Adaptive Control and the Definition of Exponential Stability

Travis E. Gibson† and Anuradha M. Annaswamy‡

† † HARVARD MEDICAL SCHOOL
‡ ‡ MIT Massachusetts Institute of Technology

American Control Conference, Chicago IL
July 1, 2015
Objectives

Prove that the following statement is **incorrect**

- “If the reference model is persistently exciting then the adaptive system is globally exponentially stable”

Prove the following

- Adaptive systems can at best be uniformly asymptotically stable in the large

Main insights

- Indeed if the reference model is PE then after some time the plant will be PE, **but after exactly how much time?**
- We will show how a PE condition on the reference model implies a **weak** PE condition on the plant state.
Outline

- Definitions
 - Stability
 - Exponential Stability
 - Persistent Excitation (PE)
 - weak Persistent Excitation (PE*)

- Link between PE and Exponential Stability
- Link between PE* and Uniform Asymptotic Stability
- Simulation Studies
Uniform Stability in the Large (Global)

\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

Definition: Uniform Stability in the Large (Massera, 1956)

(i) **Uniformly Stable:** \(\forall \epsilon > 0 \exists \delta(\epsilon) > 0 \) s.t.
\[\|x_0\| \leq \delta \implies \|s(t; x_0, t_0)\| \leq \epsilon. \]

(ii) **Uniformly Attracting in the Large:** For all \(\rho, \eta \) \(\exists T(\eta, \rho) \)
\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \eta \quad \forall t \geq t_0 + T. \]

(iii) **Uniformly Asymptotically Stable in the Large (UASL)**
\[= \text{uniformly stable} + \text{uniformly bounded} + \text{uniformly attracting in the large}. \]
Exponential Stability

\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

Definition: (Malkin, 1935; Kalman and Bertram, 1960)

(i) **Exponentially Stable (ES):** \(\forall \rho > 0 \ \exists \ \nu(\rho), \kappa(\rho) \) s.t.

\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \kappa\|x_0\|e^{-\nu(t-t_0)} \]

(ii) **Exponentially Stable in the Large (ESL):** \(\exists \ \nu, \kappa \) s.t.

\[\|s(t; x_0, t_0)\| \leq \kappa\|x_0\|e^{-\nu(t-t_0)} \]
Persistent Excitation

“Exogenous Signal” : \(\omega : [t_0, \infty) \rightarrow \mathbb{R}^p \)

Initial Condition : \(\omega_0 = \omega(t_0) \)

Parameterized Function : \(y(t, \omega) : [t_0, \infty) \times \mathbb{R}^p \rightarrow \mathbb{R}^m \)

Definition

(i) **Persistently Exciting (PE):**

\[\exists T, \alpha \text{ s.t.} \]
\[\int_0^{t+T} y(\tau, \omega)y^T(\tau, \omega) d\tau \geq \alpha I \]

for all \(t \geq t_0 \) and \(\omega_0 \in \mathbb{R}^p \).

(ii) **weakly Persistently Exciting (PE*) (\(\omega, \Omega \)):**

\[\exists \text{ a compact set } \Omega \subset \mathbb{R}^p, \quad T(\Omega) > 0, \alpha(\Omega) \text{ s.t.} \]
\[\int_0^{t+T} y(\tau, \omega)y^T(\tau, \omega) d\tau \geq \alpha I \]

for all \(\omega_0 \in \Omega \) and \(t \geq t_0 \).
properties of adaptive control
Adaptive Control

Plant: \[\dot{x} = Ax - B\theta^T x + Bu \]

Reference Model: \[\dot{x}_m = Ax_m + Br \]

Control Input: \[u = \hat{\theta}^T(t)x + r \]

Error: \[e = x - x_m \]

Parameter Error: \[\tilde{\theta}(t) = \hat{\theta}(t) - \theta \]

Update Law: \[\dot{\hat{\theta}}(t) = -xe^TPB \]

Stability: \[V(e(t), \tilde{\theta}(t)) = e^T(t)Pe(t) + \text{Trace}\left(\tilde{\theta}^T(t)\tilde{\theta}(t)\right) \]

\[\dot{V} \leq e^TQe \]

\[\|e\|_{L_{\infty}} \leq \sqrt{V(e(t_0), \tilde{\theta}(t_0))/P_{\min}} \]

\[\|e\|_{L_2} \leq \sqrt{V(e(t_0), \tilde{\theta}(t_0))/Q_{\min}} \]

The L-norms of \(e\) are initial condition dependent!!
Exponential Stability and Adaptive Control

\[\dot{z}(t) = \begin{bmatrix} A & Bx^T(t) \\ -x(t)B^TP & 0 \end{bmatrix} z(t), \quad z(t) \triangleq \begin{bmatrix} e(t) \\ \hat{\theta}(t) \end{bmatrix} \]

Theorem: (Morgan and Narendra, 1977)

If \(x(t) \in \text{PE} \) then \(z(t) = 0 \) is UASL.

