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Abstract: We examine convergence properties of errors in a class of adaptive systems that arises for
scalar plants. We show that these adaptive systems are at best uniformly asymptotically stable in the
large, and possess an infinite region where the trajectories move arbitrarily slowly, i.e. stick. We show
that these properties are also exhibited by adaptive systems with closed-loop reference models which
have been demonstrated to exhibit improved transient performance. Despite such transient behavior, we
show that the slow convergence can still occur and has the potential to be slower than classic open-loop
reference model adaptive systems.
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1. INTRODUCTION

Adaptive systems for the control of linear time-invariant
plants can be shown to be stable under ideal conditions,
with the tracking error converging to zero for any refer-
ence input. It is well known that if the conditions of per-
sistence of excitation are met, then model reference adaptive
control systems are uniformly asymptotically stable (u.a.s.)
(Narendra and Annaswamy (2005)). One of the desirable prop-
erties however is exponential convergence as this ensures not
only a fast convergence but also improved robustness. In this
paper, we show that an inherent property exists in these standard
adaptive systems that precludes such fast convergence, and that
adaptive systems can only be shown to be globally u.a.s. and
not exponentially stable. We also show that the implication of
this property is that there is a region of slow convergence in the
error space where the velocity of the underlying error state is
finite and does not depend on its norm.

Recently, a new class of adaptive systems has been un-
der discussion (see Lavretsky (2010), Gibson et al. (2012),
Gibson et al. (2013), Stepanyan and Krishnakumar (2010)) which
employ a closed-loop in the underlying reference model. These
adaptive systems have a desirable transient response which
leads to an improved tracking error whose L∞ and L2 norms
are small compared to their open-loop counterparts. More im-
portantly, the closed-loop signals such as the control input and
control parameter have derivatives that have small magnitudes
as well when compared to open-loop reference model systems.
We also examine in this paper if the slow convergence that is
present in the standard adaptive system with Open-Loop Ref-
erence models (ORM) is present in the Closed-Loop reference
model (CRM)-based adaptive systems as well.

In order to provide an analytical insight into this sticking
regime, we focus our attention in this paper on adaptive systems
that arise for a first-order plant with a single unknown param-
eter. This allows us to quantify the underlying error system in
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terms of second-order quadratic nonlinear differential equations
for the ORM, and a third order system for the CRM case. We
employ a qualitative theory of differential equations approach
in order to identify a “sticking” region. We first analyze this
region with the classical adaptive controller with a standard
adaptive law, denoted as an ORM adaptive system. We then
examine the effect of the closed-loop reference model on this
sticking region. The regions in the ORM and CRM case are
compared, using both qualitative theory of differential equa-
tions and numerical simulation studies.

2. THE CRM ADAPTIVE SYSTEM

Consider the scalar plant with an unknown parameter, ap

ẋp(t) = −apxp(t) + u(t) (1)

with the controller defined by

u(t) = θ(t)xp(t) + r (2)

where θ(t) is the time varying adaptive gain updated as

θ̇(t) = −γe(t)xp(t), (3)

e = xp − xm, and xm is the output of a reference model
defined as

ẋm(t) = −amxm(t) + r(t) + ℓ(xp(t)− xm(t)). (4)

ℓ in (4) is a feedback gain which introduces a closed-loop in
the reference model. The error dynamics e then evolves by the
following:

ė(t) = −aLe(t) + θ̃(t)xp(t), (5)

where aL = am+ ℓ, θ̃ = θ − θ∗ and θ∗ = −am + ap. Stability
follows from the following Lyapunov function

V (e(t), θ̃(t)) =
e2(t)

2
+

θ̃2(t)

2γ

with a derivative V̇ (t) = −(am + ℓ)e2(t). Therefore e, θ̃ ∈ L∞.

This implies that ė ∈ L∞. Integrating V̇ we can deduce

‖e(t)‖2L2
≤

1

am + ℓ
V (e(0), θ̃(0)). (6)
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From Barbalat’s Lemma limt→∞ e(t) = 0. If in addition,
the reference input is non-zero, the persistence of excitation
conditions are met and the system is u.a.s. The degree of
persistence of excitation is not however only a function of r,

but e(0) and θ̃(0) as well.

