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Abstract

Microbes are everywhere, including in and on our bodies, and have been shown
to play key roles in a variety of prevalent human diseases. Consequently, there
has been intense interest in the design of bacteriotherapies or “bugs as drugs,”
which are communities of bacteria administered to patients for specific therapeutic
applications. Central to the design of such cocktails is an understanding of the
causal microbial interaction network and the population dynamics of the organisms.
In this work we present a Bayesian nonparametric model and associated efficient
inference algorithm that addresses the key conceptual and practical challenges
of learning microbial dynamics from time series microbe abundance data. These
challenges include high-dimensional (300+ strains of bacteria in the gut) but
temporally sparse and non-uniformly sampled data; high measurement noise; and,
nonlinear and physically non-negative dynamics. Our contributions include a fully
Bayesian stochastic dynamical systems model for microbial dynamics; introduction
of a temporally varying auxiliary variable technique to enable efficient inference by
relaxing hard non-negativity constraint on states; and, joint aggregation/clustering
of variables into redundant interaction modules and structural learning of a compact
interaction network among modules (reducing the number of interaction coefficients
needed from O(n2) to O(n+log(n)2)). We apply our method to real and synthetic
data, and demonstrate the utility of structural learning and clustering features of
our model.

1 Introduction

The human microbiome constitutes all the microorganisms that live in and on our bodies [23]. There
is strong evidence that the microbiome plays an important role in a variety of human diseases,
including: infections, arthritis, food allergy, cancer, inflammatory bowel disease, neurological
diseases, and obesity/diabetes [10, 25, 21, 20, 14, 24]. Given the microbiome’s profound role,
there is now a concerted effort to design bacteriotherapies, which are cocktails of multiple bacteria
working in concert to achieve specific therapeutic effects. Multiple strains are often needed in
bacteriotherpies both because multiple host pathways must be targeted, and because additional
bacteria may provide stability or robustness to the community as a whole. An important step toward
designing bacteriotherapies is mapping out microbial interactions and predicting population dynamics
of this ecosystem. One, and arguably the most popular avenue, is to use time series microbiome
abundance data to learn predictive models. That is, one takes as input time series microbiome
abundances as depicted in Figure 1A and infers a model of microbial interactions as in Figure 1B.

We now very briefly review previous work in this area. The authors of [22] model microbial dynamics
using continuous time deterministic generalized Lotka-Volterra (gLV) equations, transform to a
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Figure 1: Schematic: (A) Time series abundances of microbial species. (B) Pairwise microbe-microbe
interaction network. (C) Microbe-microbe interaction network with interaction module structure.

discrete time linear model via a log transform to enable efficient inference, and then use L2 penalized
linear regression to infer model parameters. In [7] the authors perform sparse linear regression with
bootstrap aggregation on a discrete time Lotka-Volterra model. No regularization is performed in [7]
and sparsity is introduced into the model by adding and removing interaction coefficients one at a time
with step-wise regression. Several inference techniques are presented in [4], two being extensions of
the model proposed in [22] and two being new Bayesian models. The Bayesian models in [4] are
based on ordinary differential equation gradient matching, in which Bayesian spline smoothing is first
performed to filter the experimental measurements, and then a Bayesian adaptive lasso or Bayesian
variable selection method is used to infer model parameters. Finally, in [2] an Extended Kalman
Filter (EKF) is applied to a stochastic gLV model, which incorporates filtering directly, unlike the
aforementioned references. Beyond microbiome specific dynamical systems inference approaches,
there is an extensive body of work on Bayesian inference of nonlinear dynamical systems, which
remains an active area of research. Limited space prevents review of this work, so we only mention
the general work of [12, 5, 1, 9] and recent work to leverage Gaussian Processes as a means for
efficient filtering in the nonlinear dynamical setting [3, 16, 6].

