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Adaptive Output Feedback Based on
Closed-Loop Reference Models

Travis E. Gibson, Zheng Qu, Anuradha M. Annaswamy, and Eugene Lavretsky

Abstract—This technical note presents the design and analysis
of an adaptive controller for a class of linear plants in the presence
of output feedback. This controller makes use of a closed-loop
reference model as an observer, and guarantees global stability
and asymptotic output tracking.

Index Terms—Adaptive control, closed-loop reference model,
non-square systems, output-feedback.

I. INTRODUCTION

While adaptive control has been studied since the 60’s, the evolution
of its use in real systems and the extent to which we fully understand
its behavior has only been elucidated within the last decade. Stability
of adaptive control systems came only in the 70’s, with robustness
and extensions to nonlinear systems coming in the 80’s and 90’s,
respectively [1]–[3]. Recent directions in adaptive control pertain to
guaranteed transient properties by using a closed-loop architecture
for reference models [4]–[11]. In this technical note, we focus on
linear Multi Input Multi Output (MIMO) adaptive systems with partial
state-feedback where we show that such closed-loop reference models
can lead to a separation principle based adaptive controller which
is simpler to implement compared to the classical ones in [1]–[3].
The simplification comes via the use of reference model states in the
construction of the regressor, and not the classic approach where the
regressor is constructed from filtered plant inputs and outputs.

In general, the separation principle does not exist for nonlinear
systems and few authors have analyzed it. Relevant work on the
separation principle in adaptive control can be found in [12], [13]. The
structures presented in [12], [13] are very generic, and as such, no
global stability results are reported in this literature. Also, due to the
generic nature of the results it is a priori assumed (or enforced through
a saturation function) that the control input and adaptive update law
are globally bounded functions with respect to the plant state [13,
Assumption 1.2]. No such assumptions are needed in this work and
the stability results are global.

The class of MIMO linear plants that we address in this technical
note satisfy two main assumptions. The first is that the number of
outputs is greater than or equal to the number of inputs, and the second
is that the first Markov Parameter has full column rank. The latter
is equivalent to a relative degree unity condition in the Single Input
Single Output (SISO) case. In addition to these two assumptions, the
commonly present assumption of stable transmission zeros is needed
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here as well. With these assumptions, an output feedback adaptive
controller is designed that can guarantee stability and asymptotic
tracking of the reference output. Unlike [12] and [13], no saturation
is needed, and unlike [8]–[10] asymptotic convergence of the tracking
error to zero is proved for finite observer gains. Preliminary results
on the control scheme presented in this work can be found in [14].
An alternate approach using a linear matrix inequality was developed
in [15] and is successfully applied to a hypersonic vehicle model. An
analytical approach was developed in [16] to handle a specific class
of nonlinear uncertainties and achieves asymptotic convergence of the
tracking error to zero with finite observer gains, and is shown to be
applicable for a class of flexible aircraft platforms.

The technical note is organized as follows. Section II states the
control problem along with our assumptions. Section III proves
stability for SISO and square MIMO systems. Section IV analyzes
the use of an optimal observer in the design of the closed loop
reference model as well as a methodology for extending the design to
non-square MIMO systems. Section V contains a simulation example
based on the longitudinal dynamics of an aircraft. Conclusions are
presented in Section VI.

Notation: The 2-norm for vectors and the induced 2-norm for
matrices is denoted as ‖ · ‖. The differential operator is defined as
s = d/dt throughout. For a real matrix A, the notation AT is the
matrix transpose. We use I to denote the identity matrix. Big O-
notation in terms of ν is presented as O(ν) and unless otherwise stated
it is assumed that this holds for ν positive and sufficiently small.

II. CONTROL PROBLEM

The class of plants to be addressed in this technical note is

ẋ = Ax+BΛu, y = CTx (1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
m. A and Λ are unknown, but B

and C are assumed to be known, and only y is assumed to be available
for measurement. The goal is to design a control input u so that x
tracks the closed-loop reference model state xm

ẋm = Amxm +Br − L(y − ym), ym = CTxm (2)

where r ∈ R
m is the reference input and and L is a feedback gain that

will be designed suitably. The reader is referred to references [4]–[7],
[17] for its motivation.