The main benefit of CRM-adaptive systems is that ℓ can be
increased independent from any other parameter in the system.
This allows one to systematically reduce the L2 norm of e
as in (6) and increase the rate of decay of V (t). This results
in reduced chattering in the adaptive system, and when ℓ
is chosen in conjunction with γ in an optimal fashion the
adaptive system also portrays smooth transients in the control
input (Gibson et al. (2012)). This, however, does not imply fast
adaptation, as we will show in section 3. The introduction of a
CRM results, in fact, in slower learning in the adaptive system
as the reference model error has been artificially suppressed
through the gain ℓ.

3. CONVERGENCE PROPERTIES OF THE ORM AND
CRM ADAPTIVE SYSTEMS

In this section, we analyze the convergence properties of the
ORM- and CRM-adaptive systems. Our attention is restricted
to first-order plants with a single unknown parameter with a
constant reference input. This simplest case is considered so
as to clearly illustrate and quantify the convergence properties
of the underlying nonlinear adaptive system. In both cases, we
use the standard adaptive law as in Equation (3) without any
robustness inducing modifications.

3.1 ORM

We start with equations (1)-(4) with ℓ = 0, which defines the
ORM-adaptive system. We set r = r0, a positive constant,
xm(0) = r0/am so that

xm(t) ≡ x0 =
r0
am

∀t ≥ t0 (7)

Equation (7) is used in what follows in order to simplify the
analysis. With (7), the ORM-adaptive system reduces to

ė(t) = −ame(t) + θ̃(t)(e(t) + r/am) (8)

˙̃
θ(t) = −γe(t)(e(t) + r/am) (9)

The trajectories of (8) and (9) can therefore be fully character-
ized using a state-plane. Figure 1 illustrates a part of the state-

plane, where the curves where
˙̃
θ = 0 and ė = 0 are indicated.

Also indicated are the vector field directions on these curves. As
seen in the figure, the former occurs when e = 0 and e = −x0,
while the latter occurs on a parabola given by

SO4 = eOh(θ̃) =
θ̃r

am(am − θ̃)
.

It should be noted that the direction arrows are not drawn with
lengths proportional to the state rate magnitude.

We now introduce a second hyperbola

eOh2(˜θ) = 2eOh(˜θ)− x0 =
r

am

(am + θ̃)

am − θ̃
(10)

which we will use to characterize certain invariance properties
and speeds of the underlying trajectories.

Using these lines and hyperbolae, with

z = [e ˜θ]T ∈ R
2

−xm

ǫǫ

ė = 0

SO1

SO2

SO3

˙̃
θ = 0

Fig. 1. MO in e,θ̃ space, with xm held constant
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Fig. 2. Norm of state rate contours

we define a region, MO as follows:

MO :

{

z|θ̃ < −am,−
r

am
≤ e ≤

r

am

(am + θ̃)

am − θ̃

}

MO is indicated in Figure 1. As can be seen in the figure, MO

is bounded by the vertical lines e = −x0 and the hyperbola

eOh2(˜θ) defined in equation (10), and extends in the ˜θ-direction

from ˜θ = −am to −∞. MO is therefore an infinite region in the

state-plane (e,˜θ), bounded by the surfaces SO1, SO2, and SO3.

SO1 : e(˜θ) =
r

am

(am + ˜θ)

(am − ˜θ)

SO2 : e =
−r

am

SO3 : ˜θ = −am

We note that MO is unbounded, since the hyperbola, SO1 is
asymptotic to the line e = −x0.

Figure 2 shows contours ‖ż‖ = c for

c = 1, 2, 3, 3.75

of an example with parameters of the adaptive system (1)-(4),
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am = 1, ℓ = 0, γ = 1,
ap = 1, and r = 3

(11)

The region MO is superimposed on these contours. As can be
seen from Figure 2, these contours are non-convex. It is also
clear that ‖ż‖ ≤ 3.75 at all points in MO . Theorem 1 is the
analytical counterpart of this observation.

