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Abstract—The synchronization of unknown systems is stud-
ied for both undirected and directed graphs. In the undirected
setting it is shown that consensus can be achieved without an
external consensus protocol (that is, without a high gain linear
error input usually written as a function of the graph laplacian
and the states in the network), but solely through local adaptive
feedback. In the directed case several different scenarios are
addressed. An emphasis is placed on analyzing the simplest
possible control design to achieve the goal of consensus. This
breaks from the pinning adaptive control literature where the
most general case is usually addressed, inadvertently obscuring
what is, and what is not needed to achieve stability. Also
breaking from the literature in the area of Distributed Adaptive
Control with Synchronization (DACS) we do not assume a-priori
knowledge of a uniform bound on the plant state.

I. INTRODUCTION

Synchronization is now studied rigorously by many re-
searchers in the control community. Any type of control
that existed before, now has a distributed or network based
result that looks to exploit neighbor information to achieve
consensus. Adaptive control is no different. Even as early as
the 80’s Decentralized Adaptive Control (DAC) was being
studied [7, 15, 17, 23]. In these works each agent in the
network has its own reference model dynamics to follow
and in addition to adapting to the reference model, the
controller rejects unknown disturbances from neighboring
agents. Synchronization is not a goal in those works and
thus is not directly related to the contribution in this paper.

In this work the problem of synchronization is studied,
where only a subset of the agents have access to the reference
model. The closest manifestation to our work is that of
Distributed Adaptive Control with Synchronization (DACS)
[3,29] and Distributed Adaptive Control with Adaptive Syn-

chronization (DACAS) [4]. In the DACS paradigm adapta-
tion is incorporated so as to overcome uncertainty in the
local dynamics while a linear non-adaptive synchronization
input is given to each agent. In the specific DACS strategies
just referenced it is worth noting that a pinning trajectory is
used as a reference [6,11]. The pinning trajectory need only
be shared with one of the agents. In [29] the asymptotic
convergence properties are addressed under the assumption
of persistence of excitation and the underlying graphs are
symmetric. In [3] it is worth noting that it is a-priori
assumed that the regressor vector is bounded, which in our
case implies boundedness of the plant state. Also, in [3]
the compact set that the model following error is proved
to converge to is proportional to the upper bound on the
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matching condition. Thus, the results in [3] are local and
asymptotic error convergence is not possible even without
disturbances or nonlinearities.

There are three main contributions in this work. First, for
the simple case of symmetric graphs it shown how consensus
can be achieved solely through adaptation, i.e. without the
use of a synchronizing input from nearest neighbor errors.
The second contribution of this work is a derivation of
asymptotic error convergence in DACS without the a-priori
assumption of bounded state trajectories. This is achieved
through the appropriate waiting of the adaptive parameter
error in our Lyapunov functions and through the exploita-
tion of the existence of a specific diagonal solution to the
Lyapunov equation of interest that balances the underlying
graph. This diagonal solution can easily be shown to exist
by using the Perron-Frobenius (PF) Theorem, and has been
proved several times in the literature, but the fact that these
diagonal solutions are a graph balancing, as well, has not
been fully exploited in the past. The final contribution of
this work comes via the fact that our adaptive laws are not a
function of the diagonal solutions to the Lyapunov equation
(which here is a function of the graph) and thus our solutions
are truly local.

The paper is organized as follows. In Section II notation
is covered. In Section III the general problem is presented.
In Section IV analysis is performed for undirected graphs.
Section V contains analysis for directed graphs. Section VI
contains simulation results, and finally Section VII closes
with a discussion.

II. NOTATION

Real numbers are denoted as R, n×m matrices in the reals
are denoted as Rn×m, positive diagonal square matrices as
Dn

>0 and non-negative square diagonal matrices as Dn
≥0. The

following shorthand is used for vectors of identical values
1 ! [1, 1, . . . , 1]T and similarly 0 ! [0, 0, . . . , 0]T

where the dimension will be obvious from the algebra..
One special linear subspace of Rn that we will encounter
frequently contains those elements 1c where c ∈ R, this
special 1-dimensional linear subspace is denoted Rn

1
. The

Hadamard product is denoted ◦. Throughout this work (·)T

is the transpose operator, ∥·∥ is the euclidean or induced
euclidean norm, and |·| is the cardinality of a set.

A digraph is defined by the double G = (V , E) where
V = {i}ni=1 is the vertex set and the directed edges are
defined by the ordered pairs (i, j) ∈ E ⊂ V × V . An element
(i, j) ∈ E if and only if there is a directed edge from vertex
i to vertex j. A useful algebraic component when discussing
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graphs is the adjacency matrix A(G), whose components are
defined as follows [A]ij = 1 if (vj , vi) ∈ E and [A]ij = 0,
otherwise. L(G) ! D(G) −A(G) is the in-degree laplacian

of G, and D(G) a diagonal matrix with each [D]ii equal to
the in-degree of node i.