Therefore, when \(x \in \text{PE} \) the dynamics \(z(t) \) are globally exponentially stable (Anderson, 1977).

The condition of PE for \(x(t) \) however does not follow from \(x_m(t) \in \text{PE} \).
If $x_m \in \text{PE}$ then $x \in \?$

Recall that $e = x - x_m$, then for any fixed unitary vector h

$$
(x_m^T h)^2 - (x^T h)^2 = -(x^T h - x_m^T h) (x^T h + x_m^T h) \\
\leq \|e\| \quad = e^T h + 2x_m^T h
$$

$$(x_m^T h)^2 - (x^T h)^2 \leq \|e\| \left(\sqrt{\frac{V(z_0)}{P_{\min}}} + 2x_m^{\max} \right)
$$

Move x_m to the RHS, multiply by -1, and integrate to pT

$$
\int_t^{t+pT} (x^T(\tau) h)^2 d\tau \geq \\
p\alpha - \left(\sqrt{\frac{V(z_0)}{P_{\min}}} + 2x_m^{\max} \right) \sqrt{pT \int_t^{t+pT} \|e(\tau)\|^2 d\tau}.
$$

Clean the notation

$$
\int_t^{t+pT} \|x\|^2 d\tau \geq p\alpha - \left(\sqrt{\frac{V(z_0)}{P_{\min}}} + 2x_m^{\max} \right) \sqrt{pT \frac{V(z_0)}{Q_{\min}}}.
$$
\[x \in \text{PE}^* \quad x \notin \text{PE} \]

\[
\int_{t}^{t+T} x_m(\tau)x_m^T(\tau)d\tau \geq \alpha I
\]

\[
\int_{t}^{t+pT} x^T(\tau, z)x(\tau, z)d\tau \geq p\alpha - \left(\sqrt{\frac{V(z_0)}{P_{min}}} + 2x_{m}^{\text{max}}\right) \sqrt{pT\frac{V(z_0)}{Q_{min}}}.
\]

Fixed \(T, \alpha \) \quad **Free** \(p \) \quad **Initial Condition** \(z_0 \)

If the initial condition \(\|z(t_0)\| \) increases (\(V(z_0) \) increases), then \(p \) must increase, and thus the time (\(pT \)) must increase to keep \(\alpha' \) constant.

Revisit the definitions for PE

(i) **Persistently Exciting** (PE): \(\exists T, \alpha \) s.t.

\[
\int_{t}^{t+T} x(\tau, \omega)x^T(\tau, \omega)d\tau \geq \alpha I
\]

for all \(t \geq t_0 \) and \(\omega_0 \in \mathbb{R}^p \).

(ii) **weakly Persistently Exciting** (PE\(^*\)\((\omega, \Omega)\)): \(\exists \) a compact set \(\Omega \subset \mathbb{R}^p, \ T(\Omega) > 0, \ \alpha(\Omega) \) s.t.

\[
\int_{t}^{t+T} x(\tau, \omega)x^T(\tau, \omega)d\tau \geq \alpha I
\]

for all \(\omega_0 \in \Omega \) and \(t \geq t_0 \).
Adaptive Control and UASL

Revisit the adaptive control problem

\[
\dot{z}(t) = \begin{bmatrix} A & Bx^T(t) \\ -x(t)B^T & 0 \end{bmatrix} z(t), \quad z(t) \triangleq \begin{bmatrix} e(t) \\ \tilde{\theta}(t) \end{bmatrix}
\]

Define the following compact set

\[
\Omega(\zeta) \triangleq \{ z : V(z) \leq \zeta \}
\]

Theorem

If \(x_m \in \text{PE} \) then \(x \in \text{PE}^*(z, \Omega(\zeta)) \), for any \(\zeta > 0 \), and it follows that the dynamics above are UASL.