The following assumptions are made throughout.
Assumption 1: The product CTB is full rank.
Assumption 2: The pair {Am, CT } is observable.
Assumption 3: The system in (1) is minimum phase.
Assumption 4: There exists a Θ∗∈R

n×m such that A+BΛΘ∗T =
Am and K∗ ∈ R

m×m such that ΛK∗T = I .
Assumption 5: Λ is diagonal with positive elements.
Assumption 6: The uncertain matching parameter Θ∗, and the input

uncertainty matrix Λ have a priori known upper bounds

θ̄∗
Δ
= sup ‖Θ∗‖ and λ̄

Δ
= sup ‖Λ‖. (3)

Assumption 1 corresponds to one of the main assumptions mentioned
in the introduction, and that is that the first Markov Parameter is
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nonsingular. The system in (1) is square and therefore the other
main assumption mentioned in the introduction is implicitly satisfied.
The extension to non-square systems is presented later in the text.
Assumption 2 is necessary as our result requires the use of an observer
like gain in the reference model, notice the L in (2). Assumption 3 is
common in adaptive systems as the KYP Lemma does not hold for
plants with a right half plane transmission zero.

Assumptions 4 and 5 imply that the pair {A,B} is controllable, and
are such that a matching condition is satisfied. Such an assumption
is commonly made in plants where states are accessible [1], but is
introduced in this problem when only certain outputs are accessible.
One application area where such an assumption is routinely satisfied
is in the area of aircraft control [10]. Extensions of Assumption 4 to
the case when the underlying regressor vector is globally Lipschitz are
possible as well [10]. Assumption 5 can be relaxed to Λ symmetric
and full rank. Assumption 6 facilitates an appropriate choice of L. The
specifics of the control design are now addressed.

For the plant in (1) and (2) satisfying the six assumptions above, we
propose the following adaptive controller:

u = ΘT (t)xm +KT (t)r (4)
Θ̇ = −ΓθxmeTy M

K̇ = −Γkre
T
y M (5)

where

M
Δ
= CTB (6)

and where ey = y − ym and Γθ,Γk are both positive diagonal free
design matrices. The matrix M is referred to as the mixing matrix
throughout.

The reason for the choice of the control input in (4) is simply
because x is not available for measurement, and the reference model
state xm serves as an observer-state. Historically, the use of such an
observer has always proved to be quite difficult, as the non-availability
of the state proves to be a significant obstacle in determining a stable
adaptive law. In the following, it is shown that these obstacles can
be overcome for the specific class of multivariable plants that satisfy
Assumptions 1 through 6.

From (1), (2), and (4), it is easy to show that the state error e =
x− xm satisfies the dynamics

ė = (Am + LCT )e+BΛ(Θ̃Txm + K̃T r −Θ∗T e)
ey = CT e. (7)

The structure of (7) and the adaptive laws suggest the use of the
following Lyapunov function:

V = eTPe+Tr
(
ΛΘ̃TΓ−1

θ Θ̃
)
+Tr

(
ΛK̃TΓ−1

k K̃
)

(8)

where for now it is assumed that P = PT > 0 satisfies the following
equation

(Am + LCT )
T
P + P (Am + LCT ) = −Q

PB = CM (9)

where Q = QT > 0. Taking the derivative of (8) and using (5), (7),
and (9) it can be shown that

V̇ = −eTQe+ 2eTPBΛΘ∗T e. (10)

Establishing sign-definiteness of V̇ is therefore non-trivial as the
size of the sign-indefinite term in (10) is directly proportional to the
parametric uncertainty Θ∗, and P and Q are necessarily correlated by
(9). In what follows, we will show how L and M can be chosen such
that a P and Q satisfying (9) exist and furthermore, limt→∞ e(t) = 0.
It will be shown that stability for the above adaptive system can only
be insured if Q > 0 is sufficiently weighted along the CCT direction.

III. STABILITY ANALYSIS

A. Stability in the SISO Case

The choice of L is determined in two steps. First, an observer
gain Ls and mixing matrix M are selected so that the transfer
function MTCT (sI −A− LsC

T )−1B is Strict Positive Real (SPR)
[1, Definition 2.7].1 Then the full observer gain L is defined.