2 Model and inference algorithm

Our model of dynamics is based on the stochastic gLV equations widely used in ecological system
modeling

dxt,i = xt,i

�
�i +

Pn
j=1 ↵ijxt,j

�
dt+ dwt,i, i 2 {1, 2, . . . , n}

where xt,i 2 R�0 is the abundance of microbe i at time t 2 R, �i 2 R is the growth rate of microbe
i and ↵ii is the “self interaction term” and together �i and ↵ii determine the carrying capacity of
the environment when species i is not interacting with any other species. The coefficients ↵ij when
i 6= j are then the microbial interaction terms. The term wt,i 2 R represents a stochastic disturbance.
Note that, while not shown explicitly, the disturbance must be conditioned on the state to prevent
negative state values. Overloading the first subscript in x, a discrete-time approximation to the gLV
dynamics above is

x(k+1),i � xk,i ⇡ xk,i

�
�i +

Pn
j=1 ↵ijxk,j

�
�k +

p
�k(wk+1,i � wk,i) (1)

where k 2 N>0 indexes time as tk and �k , tk+1 � tk. The accuracy of this approximation will
depend on a sufficiently dense discretization relative to time-scales of the dynamics of interest.

We now discuss one of our technical contributions, which is to relax the strict non-negativity
assumption on x in (1) and thereby enable efficient inference while maintaining realistic dynamics.
To accomplish this, we introduce an auxiliary trajectory variable q such that qk,i ⇠ Uniform[0, L)
for L positive and much larger than any of the measured values. Data y are assumed to be generated
from q through some model of measurement noise y | q. We couple the latent trajectory x to
the auxiliary variable q through a conditional distribution q | x, which we assume to be Gaussian
with small variance. This effectively introduces a momentum term into the model of dynamics
(1) (proportional to the difference between x and q), which softly constrains x to be in the range
[0, L). This renders the posterior distributions for x and gLV parameters ↵,� Gaussians rather
than their being truncated Gaussians if strict non-negativity were imposed. Practically, this makes
efficient inference feasible, since sampling from these posteriors is now easy and we can also perform
closed-form marginalizations (discussed below). Although not explored in the present abstract, we
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note also that the introduction of q easily allows for flexible measurement noise models, such as
negative binomial distributions for modeling sequencing counts [18, 15].

Our second key contribution is to incorporate a Dirichlet Process (DP)-based clustering technique[17,
19] to learn redundant interaction modules among bacteria. This clusters microbial strains into
groups based on their interaction structure, meaning that interactions between groups only need to be
learned, rather than interactions between each pair of microbes. For purposes of interpretability, we
specifically assume no interactions within each cluster, corresponding to the biologically important
scenario of redundant functionality among sets of microbes. An example of this structure is visualized
in Figure 1C: while Figures 1B and 1C both contain 10 microbes, there are only 6 interactions to learn
in 1C (between clusters), versus 90 microbe-microbe interactions in 1B without the cluster structure.
We note that our inference algorithm automatically adapts the interaction network by structurally
adding or removing edges (analogous to approaches for standard Bayesian Networks e.g., [8, 11]),
which we refer to as Edge Selection (ES). This approach allows us to easily compute Bayes factors
[13], enabling principled determination of the evidence for or against each interaction occurring.

Figure 2 presents the complete model. Starting with the Dirichlet Process, ci 2 Z+ represents the
cluster assignment for bacterial species i. If species i and species j are in different clusters, and thus
ci 6= cj , then bci,cj 2 R is the coefficient representing the (interaction) effect that species j has on
species i. If species j and ` are in the same cluster then bci,cj = bci,c` by definition (i.e., species
in the same cluster share interaction coefficients.) Note that no interactions are assumed to occur
within a cluster. For each element in b there is a corresponding element in z, which is an indicator
variable (0 or 1) that chooses whether an interaction exists between two clusters. The terms ai,1 and
ai,2 correspond to the growth rate and self interaction term for species i, respectively. Note that these
variables are not part of our clustering scheme and do not have indicator variables associated with
them, and thus all species have an independently determined growth and self interaction terms always
present in the model.