The following convention will loosely be followed. Vec-
tors are lower case and matrices are uppercase. Local vari-
ables will be denoted in italic, x, y, z or X,Y, Z , global
variables in bold x,y, z or X,Y,Z, graph properties in
uppercase calligraphic, X ,Y,Z . Familiarity with results
in the seminal papers [5, 16, 21, 24], the monographs on
algebraic graph theory [2, 10], and the following text on
nonnegative matrices [1, 19] is assumed. Some familiarity
with the adaptive control texts [14, 20] is also assumed.

III. PROBLEM STATEMENT

For the problem under consideration there are n agents, Σi

where i ∈ {1, 2, . . . , n}, on a graph G, where each agent is
associated with a vertex and the edges on the graph illustrate
the communication topology. State information is exchanged
per the graph topology so as to update a local adaptive
controller. For the case of symmetric graphs synchronization
will be proved without a pinning consensus input, but entirely

through adaptation. Similar in spirit to pinning control, only
a subset of the nodes will have access to the reference model.
For directed graphs we only show stability in the presence
of a linear consensus input.

The dynamics for each agent are defined as

Σi : ẋi(t) = aixi(t) + ui(t), i ∈ V(G) (1)

where xi, ui : R≥0 → R and ai ∈ R. For the first problem
we tackle the following adaptive control input will be used1

ui(t) = k̂i(t)x(t) + r̂(t), (2)

where k̂i, r̂i : R≥0 → R, whose update laws are to be defined

shortly. The goal is to design the update laws for k̂ and r̂ so
that each xi will follow the scalar reference model

ẋm(t) = amxm(t) + r (3)

where xm : R≥0 → R, am < 0, and r is a constant. The
explicit time dependance of signals will be suppressed from
this point forwards, except for emphasis. In this construction
the the upright roman letter “m” is used in the subscript of
the reference model so that it is not confused with a specific
m ∈ V .

As a preliminary step let us write the plant dynamics
in a form that is more amicable to adaptive control law
construction. First let us define the matching gain

ki ! am − ai, (4)

thus if k̂i = ki, the closed loop plant Jacobian will match
the reference model Jacobian. Now the dynamics in (1) and
(2), with the definition in (4), can be written as

Σi : ẋi = amxi + r + k̃ixi + r̃, i ∈ V(G) (5)

1The controller and update laws will be modified as necessary as we
discuss slightly different problems.

where feedback gain error k̃i ! k̂i − ki and reference input
error r̃ ! r̂ − r. The seasoned adaptive control theorist will
recognize these standard definitions. Before moving onto the
graphical issues and how we can construct a local learning
law without global knowledge of the reference model state,
let us write the plant in (5) and the reference model in (3)
in the following compact form

ẋ = Amx+ r+ K̃x+ r̃ (6)

ẋm = Amxm + r (7)

where x = [x1, x2, . . . , xn]T, xm = 1xm, Am = amIn×n,
r = 1r, r̂ = [r̂1, r̂2, . . . , r̂n]T, r̃ = r̂ − r, k̂ =
[k̂1, k̂2, . . . , k̂n]T, k = [k1, k2, . . . , kn]T, k̃ = k̂−k and
finally K̃ = diag(k̃) with K and K∗ similarly defined. Using
the compact form in (6) and (7) the global error e = x−xm

satsifies

ė = Ame+ K̃x+ r̃.

We are now ready to discuss the network that the agents
communicate over and the relationship between the network
and the reference model.

As with most synchronization protocols we wish to define
an error that is locally computable. most often in linear
consensus the following error is used Lx. In addition to
the local uncertain agents however, we must also inject
the reference model state information into the system. Let
T ⊂ V be the set of all target nodes. The target nodes are
all those nodes that receive information from the reference
model. The target nodes will incorporate the reference model
state through the matrix M ∈ Dn

≥0 which is defined as
follows, [M]ii = 1 if i ∈ T and [M]ii = 0 otherwise.

A local error eβ incorporating the reference model is then
constructed as follows

eβ = Lx+M(x− xm). (8)

Noting that xm ∈ Rn
1

it follows that Lxm = 0, and thus
the error above can be written in the slightly more compact
form

eβ = Be (9)

B ! L+M. (10)

While e is the global error, not all agents have information
regarding the reference model and thus it is not directly
computable. The error eβ on the other hand is locally
computable. The update law for the adaptive parameters is
then given by2

˙̂
k = −x ◦ eβ (11)

˙̂r = −eβ. (12)

2Recall that ◦ denotes the Hadamard product.