Lemma 1: For a SISO (m = 1) system in (1) satisfying
Assumptions 1–3 there exists an Ls such that

CT (sI −Am − LsC
T )

−1
B =

a

s+ ρ
(11)

where ρ > 0 is arbitrary and a = CTB.
Proof: Given that CTB is non-zero CT (sI−Am−LsC

T )
−1

B
is a relative degree one transfer function. In order to see this fact,
consider a system in control canonical form, and compute the co-
efficient for sn−1 in the numerator. By Assumption 2, all zeros of
the transfer function CT (sI −A)−1B are stable, and since zeros
are invariant under feedback, CT (sI −Am)−1B is minimum phase
as well. Assumption 2 implies that the eigenvalues of Am + LsC

T

can be chosen arbitrarily. Therefore, one can place n− 1 of the
eigenvalues of Am + LsC

T at the n− 1 zeros of CT (sI −Am)−1B
and its n-th eigenvalue clearly at −ρ. �

The choice of Ls in Lemma 1 results in a relative degree one
transfer function with a single pole not canceling the zeros. This
system however need not be SPR as a may be negative; however,
((a2)/(s+ ρ)) is SPR and thus the following Corollary holds by the
KYP Lemma [1, Lemma 2.5].

Corollary 1: If Ls is chosen as in (11) and M selected as in (6),
the SISO transfer function MTCT (sI −Am − LsC

T )
−1

B is SPR.
Therefore, there exists P = PT > 0 and Qs = QT

s > 0 such that

(Am + LsC
T )

T
P + P (Am + LsC

T ) = −Qs

PB = CM. (12)

Lemma 2: Choosing L = Ls − ρBMT where Ls is defined
in Lemma 1 and ρ > 0 is arbitrary, the transfer function
MTCT (sI −Am − LCT )

−1
B is SPR and satisfies

(Am + LCT )
T
P + P (Am + LCT ) = −Q

Q
Δ
= Qs + 2ρCMMTCT (13)

where P and Qs are defined in (12) and M is defined in (6).
Proof: Starting with the first equation in (12) and adding the term

−ρ(PBMTCT + CMBTP ) on both sides of the inequality results
in the following equality:

(Am + LCT )
T
P + P (Am + LCT )

= −Qs − ρ(PBMTCT + CMBTP ).

Using the second equality in (12) the above equality simplifies
to (13) �

Theorem 1: The closed-loop adaptive system specified by (1), (2),
(4) and (5), satisfying assumptions 1 to 6, with L as in Lemma 2,
M chosen as in (6), and ρ > ρ∗ has globally bounded solutions with
limt→∞ e(t) = 0 with

ρ∗ =
λ̄2θ̄∗2

2λmin(Qs)
(14)

where λ̄ and θ̄∗ are a priori known bounds defined in (3).
Proof: We choose the Lyapunov candidate (8) where P is the

solution to (12) and satisfies (13). Taking the time derivative of (8)

1M is denoted the mixing matrix, as it mixes the outputs of CT (sI −A−
LsCT )−1B so as to achieve strict positive realness.
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along the system trajectories in (7), and using the relations in (12),
(13), and (5), the following holds:

V̇ = − eT (Q+ 2ρCMMTCT )e− 2eTPBΛΘ∗T e
+ 2eTPBΛΘ̃Txm + 2Tr

(
ΛΘ̃TxmeTy M

)
+ 2eTPBΛK̃T r + 2Tr

(
ΛK̃T reTy M

)
(15)

Using the fact that PB = CM from (12) and the fact the Trace
operator is invariant under cyclic permutations the inequality in (15)
can be rewritten as

V̇ = − eT (Q+ 2ρCMMTCT )e− 2eTCMΛΘ∗T e
+ 2eTCMΛΘ̃Txm − 2eTy MΛΘ̃Txm

+ 2eTCMΛK̃T r − 2eTy MΛK̃T r. (16)

Using the fact that ey = CT e, the second and third lines in the
above equation equal zero. Therefore, (16) can be written as V̇ =
−ETQ(ρ)E where

Q(ρ) =

[
2ρMMT MΛΘ∗T

Θ∗ΛMT Qs

]
E =

[
ey
e.

