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Comments on “Design of Strictly Positive Real Systems
Using Constant Output Feedback”

Itzhak Barkana

Abstract—A recent publication states and proves the conditions
under which a linear time-invariant system, with state-space realization

, can be made strictly positive real via constant output feedback.
This note is intended to briefly present the development of the proof and
to give due credit to the first proofs of this statement.

Index Terms—Adaptive control, almost strictly positive real (ASPR), pos-
itive real systems, stability.

I. INTRODUCTION

In [1, Th. 1], Huang et al. prove the following result.
Theorem 1: Any strictly proper system fA;B;Cg, where

A 2 R
n;n; B 2 R

n;m; C 2 R
m;n, with the m � m transfer

function T (s) = C(sI � A)�1B, and with CB positive–definite
symmetric can be made strictly positive real (SPR) via constant
output feedback if there exists a positive–definite matrix Po such that
MT (NTPNA + ATNTPN)M < 0. Here,M and N are such that
CM = 0 and NB = 0.

The interested reader may wonder what classes of systems satisfy
the conditions of the theorem. Therefore, it will be shown here that this
theorem is equivalent to the following more direct formulation.
Theorem 2: Any strictly proper strictly minimum-phase system

fA;B;Cg, where A 2 R
n;n; B 2 R

n;m; C 2 R
m;n, with the

m � m transfer function T (s) = C(sI � A)�1B, and with CB
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positive–definite symmetric can be made strictly positive real via
constant output feedback.

Theorem 2 of this note thus completes and clarifies the implications
of the formulations of Theorem 1, yet implies no argument whatsoever
with [1]. Besides, [1] goes beyond previous publications and contains
another important result, namely, the proof that if a system cannot be
made SPR via constant feedback, no dynamic feedback can render it
SPR. This note, therefore, only intends to present a brief history of early
works and main developments that led to the complete proofs of this
important result and do not seem to be too well known in the control
community. Reference [1] served as a trigger for our note only because
it was the last in a series of publications dealing with this issue.

II. BRIEF HISTORY

First, recall that a linear time-invariant system with a state-space re-
alization fAK ; B; Cg is called SPR if there exist two positive definite
matrices P andQ, such that the following two relations are simultane-
ously satisfied:

PAK +A
T
KP = �Q (1)

PB = C
T
: (2)

The first relation shows that a SPR system is asymptotically stable.
The second relation yields CB = BTCT (i.e., positive–definite sym-
metric) and implies that the transfer function T (s) has relative degree
m or, in other words, T (s) has n poles and n �m zeros.

The SPR property plays a crucial role in guaranteeing stability in
systems with uncertainty [2], and in adaptive control [3]. However, as
most real-world systems are not inherently SPR, the result presented as
theorems above has proved very useful.

Based on the SPR representation (1)–(2) one can formally define the
matrix A = AK + BKC with K = 0. It is known that the system
fA;B;Cg remains SPR if one replacesK = 0 with any positive–def-
inite and arbitrarily large gain. If one uses a negative–definite gain in-
stead, one gets a system that is not necessarily SPR. However, such
a system only needs a constant output feedback gain to become SPR.
As output feedback affects the poles yet has no effect on the zeros of
the system or on its input and output matrices, one is left with a new
system fA;B;Cg that could be unstable, yet is minimum-phase and
withCB > 0, like the SPR system [4]. Such systems that are separated
only by constant output feedback from strict positive realness have
been called “almost strictly positive real (ASPR)” [4] and many exam-
ples that satisfied the assumptions of the theorem above were shown to
be ASPR and were successfully tested using adaptive control [4], [7].
Although some proofs of the ASPR property of Theorem 2 had been
available in the Russian literature both for single-input–single-output
(SISO) [5] and multivariable systems [6], they were not known and
probably their importance not very well appreciated in the Western lit-
erature at the time. Here, some partial proofs based on simple root-locus
and angle arguments have appeared in the context of SISO systems [7],
[8] and the first proofs of the theorem for the general multivariable case
were developed by Owens et al. [9] using multivariable root-loci and
by Teixeira [10] using the state-space representation. (Teixeira also pre-
sented his proof in [11], which was submitted for publication in 1988.
Unfortunately, although based on the available knowledge at the time
should have been the first known state-space proof of the theorem, this
paper was not published due to an oversight in the review process. A
1999 attempt by Fradkov to present a review on the topic ended with
a similar result.) Various proofs of the theorem based on state-space
representation have been subsequently published by Gu [12] and, as
mentioned, by Huang et al. [1]. As already mentioned, Huang et al. [1]
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went even further in emphasizing the importance of the ASPR prop-
erty, as Theorem 2 of their paper shows that if constant feedback can
not make a system SPR, then there exists no proper dynamic feedback
to render it SPR.