Example 1. So as to illustrate the role of L and M, consider
the following example

target node
xm

G

where the vertices in the graph G are denoted with open
circles as , and the reference model node, which is outside
the graph, denoted as . If the single target node in this
example is vertex 1, then [M]11 = 1 and [M]ii = 0 for all
i ∈ {j}nj=2.

We now wish to make three of our assumptions, some of
which have already been stated, explicit.

Assumption 1. The digraph G is strongly connected without
self loops or redundant edges.

Assumption 2. The reference model interacts with at least
one vertex in the graph, |T | ≥ 1.

Assumption 3. The signal r in the reference model dynam-
ics (3) is a constant, and thus r by implication.

We note that Assumption 1 can be relaxed, for some of our
analysis, to scenarios where the graph is only connected, but
with the added constraint that the reference model must then
share information with a root of the graph (or a minimum
root set). If Assumption 3 is relaxed to general time varying
signals then asymptotic agreement in the model following
error is impossible, unless r(t) is globally known. We will
assume r is known globally in one section so that we can
directly address state feedback gain adaptation without extra
pieces in the controller complicating our analysis. When we
analyze the special case for r globally known, we will thus
replace Assumption 3 with the following.

Assumption 3′. The signal r in the reference model is
bounded and globally known.

Indeed if r(t) is unknown and not a constant, then the
model following error could be shown to asymptotically
converge to a compact set proportional to the product of
the bound on the signal and the bound on the derivative of
the signal.

IV. SYMMETRIC GRAPHS

We now address the stability of the controller presented
in the previous section for symmetric graphs.

Theorem 1. Given the dynamics in (6), the reference model

in (7), the error dynamics in (9), and the update laws in (11)
and (12), communicating over a symmetric graph G with the

target nodes denoted by M and satisfying Assumptions 1-3,

all states are uniformly bounded and limt→∞ e(t) = 0.

Proof. Consider the Lyapunov candidate

V (eβ , k̃, r̃) = eTβB
−1eβ + k̃Tk̃+ r̃Tr̃.

Differentiating along the system dynamics it follows that

V̇ = eTβ(Ame+ K̃x+ r̃) + (Ame+ K̃x+ r̃)Teβ

+ ˙̃
kTk̃+ k̃T ˙̃

k+ ˙̃rTr̃+ r̃T ˙̃r

Recalling that Am = amIn×n, defined just below (7), and
the definition of eβ in (10), it follows that

V̇ = 2ame
T

βB
−1eβ + 2eTβK̃x+ 2eTβ r̃+ 2 ˙̃kTk̃+ 2˙̃rTr̃

Using the update laws in (11) and (12) it follows that

V̇ = 2ame
T

βB
−1eβ .

Given that am < 0 it follows that all parameters are uni-
formly bounded, the entire system is stable and applying
Barbalet Lemma it follows that e tends to zero as t goes to
infinity.

Remark 1. The Lyapunov function is equivalent to
V (e, k̃, r̃) = eTBe+ k̃Tk̃+ r̃Tr̃.

We only derived stability here for undirected graphs to
show that synchronization could be achieved solely through
adaptation. We note that a nonlinear map f(x) in place of
Amx can easily be incorporated into the undirected graph
case, as has been shown in the literature [25]. One needs
however to add a linear consensus expression of the form
ceβ , where c is negative, to the plant input. Then under the
assumption that f is Lipschitz continuos and c is sufficiently
negative, stability can be shown.

V. GENERAL GRAPHS

In this section we will first review the concept of graph
balancing. Then, we will present a proof of consensus when
the reference input r is globally known, followed by analysis
when r is unknown to all agents.

A. Node Balancing Weights and Balanced Graphs

Definition 1. A diagonal matrix D is an output balancing

of the graph G if 1TDL(G) = 0T.

The following lemma appears frequently in the text. It
can be derived directly from the PF Theorem, but one of the
first to explicitly use this lemma in a constructive fashion
with regard to synchronization on directed graphs was Chai
Wah Wu in the following three papers all appearing in 2005
[26–28]. Interestingly, Wu was tackling some of the very
same problems that were being addressed in [21], but where
the graphs were not a-priori assumed to be balanced.

Lemma 1. There always exists an output balancing D ∈
Dn

>0 for the in-degree laplacian L(G) of a strongly connected

graph G.

Corollary 1. If D ∈ Dn
>0 is an output balancing of the

graph G then L(G)TD + DL(G) ≽ 0 with a single simple

eigenvalue at 0, and with the corresponding eigenvector in

Rn
1 .