Theorem 1. Let

dO =
x2
0γ

2

4
Then
(i)

‖
˙̃
θ‖ ≤ dO ∀z ∈ MO (12)

(ii) all trajectories that start on SO1, and SO2 enter MO ,
(iii) once a trajectory enters MO at t = t0 it will exit at
t = t1 > t0 through SO3, and
(iv) there exists a minimum time T1 = t1 − t0 that all
trajectories that start in MO will remain in MO which is given
by

T1 ≥
|˜θ(t0)| − am

dO
(13)

Proof. (i) Equation (12) is immediate from the definition of
MO , and equation (3). That is, at all points in MO,

‖
˙̃
θ‖ ≤

x2
0γ

2

4
= dO ∀z ∈ MO (14)

(ii) In order to evaluate the behavior of the trajectories on the
surfaces SO1 and SO2, we define normals n̂Oi to each surface
SOi, i = 1, 2. From the definitions of these surfaces it can be
seen that

n̂O2 = [1 0]T (15)

Noting that a tangential vector on SO1 is given by

t̂O1 =

[

1

(

∂˜θ

∂e

)

S01

]T

the normal vector that points into MO can be computed as

n̂O1 =

[

−

(

∂˜θ

∂e

)

S01

1

]T

=

[

−2amxo

(xo + e)2
1

]T

(16)

It is therefore easy to see that

n̂T
Oi[ż]SOi

≥ 0, i = 1, 2 ∀z ∈ MO (17)

The inequality (17) proves (ii).

(iii) The asymptotic stability of the ORM system shown in
section 2 requires that all trajectories exit MO in order to reach
e = 0. Equation (17) implies that any trajectory which exits
MO must do so through SO3 which proves (iii).

(iv) From (iii), we have that all trajectories starting at z(t0) =

(e(t0), ˜θ(t0)) ∈ MO must traverse a distance of |˜θ(t0)|−am in

the ˜θ-direction. From (i), we have that the maximum velocity

of the trajectories in the ˜θ-direction is dO. Together, they imply
that the trajectories spend a minimum time within MO of

T1 ≥
|˜θ(t0)| − am

dO
which proves (iv). �

Although not required for Theorem 1, it is useful for discussion

to note that in MO not only is
˙̃
θ finite, but ż is as well, with

     

     

          

     

xm

e

SC2
SC1

ė = 0

ǫǫ

xm = r
am

xm = r
aL

O

A B C

ẋm = 0

D

Fig. 3. MC in e, xm space with ˜θ ≤ −aL. As ˜θ → −∞, OB

and OC become OA. As ˜θ → −aL, OC aligns with the
xm axis. Point D is a local point of attraction.

‖ż‖ ≤
(

r2 + d2O
)

1
2 ∀x ∈ MO

The main implication of Theorem 1 stems from (13). Noting
that MO is an infinite region, and that it is possible to pick a
z0 ∈ MO with ‖z0‖ > M for any finite M , if follows from
(13) that T1 can be made arbitrarily large. That is, the adaptive
system can be ”stuck” in this region MO for this large duration
T1 making it a ”sticking regime”.

Yet another implication is that this convergence period is a
function of the norm ‖z(t0)‖ rather than the ratio of the starting
and ending distances of z from the origin, which implies that
the adaptive system is NOT exponentially stable.

3.2 CRM

We now turn our attention to equations (1) - (5) with ℓ 6= 0,
which is the CRM-based adaptive system. In this case, the
underlying system is third order, and is given by

ẋm = −amxm + r + ℓe

ė = −aLe + θ̃(e+ xm)

θ̇ = −γe(e+ xm)

Despite the higher order, we identify a region similar to MO

with ”sticking” properties. In addition to Figure 1, we can use
Figure 3 to depict this region, denoted MC . With

z = [xm e ˜θ]T ∈ R
2

this space MC is defined as

MC :

{

z|θ̃ < aL,
r

aL
≤ xm ≤ x0,−xm ≤ e ≤

xm(aL + θ̃)

aL − θ̃

}

where x0 = r
am

. MC is therefore a region in the state space

(xm, e, ˜θ), bounded by the surfaces SCi, i = 1, 2, 3, 4, 5.