]

Given that ρ > ρ∗ > 0, 2MρMT −MΛΘ∗TQ−1
s Θ∗ΛMT > 0 by

(14) and Qs is posititve definite by design. By Schur complement,
Q(ρ) is positive definite. Therefore V̇ ≤ 0 and thus ey, e, Θ̃, K̃ ∈
L∞. From (2) it follows that xm ∈ L∞. From (7) it follows that
ė ∈ L∞. Furthermore, given that Q is positive definite e ∈ L2. Finally,
given that e ∈ L2 ∩ L∞ and ė ∈ L∞ it follows from Barbalat Lemma
that limt→∞ e(t) = 0 [1, Corollary 2.9]. �

Remark 1: Theorem 1 implies that a controller as in (4) with the
state replaced by the observer state xm will guarantee stability, thereby
illustrating that the separation principle based adaptive control design
can be satisfactorily deployed. It should be noted however that two
key parameters L and M had to be suitably chosen. If L = Ls then
stability is not guaranteed. That is, simply satisfying an SPR condition
is not sufficient for stability to hold. It is imperative that Q be chosen as
in (13), i.e. be sufficiently positive along the output direction CCT so
as to contend with the sign indefinite term 2eTPBΛΘ∗T e in V̇ . The
result does not require that Ls be chosen so that perfect pole zero can-
cellation occurs in Lemma 1, all that is necessary is that the phase lead
or lag of CT (jωI −Am − LsC

T )
−1

B never exceeds 90 degrees.
Finally, it should be noted that any finite ρ > ρ∗ ensures stability.

B. Stability in the MIMO Case

Stability in the MIMO case follows the same set of steps as in
the SISO case. First, an Ls and M are defined such that the transfer
function MTCT (sI −Am − LsC

T )−1B is SPR. Then L is defined
such that the underlying adaptive system is stable. The following
Lemmas and Theorem mirror the results from Corollary 1, Lemma 2,
and Theorem 1.

Lemma 3: For the MIMO system in (1) satisfying Assumptions 1–3
with M chosen as in (6) there always exists an Ls such that
MTCT (sI −Am − LsC

T )
−1

B is SPR.
Proof: An algorithm for the existence and selection of such an

Ls is given in [18]. �
Remark 2: In order to apply the results from [18], the MIMO

system of interest must be 1) minimum phase and 2) MTCTB must
be symmetric positive definite. By Assumption 3, CT (sI −A)−1B
is minimum phase, and therefore CT (sI −Am)−1B is minimum
phase as well. Also, given that M is full rank, the transmission
zeros of CT (sI −Am)−1B are equivalent to the transmission zeros
of MTCT (sI −Am)−1B. Therefore, condition 1 of this remark
is satisfied. We now move on to condition 2. By Assumption 1
CTB is full rank, and by the definition of M in (6) it follows
that MTCTB = BTCM > 0, which is a necessary condition for

MCT (sI −Am)−1B to be SPR [19, Lemma 3]. A similar explicit
construction of an Ls such that MTCT (sI −Am − LsC

T )
−1

B is
SPR can be found in [19].

Lemma 4: Choosing L = Ls − ρBMT where Ls is defined
in Lemma 3 and ρ > 0 is arbitrary, the transfer function
MTCT (sI −Am − LCT )

−1
B is SPR and satisfies

(Am + LCT )
T
P + P (Am + LCT ) = −Q

Q
Δ
= Qs + 2ρCMMTCT

PB = CM (17)

where P = PT > 0 and Qs = QT
s > 0 are independent of ρ and M

is defined in (6).
Theorem 2: The closed-loop adaptive system specified by (1), (2),

(4) and (5), satisfying assumptions 1 to 6, with L as in Lemma 4,
M chosen as in (6), and ρ > ρ∗ has globally bounded solutions with
limt→∞ e(t) = 0 where ρ∗ is defined in (14).

The proofs of Lemma 4 and Theorem 2 follow the same steps as in
the proof of Lemma 2 and Theorem 1, respectively.

IV. EXTENSIONS

In the previous section a method was presented for choosing L
in (2) and M in (5) so that the overall adaptive system is stable
and limt→∞ e(t) = 0. For the SISO and MIMO cases the proposed
method, thus far, is a two step process. First a feedback gain and
mixing matrix are chosen such that a specific transfer function is SPR.
Then, the feedback gain in the first step is augmented with an addi-
tional feedback term of sufficient magnitude along the direction BMT

so that stability of the underlying adaptive system can be guaranteed.
In this section, the method is extended to two different cases.

