameters. The only assumption we use is the existence
of a constant output feedback matrixK� such that the closed-loop
transfer function matrixT (s) is SPR. The conditions for existence of
K� are given by Theorem 1. This approach with similar assumptions
is not new in adaptive control [20]–[22] and is included here for
demonstrating the usefulness of the results obtained.

We can rewrite the closed-loop system (2) as

_x =(A�BK
�
C
T )x�B(K �K

�)y

y =C
T
x

or

_x = A
�
x �B ~Ky; y = C

T
x (30)

whereA� = A�BK�CT , ~K = K �K�, andK(t) is the estimate
of K� at time t.

We start by considering the quadratic function

V =
xTPx

2
+ trace

~KT��1 ~K

2

whereP satisfies Lemma 1 and� is an arbitrary positive definite
matrix. The time derivative ofV along any trajectory of (30) is
given by

_V = x
T (PA� + A

�T
P )x� trace( ~KT

yy
T � ~KT��1

_~K):

If we choose
_~K = �yyT (31)

we have

_V = x
T (PA� +A

�T
P )x � 0:

SinceV is a quadratic function and_V � 0, we conclude thatV
is a Lyapunov function for the system (30), (31).

Since V is a nonincreasing function of time, thelimt!1 V (t)
exists. Therefore, we obtainx, ~K 2 L1 and x 2 L2. Since
_K = �yyT and y = CTx wherex 2 L1, we have _K 2 L1.

Since _x 2 L1 due to ~K, x, y 2 L1, we conclude from_x 2 L1
andx 2 L2 [23] that x(t) ! 0 as t ! 1.

Hence,u = �K(t)y with _K = �yyT can stabilize any system
of any order and drivey, x to zero as long as the assumption of
the existence ofK� that makes the closed-loop plant transfer matrix
SPR is satisfied. Theorem 1 gives necessary and sufficient conditions
for this assumption to hold.

V. CONCLUSION

In this paper we developed necessary and sufficient conditions
for the plant state-space matrices that guarantee the existence of
a constant output feedback gain matrixK so that the closed-
loop system is SPR. The necessary and sufficient conditions are
represented in the form of LMI. In addition we developed a procedure
for calculating suchK from the knowledge of the system matrices.
We established that if no suchK exists then no dynamic output
feedback with proper transfer function matrix can make the closed-
loop system SPR.

We showed that the existence ofK for the closed-loop system to
be SPR can be used to generate an adaptive control regulator that
can stabilize any plant with arbitrary order and unknown parameters
and regulate its output vector to zero.
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Path-Clearing Policies for Flexible Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In practical manufacturing settings it is often possible to
obtain, in real-time, information about the operation of several machines
in a flexible manufacturing system (FMS) that can be quite useful in
scheduling part flows. In this brief paper the authors introduce some
scheduling policies that can effectively utilize such information (something
the policies in [1] do not do) and they provide sufficient conditions for
the stability of two such policies.

Index Terms—Boundedness, manufacturing systems, scheduling, sta-
bility, traffic control.

I. INTRODUCTION

In this paper, we consider the use of global information for sched-
uling flexible manufacturing systems (FMS) of the type considered in
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Fig. 1. Example FMS with paths labeled.

[1] and later in [2]–[4]. This paper is unique with respect to this body
of work in that it provides an analysis of a particular class of “global,”
rather than “local,” scheduling policies. The primary advantage of an
FMS composed of individual machines, each with its own scheduling
policy that utilizes only local information, is that the individual
machines need not communicate with one another so that real-time
implementation is simplified. However, for many modern FMS’s, it is
quite realistic to allow intermachine communications. Here, we seek
to exploit this fact by developing scheduling policies that incorporate
information from other parts of the network that can be useful
in making efficient scheduling decisions. In using more “global”
information, we are careful to minimize the level of necessary
communications so that our global policies are implementable in
real-time, just as the local policies mentioned above.

In this work, which we view as only a first step toward solving the
problem of how to use global FMS information to achieve high-
performance scheduling, we define and analyze a class of global
scheduling policies that we call path-clearing (PC) policies. Similar to
the way in which local policies select a buffer to service from among
the buffers of a single machine, PC policies select from among a
set of paths to service. A path is a set of topologically consecutive
buffers which can be serviced simultaneously. In general, a PC policy
will choose from amongsetsof paths to process. When a PC policy
chooses a set of paths to process, all buffers in each path in the set
are processed simultaneously (hence, all paths in a set must be able
to be processed at the same time). Once a PC policy begins servicing
a set of paths, servicing continues until all paths in the set are clear
of parts.

II. SYSTEM DESCRIPTION AND NOTATION

Let there beN “paths” within the FMS. The three important
attributes of any path are: 1) all of its buffers may be serviced at
the same time; 2) its buffers are directly connected in the network;
and 3) if a buffer is on one path it cannot be on another path, and
all buffers must be on a path. For example, in the network of Fig. 1
we can define four paths which begin and end as indicated. Notice
that the beginning and end of a path are defined as the first and last
buffer in the path, respectively. Let each buffer be referred to by
a coordinate(i; j), wherei is the path number andj is the buffer

0018–9286/99$10.00 1999 IEEE