SC1 : e(˜θ) = xm

(aL + ˜θ)

aL − ˜θ
SC2 : e = −xm

SC3 : xm =
r

aL
SC4 : xm = x0
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e

˜θ

Fig. 4. 3D representation of MC for the example system defined
in (11). In the figure, the front wall corresponds to SC3,
back wall to SC4, and the ceiling to SC5. The plane, de-
noted in tan color, corresponds to SC2, and the hyperbolic
surface, denoted in blue color, corresponds to SC1. MC is
the region bounded by SC5 on the top, and the surfaces
SC1 and SC2, but not bounded at the bottom, as both SC1

and SC2 extend to infinity in the −˜θ-direction. Therefore
MC is an infinite region.

SC5 : ˜θ = −aL

MC is unbounded since the hyperbolic surface SC1 is asymp-
totic to SC4. A three dimensional representation is provided in
Figure 4.

We now state the main result of this section in Theorem 2:

Theorem 2. (i)

‖
˙̃
θ‖ ≤ dC ∀z ∈ MC (18)

where

dC =
γx2

0

4

(ii) all trajectories that start on SCi, i = 1, 2, 3, 4 enter MC ,
(iii) once a trajectory enters MC at t = t0 it will exit at
t = t1 > t0 through SC5, and
(iv) there exists a minimum time T1 = t1 − t0 that all
trajectories that start in MC will remain in MC which is given
by

T1 ≥
|˜θ(t0)| − aL

dC
(19)

Proof. Equation (18) is immediate from the definition of MC

and equation (3), that is, at all points in MC

‖
˙̃
θ‖ ≤

γx2
0

4
= dC ∀z ∈ MC

(ii) In order to evaluate the behavior of the trajectories on the
surfaces SCi, i = 1, 2, 3, 4, we define normals n̂Ci to each
surface SCi. From the definitions of these surfaces it can be
seen that

n̂C2 = [1 1 0]T

n̂C3 = [1 0 0]T

n̂C4 = [−1 0 0]T

To define n̂C1, we select two unique tangential vectors on SC1:

t̂C1 = [1 0
(

∂θ̃
∂xm

)

SC1

]T and t̂C2 = [0 1
(

∂θ̃
∂e

)

SC1

]T .

Therefore, n̂C1 is given by

n̂C1 = tC1 ⊗ tC2

where ⊗ is the vector cross product operator. This results in

n̂C1 = [
2aLe

(xm + e)2
−2aLxm

(xm + e)2
1]T (20)

It can be shown that,

n̂T
Ci [ż]SCi

≥ 0, i = 1, 2, 3, 4 ∀z ∈ MC (21)

The inequality (21) proves (ii).

(iii) The asymptotic stability of the CRM system shown in
section 2 requires that all trajectories from within MC exit
MC in order to reach e = 0. Equation (21) implies that any
trajectory which exits MC must do so thoughSC5 which proves
(iii).

(iv) From (iii), we have that all trajectories starting at z(t0) =

(xm(t0), e(t0), ˜θ(t0)) must traverse a distance of |˜θ(t0)| − aL
in the ˜θ-direction. From (i), we have that the maximum velocity

of the trajectory in the ˜θ-direction is dC . Together, they imply
that the trajectories spend a minimum time within MC of,

T1 ≥
|˜θ(t0)| − aL

dC
(22)

which proves (iv). �

Although not required for Theorem 2 it is useful for discussion

to note that not only is
˙̃
θ finite, but ż is as well at all points in

MC . The rates of each state within the region MC are,

−ℓr

am
≤ ẋm ≤

ℓr

aL
−aLr

am
≤ ė ≤

aLr

am

0 ≤ ˙̃θ ≤
γ

4

r2

a2m
The above discussions clearly indicate that in the CRM-
adaptive system, there is a region MC in the overall state space

where |˜θ| − aL can tend to infinity, but
˙̃
θ remains finite. The

discussions also indicate that all trajectories that start on the
surfaces SC1, SC2, SC3, and SC4 enter MC , and will leave
only through the surface SC5. Hence, MC is a ”sticking region”
where the system trajectories move with a finite velocity. Using
the same arguments as above, we can conclude that the CRM-
adaptive system is not exponentially stable as well.