In the first case, we apply this method to an LQG/LTR approach
proposed in [10] and show that asymptotic stability can be derived
thereby extending the results of [10]. In the second case, the method is
extended to non-square plants.

A. MIMO LQG/LTR

The authors in [10] suggested using an LQG approach for the
selections of L and M , motivated by the fact the underlying observer
(which coincides with the closed-loop reference model as shown in
(2)) readily permits the use of such an approach and makes the design
more in line with the classical optimal control approach.

In [10] the proposed method is only shown to be stable for finite
L, where as in this section it is shown that in fact limt→∞ e(t) =
0. Furthermore, we note that the prescribed degree of stability as
suggested in [10, Eq. 14.26] through the selection of η is in fact not
needed. The analysis below shows that stability is guaranteed due
to sufficient weighting of the underlying Q matrix along the CCT

direction.
Let L in (2) be chosen as [10]

L = Lν
Δ
= −PνCR−1

ν (18)

where Pν is the solution to the Riccati Equation

PνA
T
m +AmPν − PνCR−1

ν CTPν +Qν = 0 (19)

where Q0 = QT
0 > 0 in R

n and R0 = RT
0 > 0 in R

m and ν >
0, with Qν = Q0 + (1 + (1/ν))BBT and Rν = ((ν)/(ν + 1))R0.
Note that (19) can also be represented as

AT
ν P̃ν + P̃νAν = −CR−1

ν CT − Q̃ν (20)

where Aν = Am + LνC
T , P̃ν = P−1

ν and Q̃ν = P̃νQν P̃ν . Given
that our system is observable and Q and R are symmetric and positive
definite, the Riccati equation has a solution Pν for all fixed ν. We are
particularly interested in the limiting solution when ν tends to zero.
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The Riccati equation in (19) is very similar to those studied in the LTR
literature, with one very significant difference. In LTR methods the
state weighting matrix is independent of ν where as in our application
Qν tends to infinity for small ν.

Lemma 5: If Assumptions 1 through 5 are satisfied, then
limν→0 νPν = 0, limν→0 Pν = P0 where 0 < PT

0 = P0 < ∞, and
the following asymptotic relation holds:

Pν = P0 + P1ν +O(ν2). (21)

Furthermore, there exists a unitary matrix W ∈ R
m×m such that

P0C = BWT
√

R0, and P̃0B = CR
−1/2
0 W (22)

where P̃0 = P−1
0 and W = (UV )T with BTCR

−1/2
0 = UΣV . Fi-

nally, the inverse P̃ν
Δ
= P−1

ν is well defined in limit of small ν and

P̃ν = P̃0 + P̃1ν +O(ν2). (23)

A full proof of this result is omitted to save space. The following two
facts: 1) limν→0 νPν = 0 and 2) limν→0 Pν = P0, where 0 < PT

0 =
P0 < ∞ follow by analyzing the integral cost

xT (0)Pνx(0) = min

∞∫
0

xT (τ)Qνx(τ) + uT (τ)Rνu(τ) dτ

in the same spirit as was done in [20]. In order to apply the results
from [20] the system must be observable (Assumption 2), controllable
(Assumptions 4 and 5), minimum phase (Assumption 3), and CTB
must be full rank (Assumption 1). For a detailed analysis of the asymp-
totic expansions Pν = P0 + P1ν +O(ν2) and P̃ν = P̃0 + P̃1ν +
O(ν2) see [10, Section 13.3, Theorem 13.2, Corollary 13.1].

The update law for the adaptive parameters is then given as

Θ̇ = −ΓθxmeTy R
−1/2
0 W

K̇ = −Γkre
T
y R

−1/2
0 W (24)

where W is defined just below (22).
Theorem 3: The closed-loop adaptive system specified by (1),

(2), (4), and (24), satisfying assumptions 1 to 6, with L as in
(18), and ν sufficiently small has globally bounded solutions with
limt→∞ e(t) = 0.