The reader may have a hard time following the proofs of the the-
orem, and even its general formulation and implications, as they were
imbedded among many other results in the papers above, each one
within the scope of its particular interests. Therefore, for the ease of
reference, this note ends with a short and direct proof of Theorem 2
(which does make use of ideas used by others, yet ends with a direct
and very streamlined version of the proof).

III. PROOF OF THEOREM 2

The basic ideas of the following proof actually make use of such
early works as [13] and [14] that had clarified the previously obscure
relationship between the state-space representation of a system and the
poles and zeros of its corresponding transfer function. First recall [13]
that the zeros of the closed-loop system fAK = A � BKC;B;Cg
are identical with the zeros of the open-loop system fA;B;Cg. Fol-
lowing [13], select the matricesMn;n�m; Nn�m;n, such that CM =
0; NB = 0, and NM = I . Such matrices always exist [13] and the
zeros of the system are then the eigenvalues of the matrix NAM . Be-
cause the system is strictly minimum phase, NAM is Hurwitz and
there exists some positive–definite matrix P0 such that

P0(NAM ) + (NAM)TP0 = �Q0 < 0: (3)

Before continuing, note that by using the relation NM = I (not
used in [1]), it is easy to see that the condition formulated in Theorem
1 is equivalent with (3) and makes Theorem 1 equivalent with Theorem
2. Now, it must be shown that there exists a matrix K that fulfils the
conditions of Theorem 2. To this end, consider the matrix

P = N
T
P0N + C

T (CB)�1C: (4)

AlthoughP in (4) seems to be only positive–semidefinite symmetric,
it is easy to show that it is actually positive–definite symmetric. Be-
cause NB = 0 implies that the rows of N and the columns of B are
linearly independent, one can select the nonsingular matrix

NB =
N

BT
(5)

so that P > 0 if and only if ~P = NBPN
T
B > 0. Here

~P =
~P11 ~P12
~P21 ~P22

=
N

BT
P [NT

B] (6)

~P11 = NPN
T = NN

T
P0NN

T +NC
T (CB)�1CNT (7)

~P12 = NPB = NC
T (8)

~P21 = B
T
PN

T = CN
T (9)

~P22 = B
T
N
T
P0NB +B

T
C
T (CB)�1CB = B

T
C
T
: (10)

We also compute

~P12 ~P
�1

22
~P21 = NC

T (BTCT )�1CNT
; (11)

Therefore

~P11 � ~P21 ~P
�1

22
~P12 = NN

T
P0NN

T
: (12)

Thus, it is clear that ~P11 > 0; ~P22 > 0, and ~P11� ~P21 ~P
�1

22
~P12 > 0,

which imply that ~P = NBPN
T
B > 0 and therefore P > 0.

It is easy to see now that the SPR relation (2) is satisfied. However,
one must also show that (2) is satisfied for some positive definite gains
K “sufficiently large.” To clarify the meaning of “large” in this context,
it is worth mentioning that in matrical case the notationsK1 > K2 and
K1 �K2 > 0 imply thatK1 �K2 is positive definite.

Because NB = 0 one gets

PAK +A
T
KP = N

T
P0NA +AN

T
P0N

+ C
T (CB)�1CA+ A

T
C
T (CB)�1C

� C
T
KC � C

T
K
T
C: (13)

Again, it is not directly seen that (13) is negative definite. Therefore,
consider the matrix

T = [M B(CB)�1]: (14)

It is easy to see that T is square and invertible and its inverse is

T
�1 =

N

C
: (15)

To show that (13) is negative definite, compute the expression

T
T

PAK +A
T
KP T = �Q: (16)

Here

Q =
Q11 Q12

Q21 Q22

: (17)

Q11 = �[P0(NAM) + (NAM)TP0] = Q0 > 0 (18)

Q12 = �P0NAB(CB)�1 � (CAM)T (CB)�1 (19)

Q21 = �(CB)�1CAM � (NAB(CB)�1)TP0 = Q
T
12 (20)

Q22 = K +K
T � (CB)�1CAB(CB)�1

� (CAB(CB)�1)T(CB)�1: (21)

For K sufficiently large (positive definite), one gets

Q22 > 0 (22)

and

Q22 �Q21Q
�1

11 Q12 > 0: (23)

Relations (18), (22), and (23) show that Q > 0 and, therefore, the
closed-loop system is SPR. Note that if K = kKo, where k is scalar,
there exists a limiting value ko for the gain k that would make Q posi-
tive semidefinite, thus defining a so-called “weakly” SPR system. This
value can be considered a lower bound for the sought after gains, as
any value k > ko would make the system (strongly) SPR.

IV. CONCLUSION

This paper presented a brief history of the main contributions to an
important SPR properties that led to the simple formulation of The-
orem 2. A streamlined and direct proof of the theorem has also been
presented. Present research seems to show that the procedure used in
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this note could eventually be extended to eliminate the symmetry con-
dition from the SPR relations and also to extend the relations to non-
stationary and nonlinear systems.
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