3.3 Comparison of slow Convergence in the ORM and CRM

In order to compare the convergence properties described
above, for the ORM- and CRM-adaptive systems, we define
additional surfaces, SC6 where ẋm = 0 and SC7 where ė = 0
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SC6 : xm(e) = x0 +
ℓ

am
e

SC7 : e(xm, ˜θ) =
˜θxm

aL − ˜θ
True sticking occurs when both ẋm and ė are close to zero
which occurs in the localized region where the solid and dotted
blue lines meet in Figure 3. This can occur as low as xm = r

aL

and continue up to xm = r
am

. As sticking starts, the value of
˙̃
θ

is well under its bound and actually closer to γ
4

r2

a2
L

. Yielding a

result that the time rate of change of the adaptive parameter for

the ORM and CRM deep (ie, θ̃ ≪ 0) within MO or MC occurs
on the order

ORM :
˙̃
θ ∼

γr2

a2m

CRM :
˙̃
θ ∼

γr2

(am + ℓ)2
.

(23)

This claim does not say that the CRM can never have faster
convergence than the ORM system, but that there is a specific
region in the state space where the performance of the CRM
is significantly worse in terms of parameter convergence if
the adaptive gain is not increased appropriately. Notice from
(23) that the larger ℓ is made, the slower the parameter error
converges. This claim is substantiated with simulations in the
following section.

3.4 Sticking Regime and Projection Algorithm

Theorems 1 and 2 clearly indicate that the slow convergence is

directly a function of ˜θ(t0). We also note that the adaptive laws
employed in these adaptive systems are the standard ones and
did not include any modifications. If, for instance, a projection
algorithm is introduced, this puts a lower bound on T1 in

Theorems 1 and 2, with ˜θ(t0) replaced by θmax, where θmax

is a known upper bound on θ (Lavretsky and Gibson (2011)).
This implies, however, that the larger the θmax, the slower the
convergence properties.

We also note that in this paper, the reference input has been
assumed to be a constant, and our focus has been on first-order
plants with a single unknown parameter. A constant, non-zero,
reference input is therefore persistently exciting and ensures
parameter convergence. So the question that may be raised is
if the sticking regime exists for general cases with an arbitrary
reference input in a high-order plant. Recent results related
to higher order adaptive systems indicate that these sticking
regimes exist and are highly dependent on the persistence of
excitation of the system.

4. SIMULATION EXAMPLES

Simulations are now presented with initial conditions starting
within and on the edges of the “sticking” region, MO and MC ,
defined for the ORM- and CRM-adaptive systems respectively
with parameters as defined in (11), with ℓ = 0 for the ORM-
and ℓ = 1 for the CRM-adaptive system. 9 initial states are cho-
sen specifically for each system, defined below in Tables 1 and
2. Rather than defining numerical values for each initial con-
dition, we choose them as points of intersection of two unique
surfaces indicated in Table 1. Similarly, the initial conditions
for the CRM system are chosen as the points of intersection of

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

 

 

e

z1

z2

z3

z4

z5

z6

z7

z8

z9

SO1
SO2

SO4

θ̃

Fig. 5. 2D projection of the 3D state portrait for the ORM
adaptive system with am = 1, ap = 1, γ = 1, r = 3
and initial conditions defined in table 1

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

 

 

e

z1

z2

z3

z4

z5

z6

z7

z8

z9

SC1SC2

SC6 ∩ SC7

θ̃

Fig. 6. 2D projection of the 3D state portrait for the CRM
adaptive system with am = 1, ap = 1, γ = 1, ℓ = 1, r = 3
and initial conditions defined in table 2

three surfaces as indicated in Table 2. The algebra of solving
for these points is straightforward and left to the reader. Figure

SO1 SO4 SO2

˜θ = −2 z1 z4 z7

˜θ = −4 z2 z5 z8

˜θ = −8 z3 z6 z9

Table 1. Initial conditions zi, i = 1, 2, . . .9 for
the ORM example system. Each initial conditions,
zi, is the point of intersection of the two indicated

surfaces in the corresponding row and column.