Proof: Consider the Lyapunov candidate V = eT P̃0e+
Tr(ΛΘ̃TΓ−1

θ Θ̃) + Tr(ΛK̃TΓ−1
k K̃). Taking the derivative along

the system trajectories and substitution of the update laws in (24)
results in

V̇ = eTAT
ν P̃0e+ eT P̃0Aνe− 2eT P̃0BΛΘ∗T e

+ 2eT P̃0BΛΘ̃Txm + 2Tr
(
ΛΘ̃TxmeTy R

−1/2
0 W

)
+ 2eT P̃0BΛK̃T r + 2Tr

(
ΛK̃T reTy R

−1/2
o W

)
. (25)

The first step in the analysis of the above expression is to replace the
elements AT

ν P̃0 and P̃0Aν with bounds in terms of AT
ν P̃ν and P̃νAν .

First note that the following expansions hold in the limit of small ν:

AT
ν P̃ν = AT

ν P̃0 + νAT
ν P̃1 +O(ν)

P̃νAν = P̃0Aν + νP̃1Aν +O(ν)

where we have simply expanded the term P̃ν . Expanding Aν as
Am − PνCR−1

0 CT ((ν + 1)/(ν)), the above relation simplifies to the
following asymptotic relation as ν approaches 0

AT
ν P̃ν = AT

ν P̃0 − CR−1
0 CTPν P̃1 +O(ν)

P̃νAν = P̃0Aν − P̃1PνCR−1
0 CT +O(ν). (26)

Substitution of (26) for the expressions AT
ν P̃0 and P̃0Aν in (25) results

in the following inequality:

V̇ ≤ eTAT
ν P̃νe+ eT P̃νAνe− 2eT P̃0BΛΘ∗T e

+ eTCR−1
0 CTPν P̃1e+ eT P̃1PνCR−1

0 CT e+O(ν)eT e

+ 2eT P̃0BΛΘ̃Txm + 2Tr
(
ΛΘ̃TxmeTy R

−1/2
0 W

)
+ 2eT P̃0BΛK̃T r + 2Tr

(
ΛK̃T reTy R

−1/2
o W

)
. (27)

Substitution of (20) in to the first line above, and using the fact that
P̃0B = CR

−1/2
0 W for the expressions in the bottom two lines

V̇ ≤ − eT Q̃νe−
ν + 1

ν
eTy R

−1
0 ey +O(ν)eT e

+ eTCR−1
0 CTPν P̃1e+ eT P̃1PνCR−1

0 CT e

− 2eTCR
−1/2
0 WΛΘ∗T e.

Expanding Pν , and using the fact that ey = CT e and ν + 1 ≥ 1, the
following inequality holds for ν sufficiently small

V̇ ≤ − eT Q̃νe−
1

ν
eTy R

−1
0 ey +O(ν)eT e

+ eTy R
−1
0 CTP0P̃1e+ eT P̃1P0CR−1

0 ey

− 2eTy R
−1/2
0 WΘ∗T e. (28)

Let PΘ
Δ
= −R−1

0 CTP0P̃1 +R
−1/2
0 WΘ∗T , then the above in-

equality can be simplified as V̇ ≤ −ETQ(ν)E +O(ν)eT e where

Q(ν) =

[
1
ν
R−1

0 PΘ

PT
Θ Q̃ν

]
and E =

[
ey
e

]
. (29)

Note that PΘ is independent of ν and limν→0 Q̃ν ≥ P̃0Q0P̃0 > 0.
Thus for ν sufficiently small (1/ν)R−1

0 − PΘQ̃
−1
ν PT

Θ > 0. Therefore
Q(ν) is positive definite and for ν sufficiently small Q(ν)−O(ν)I >
0 as well, where I is the identity matrix. Thus the adaptive system is
bounded for sufficiently small ν. As before, it follows that e ∈ L2, and
by Barbalat Lemma, limt→∞ e(t) = 0. �

Remark 3: The same discussion for the SISO and MIMO cases is
valid for the LQG/LTR based selection of L. Stability follows do to the
fact that the Lyapunov candidate suitably includes the “fast dynamics”
along the ey error dynamics. This fact is illustrated in (20) with the
term CR−1

ν CT appearing on the right hand, which when expanded
in terms of ν takes the form ((1+ν)/(ν))CR−1

0 CT . By directly com-
paring ((1+ν)/(ν))CR−1

0 CT to the term 2ρCMMTCT on the right
hand side of (13), increasing ρ and decreasing ν have the same affect
on the underlying Lyapunov equations. Thus, stability is guaranteed so
long as ρ is sufficiently large or equivalently, ν sufficiently small.