We very briefly discuss our inference algorithm, which leverages efficient Gibbs/collapsed Gibbs
sampling steps. For the variance terms (�a,�b,�w,�q), an inverse-gamma prior distribution is used,
which is conjugate and thus allows direct posterior sampling. Note that the measurement variance �y
is estimated directly from technical replicates for each measurement. As mentioned, our auxiliary
trajectory approach renders the posterior distributions for the gLV model coefficients a,b Gaussian,
so we can directly sample from their posteriors. The cluster assignments, c, are updated by a standard
Gibbs sampling approach for Dirichlet Processes [17]. Importantly, our auxiliary trajectory approach
also allows us to marginalize out in closed form the interaction coefficients b both when computing
the probability of a new cluster occurring and during structural model learning (Edge Selection for
interactions between clusters). We are thus able to perform collapsed Gibbs steps, which have been
shown to improve mixing substantially in these contexts [17]. Sampling of the auxiliary variables q
and latent trajectories x require Metropolis-Hastings (MH) steps. Briefly, for q, the MH proposal is
based on a Generalized-Linear Model approximation. For x, we use a one time-step ahead proposal

Dirichlet Process Edge Selection
⇡c | ↵ ⇠ Stick(↵) zci,cj | ⇡z ⇠ Bernouli(⇡z)

ci | ⇡c ⇠ Multinomial(⇡c) Self Interactions

bci,cj | �b ⇠ Normal(0,�2
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Figure 2: Complete mathematical description of the model along with graphical model. Higher level
priors are not depicted in the model.
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that uses the previous time point latent abundance and the gLV coefficients to propose the next time
point abundance giving the proposal the form pxk+1|xk,⌦,q.

3 Results
In this section, we present some initial results applying our approach to synthetic and real microbiome
data [4]. Our goal with synthetic data is to illustrate the utility of the Edge Selection capability for
inferring network topology in the realistic setting of very limited data; we thus ran the model without
clustering for this demonstration. Synthetic data were constructed to mimic in vitro experiments
that our lab routinely performs, in which a community of 3-5 bacterial strains are grown together
in batch culture with different initial starting concentrations of strains (runs) and sampled every 30
minutes for 10 hours, with the objective of understanding the growth rates and interactions among
the organisms. We can typically only perform a small number of runs, due to practical cost and time
constraints. An example run for 4 strains and the respective ground truth interaction network are
shown in Figure 3A1. Figures 3A2 and 3A3 show results of our method learning on 2 or 4 runs
respectively. With just 4 runs, our method correctly identifies the topology of the interactions, giving
either “strong” or “decisive” evidence when interpreting Bayes factors using Jeffreys scale, whereas
with 2 runs performance of our method degrades, but does so fairly “gracefully” (most interactions
are correctly identified, and one of the incorrectly identified interactions has a relatively low Bayes
Factor). Figure 3B displays results of our full model with clustering applied to an in vivo mouse
experiment investigating the ability of the pathogen Clostridium difficile to invade a pre-existing
complex but defined community of bacterial strains residing in the gut [4]. The model found a
median of 5 interaction modules (clusters) with quite stable memberships, suggesting meaningful
lower-dimensional structure underlying this host-microbial ecosystem. Space limitations preclude
discussion of the possible biological implications of these modules, but we note that some modules
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Figure 3: (A) Inference on synthetic time series data, mimicking in vitro batch experiments. (A1)
Example trajectory with measurements, shown as circles, and ground truth microbial interaction
coefficients. (A2) Learning from 2 runs: Bayes Factors for microbe-microbe interactions, expected
value for interaction coefficients, ↵, and simulated trajectories from the inferred dynamics (A3)
Learning from 4 runs with same panel descriptions as A2. (B) Learning from real data from an in vivo

mouse studying the ability of the pathogen C. difficile to invade a complex but defined microbiome:
co-cluster proportions and the absolute value of the expected value for interaction coefficients.
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are comprised of phylogenically dissimilar strains, suggesting clustering may be identifying microbes
with similar ecological niches/functions rather than phylogenetic relatedness. In future work, we will
analyze these data in detail and also plan to apply our approach to human microbiome (300+ strains)
time series studies.
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