5 contains the 2-dimensional state portrait showing the state
space trajectories of the ORM-adaptive system resulting from
each of the initial conditions of Table 1. Also indicated in this
figure is the surface SO4. Figure 6 contains the 2-dimensional
projection of the 3-dimensional state space trajectories of the
CRM-adaptive system resulting from each of the 9 initial con-
ditions of Table 2. Also indicated in this figure is the projection
of the curve SC6 ∩ SC7.
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SC1 SC7 SC2

˜θ = −2 z1 z4 z7

˜θ = −4 z2 z5 z8

˜θ = −8 z3 z6 z9

Table 2. Initial conditions zi, i = 1, 2, . . .9 for
the CRM example system. Each initial conditions,
zi, is the point of intersection of SC6 and the two
indicated surfaces in the corresponding row and

column.
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z(0) = z4
z(0) = z5
z(0) = z6

e x
m

x
p

˜ θ

time (seconds)time (seconds)

Fig. 7. Simulation of the the ORM adaptive system with am =
1, ap = 1, γ = 1, r = 3 and initial conditions z4, z5, z6
defined in table 1

Before we proceed to illustrate the sticking regime, we observe
that in both Figures 5 and 6, there is an attractor that all initial
conditions converge to. This attractor partially coincides with
SO4 in Figure 5 and SC6 ∩ SC7 in Figure 6. We focus on
those initial conditions that are closest to these attractors that
are common to both ORM- and CRM-adaptive, which are given
by z4, z5, and z6. With these initial conditions, we discuss the
sticking regime in both adaptive systems.

We present time responses of e, ˜θ, xp, and xm for both
the ORM- and CRM-adaptive systems in Figures 7 and 8,
respectively, for the initial conditions z4, z5, and z6 for
the same parameters in (11), with ℓ = 0 and 1 for the
ORM- and CRM-adaptive systems respectively. Introducing
z̄(t) = z(t)− z(t∞) and defining Ts as the settling time be-
yond which ‖z̄(t)‖ reduces to 5% of its initial value, we see
that, Ts = 5.37s, 5.62s, 8.19s for these three initial conditions
for the ORM-system and Ts = 3.69s, 5.85s, 12.74s for the

CRM-system. Notice that although
z̄(t0)

z̄(t0+Ts)
is identical for all

three trajectories, Ts increases unbounded as ‖z̄(t0)‖ increases,
implying that the system is not exponentially stable. The stick-
ing characteristic is obvious from the flat portion exhibited by
e and xp for initial conditions z5 and z6 in both figures prior to
convergence.

Trajectories initialized at both z5 and z6 demonstrate the ”stick-
ing” property described in this paper, which is characterized by
the nearly flat portion of the response of e and xp prior to con-
vergence. From the third initial condition, z6, the exacerbated
sticking effect in the CRM-adaptive system can clearly be seen.
Even with a feedback gain of ℓ = 1 the error convergence for
large initial conditions is even slower compared to that of the
ORM-system. It was observed that this convergence became

0 10 20
−5

0

5

10

15

 

 

0 10 20
0

2

4

6

8

0 10 20
−5

0

5

10

15

0 10 20
−20

−15

−10

−5

0

5
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˜ θ
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Fig. 8. Simulation of the the CRM adaptive system with am =
1, ap = 1, γ = 1, r = 3 and initial conditions z4, z5, z6
defined in table 2

slower as ℓ was increased further. It should be noted that these
convergence properties co-exist with the absence of the oscil-
latory behavior in the CRM in comparison to the ORM. That
is, the introduction of the feedback gain ℓ helps in producing a
”smooth” adaptation, but not a fast adaptation.

5. CONCLUSIONS

This work illustrates the convergence properties of a class of
adaptive systems with scalar plants. Using a qualitative theory
of differential equations we show that, even when the persis-
tence of excitation conditions on the input are satisfied, the con-
vergence is at most uniformly asymptotic and not exponential.
This arises from the existence of an infinitely large region where
the trajectories may move arbitrarily slowly due to the system
dynamics decreasing the degree of persistence of excitation. In
this work it is also shown that while CRM adaptive systems
show improved transient performance in terms of a reduced L2

norm in the tracking error, parameter error convergence can be
potentially slower than the ORM counterpart.
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