B. Extension to Non-Square Systems

Consider dynamics of the following form:

ẋ = Ax+B1Λu, y = CTx (30)

where x∈R
n, u∈R

m, y ∈ R
p and p>m. B1∈R

n×m and C∈R
n×p

are known. A∈R
n×n and Λ∈R

m×m are unknown. To address the
non-square aspect Assumption 1 is replaced with the following:

Assumption 7: Rank(C) = p and Rank(CTB1) = m.
Again, the goal is to design a controller such that x(t) follows the

reference model:

ẋm = Amxm +B1r − Ley, ym = CTxm (31)

where CT (sI −Am)−1B1 represents the ideal behavior responding
to a command r.

Lemma 6: For a non-square system in the form of (30) and (31) that
satisfies Assumptions 2, 3, and 7, there exists a B2 ∈ R

n×(p−m) such
that the “squared-up” system CT (sI −Am)−1B is minimum phase,
and CTB is full rank, where

B = [B1 B2 ] . (32)
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Proof: The reader is referred to [21] for further details. �
We now consider the squared-up plant {Am, B,CT } and state the

lemmas corresponding to Lemma 3 and Lemma 4.
Lemma 7: For the MIMO system in (30) satisfying Assumptions 2,

3 and 7 with M chosen as in (6) with B as defined in (32) there exists
an Ls such that MTCT (sI −Am − LsC

T )
−1

B is SPR.
Lemma 8: Choosing L = Ls − ρBMT where Ls is defined

in Lemma 3 and ρ > 0 is arbitrary, the transfer function
MTCT (sI −Am − LCT )

−1
B is SPR and satisfies

(Am + LCT )
T
P + P (Am + LCT ) = −Q

Q
Δ
= Qs + 2ρCMMTCT

PB = CM (33)

where P = PT > 0 and Qs = QT
s > 0 are independent of ρ and M

is defined in (6).
We should note that the B matrix above corresponds to additional

p−m inputs which are fictitious. The following corollary helps in
determining controllers that are implementable.

Corollary 2: Choosing L = Ls − ρBMT where Ls is de-
fined in Lemma 7 and ρ > 0 is arbitrary, the transfer function
MT

1 CT (sI −Am − LCT )
−1

B1 is SPR and M1 is defined by the
partition M = [M1 M2] which satisfies P [B1 B2] = C[M1 M2].

Accordingly, we propose the following adaptive law:

Θ̇ = −ΓθxmeTy M1

K̇ = −Γkre
T
y M1. (34)

The following theorem shows that the overall system is globally stable
and limt→∞ e(t) = 0.

Theorem 4: The closed-loop adaptive system specified by (30),
(31), (4), and (34), satisfying assumptions 2 to 7, with B chosen as
in (32), L as in Lemma 8, M chosen as in Equation (6), with M1

defined in Corollary 2, and ρ > ρ∗ has globally bounded solutions with
limt→∞ e(t) = 0, where ρ∗ is defined as

ρ∗ =
λ̄2θ̄∗2‖M1‖2

2λmin(Qs)λmin(MMT )
. (35)

Proof: The proof follows as in that of Theorem 1. �

V. SIMULATION STUDY

For the simulation study, we compare the performance of a com-
bined linear and adaptive LQG controller to an LQR controller, which
is full states accessible by definition. The uncertain system to be
controlled is defined as

ẋp = Apxp +Bpu and yp = CT
y xp

where xp = [V α q θ]T is the state vector for the plant consisting
of: velocity in ft/s, angle of attack in radians, pitch rate in radians
per second, and pitch angle in radians. The control input consists of
u = [T δ]T , the throttle position percentage and elevator position in
degrees. The measured outputs are yp = [V q h]T where h is height
measured in feet. We note that two of the states for this example are not
available for measurement, the angle of attack and the pitch angle. The
pitch angle is never directly measurable and is always reconstructed
from the pitch rate through some filtering process. The angle of attack
however is usually available for direct measurement in most classes of
aircraft. There are several classes of vehicles however where this infor-
mation is hard to obtain directly: weapons, munitions, small aircraft,
hypersonic vehicles, and very flexible aircraft, just to name a few.