Proof.

- \(x_m \in \text{PE} \implies x \in \text{PE}^*(z, \Omega(\zeta)) \) from previous slide.
- \(\text{PE}^* \) by definition is a local uniform property
- The “Large” part of UASL holds because we can take arbitrarily large \(\Omega \)
- Next we prove (by counter example) \(x_m \in \text{PE} \) does not imply ESL.
Simulation Example

Plant: \[\dot{x} = Ax - B\theta^T x + Bu \]

Reference: \[\dot{x}_m = Ax_m + Br \]

Control: \[u = \hat{\theta}^T(t)x + r \]

- \[\hat{\theta} = x_m(t_0) = 3 \]
- \[A = -1 \]
- \[B = 1 \]
- \[r = 3 \]

\[M_1 \cup M_2 \cup M_3 \text{ is invariant} \]

\[M_3 \text{ extends down in an unbounded fashion} \]

\[\text{maximum rate of change in } M_3 \text{ is bounded} \]

\[\text{The fixed rate regardless of initial condition implies that ESL is impossible} \]

\((\text{Jenkins et al., 2013a; 2013b}) \)

Summary

- PE of the reference model does not imply PE for the state vector
- Adaptive control in general can not be guaranteed to be ESL

Bibliography

backup slides
Stability

\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

Definition: Stability (Massera, 1956)

(i) **Stable:** \(\forall \varepsilon > 0 \exists \delta(\varepsilon, x_0, t_0) > 0 \) s.t.
\[\|x_0\| \leq \delta \implies \|s(t; x_0, t_0)\| \leq \varepsilon. \]

(ii) **Attracting:** \(\exists \rho(t_0) > 0 \) s.t. \(\forall \eta > 0 \exists \) an attraction time \(T(\eta, x_0, t_0) \) s.t.
\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \eta \quad \forall t \geq t_0 + T. \]

(iii) **Asymptotically Stable** = stable + attracting.
\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

**Definition: **Uniform Stability (Massera, 1956)

(iv) Uniformly Stable: \(\delta(\epsilon) \) in (i) is uniform in \(t_0 \) and \(x_0 \).

(v) Uniformly Attracting: \(\rho \) and \(T \) do not depend on \(t_0 \) or \(x_0 \) and thus the attracting times take the form \(T(\eta, \rho) \).

(vi) Uniformly Asymptotically Stable, (UAS) \(= \) uniformly stable + uniformly attracting.
Uniform Stability in the Large (Global)

\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

Definition: Uniform Stability in the Large (Massera, 1956)

(vii) **Uniformly Attracting in the Large**: For all \(\rho, \eta \) \(\exists T(\eta, \rho) \)
\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \eta \quad \forall t \geq t_0 + T. \]

(viii) **Uniformly Asymptotically Stable in the Large (UASL)**
= uniformly stable +
uniformly bounded +
uniformly attracting in the large.
Exponential Asymptotic Stability

\[\dot{x}(t) = f(x(t), t) \]
\[x_0 \triangleq x(t_0) \]

Solution \(s(t; x_0, t_0) \)

Definition: (Malkin, 1935; Kalman and Bertram, 1960)

(i) **Exponentially Asymptotically Stable (EAS):**
\[\forall \, \epsilon > 0 \, \exists \, \delta(\epsilon), \nu(\epsilon) \text{ s.t.} \]
\[\|x_0\| \leq \delta \implies \|s(t; x_0, t_0)\| \leq \epsilon e^{-\nu(t-t_0)} \]

(ii) **Exponentially Asymptotically Stable in the Large (EASL):** \(\forall \, \rho > 0 \, \exists \, \epsilon(\rho), \nu(\rho) \) s.t.
\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \epsilon e^{-\nu(t-t_0)} \]

(iii) **Exponentially Stable (ES):** \(\forall \, \rho > 0 \, \exists \, \nu(\rho), \kappa(\rho) \) s.t.
\[\|x_0\| \leq \rho \implies \|s(t; x_0, t_0)\| \leq \kappa \|x_0\| e^{-\nu(t-t_0)} \]

(iv) **Exponentially Stable in the Large (ESL):** \(\exists \nu, \kappa \) s.t.
\[\|s(t; x_0, t_0)\| \leq \kappa \|x_0\| e^{-\nu(t-t_0)} \]