In this example, we intend to control the altitude of the aircraft, and
for this reason an integral error is augmented to the plant. The extended
state plant is thus defined as

ẋ = Ax+B1u+Bzr and y = CTx

where yz = h, r is the desired altitude

x=

[
xp∫

(y − r)

]
, A=

[
Ap 04×1

Cz 01×1

]
, B1=

[
Bp

01×2

]

Bz=

[
04×1

−I1×1

]
, CT =

[
CT 03×1

01×4 I1×1

]
, y=

[
yp∫

(yz − r)

]
.

The reference system is defined as

ẋm = Amxm +Bzr − Lν(y − ym) and ym = CTxm

where Am = Anom +B1K
T
R , with KT

R = −R−1
R BpPR the solution

to the algebraic Riccati equation

AT
nomPR + PRAnom − PRBR−1

R BTPR +QR = 0

and

Anom =

[
Ap,nom 04×1

Cz 01×1

]
.

The closed-loop reference model gain Lν is defined as in (18) where
we have squared up the input matrix through the artificial selection of a
matrix B2 and defined B = [B1 B2] so that CTB is square, full rank,
and CT (sI −Am)−1B is minimum phase. The control input for the
linear and adaptive LQG controller is defined as

u = KT
Rxm +ΘTxm

where the update law for the adaptive parameters is defined as

Θ̇ = −ΓxmeTy M1

with M1 the first m colums of R−1/2
0 W where W is defined just below

(22). The LQR controller is defined as

u = KT
Rx.

All simulation and design parameters are given in Appendix A. Note
that the free design parameter Γ has zero for the last entry, this is due to
the fact that for an uncertainty in Ap feedback from the integral error
state is not needed for a matching condition to exist. The simulation
results are now presented.

Fig. 1 contains the trajectories of the state space for the adaptive
controller (black), linear controller (gray), reference model xm (black
dotted), and reference command height (gray dashed). The reference
command in height was chosen to be a filtered step, as can be seen
by the gray dashed line. The plant when controlled only by the full
state linear optimal controller is unable to maintain stability as can be
seen by the diverging trajectories. The reference model trajectories are
only visibly different from the plant state trajectories under adaptive
control in the angle of attack subplot and the pitch angle subplot, the
two states which are not measurable. Fig. 2 contains the control input
trajectories for the adaptive controller. There are two points to take
away from the simulation example. First, the adaptive output feedback
controller is able to stabilize the system while the full state accessible
linear controller is not. Second, the state trajectories and control
inputs exhibit smooth trajectories. This smooth behavior is rigorously
justified in [4] for a simpler class of closed-loop reference models.

VI. CONCLUSION

This technical note presents methods for designing output feedback
adaptive controllers for plants that satisfy a states accessible matching
condition, thus recovering a separation like principle for this class of
adaptive systems, similar to linear plants.
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Fig. 1. Trajectories in state space from the adaptive controller (black), linear
LQR controller (gray), reference model xm (black dotted), reference command
for height (gray dashed).

Fig. 2. Control inputs from the adaptive controller, throttle percentage
(dashed) and elevator position (solid).

APPENDIX A

The plant parameters are given as

Ap,nom =

⎡
⎢⎣
−0.038 18.94 0 −32.174
−0.001 −0.632 1 0

0 −0.759 −0.518 0
0 0 1 0

⎤
⎥⎦

Bp =

⎡
⎢⎣

10.1 0
0 −0.0086

0.025 −0.011
0 0

⎤
⎥⎦

Cy =

[
1 0 0 0
0 0 1 0
0 −250 0 250

]

Cz = [ 0 −250 0 250 ]

Ap = Ap,nom +Bp

[
−2 1.5 2 −2
1.5 −2 2 1

]
.

The linear control design parameters are given as QR = diag([1 1
.1 0 .1]) and RR = diag(1 10]) where KT

R = −R−1
R BpPR with

PR the solution to the control Riccati equation. The adaptive control
design is given by Q0 = I(n+q)×(n+q), R0 = I(p+q)×(p+q), Γ =

diag([1 1 1 1 0]), ν = 0.01, and BT
2 =

[
0 0 3 0 1
0 1 0 3 0

]
.
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