A proof of Lemma 1 can be found in the Appendix. The
corollary follows from [21, Theorem 7]. Per our construction
the original graphs G are unweighted, however the above



lemma also applies when the initial graph has arbitrary
positive weights as well.

Lemma 2. If D ∈ Dn
>0 is an output balancing of a strongly

connected graph G and C ∈ Dn
≥0 such that at least one of the

diagonal elements is nonzero, then it follows that L(G)TD+
DL(G) +DC ≻ 0.

Proof. From Corollary 1 it follows that there exists an
output balancing matrix D ∈ Dn

>0 such that xT(L(G)TD +
DL(G))x > 0 ∀x /∈ Rn

1 . Given that D ∈ Dn
>0 and at least

one of the diagonal elements in C is nonzero, it follows that
xTDCx > 0 ∀x ∈ Rn

1
\ 0. Combining these two facts it

follows that L(G)TD+DL(G)+DC is positive definite.

Corollary 1 and Lemma 2 illustrate the fact that the
diagonal solutions to the Lyapunov equation, which exist for
M- and Metzler matrices, can in fact be chosen to coincide
with the output balancing of the underlying graph. For details
on diagonal solutions to the Lyapunov equation see the
classic text [1, Chapter 6 Theorem 2.3, H24], and [12, 13].

B. DACS with Global Knowledge of r(t)

We are now ready to discuss the stability of adaptive
synchronization on general connected graphs with at least a
single node targeted by the reference model. For symmetric
graphs we did not implement pinning control, but in this
section we will use an explicit synchronizing input following
the pinning control methodology. Similar to [3] we will use
the Schur Complement to prove stability, but here our block
structures are different than those in [3] and we will not
be assuming a-priori that the plant states are bounded. The
control input in this section takes the form

ui = k̂ix+ r + c
∑

j∈N (i)

(xi − xj) + c(xi − xm)i∈T . (13)

Comparing (13) to (2) we now use r in the input and thus
we no longer need the estimate r̂. In addition we have added
the linear consensus input which combines local errors and
the reference model trajectory if the node is a target node.
Also, we now have a tuning parameter c which controls the
strength of the error feedback. Writing (13) more compactly
we have

u = K̂x+ r+Ceβ (14)

where C = cIn×n. The update for the adaptive parameter k̂
is now defined via a projection algorithm as [18, 22]

˙̂
k = proj∞(−x ◦ eβ , k̂, kmax) (15)

where it is assumed implicitly that an upper bound on ki
for all i is known, which we will call kmax, then it follows
that |k̂i| ≤ kmax for all i by the projection based update law.
Essentially projection is needed here because the coupling
strength c is chosen to overwhelm the feedback gain error.

With the control input in (14), the plant and the error
dynamics can be written compactly as

ẋ = Amx+ K̃x+ r+Ceβ (16)

ė = Ame+ K̃x+Ceβ . (17)

The following definitions will be used in the subsequent
theorem.

Q1 ! (LT + 2M)D +D(L+ 2M)

λ2(L, D) ! min
i,λi ̸=0

λi(L
TD +DL)

λmin(Q) ! min
i

λi(Q)

dmax ! max
i

di, and dmin ! min
i

di.

(18)

Stability will now be shown for the dynamics in this subsec-
tion when the error feedback consensus tuning parameter c
is less than or equal to the the negative scalar

c∗ ! −
4dmaxkmax

|am|dminλ2(L, D)
. (19)

Theorem 2. For the dynamics in (16), the reference model

in (7), the error dynamics in (17), and the update law in

(15), communicating over a directed graph G with the target

nodes denoted by M and satisfying assumptions 1, 2 and

3′, if c ≤ c∗, then all states are uniformly bounded and

limt→∞ e(t) = 0.

Arguments for the proof will be given in two parts. First
analysis is performed for when x /∈ Rn

1 and then for when
x ∈ Rn

1
. Many mathematical operations that follow will

exploit the fact that D and M commute as well as the fact
that D is an output balancing.

1) The State Space x /∈ Rn
1 \ 0: Consider the Lyapunov

candidate3

V (e) = eTDe (20)

Differentiating along the system dynamics it follows that

V̇ = eTD(Ame+ K̃x+Ceβ) + (Ame+ K̃x+Ceβ)
TDe

Expanding eβ and recalling that Am = amIn×n it follows
that

V̇ = 2ameTDe+ eTDK̃x+ xTK̃De

+ ceT((LT +M)D +D(L+M))e.
(21)

Dividing the expression eT((LT+M)D+D(L+M))e into
two equal parts, and exploiting the fact that D is an output
balancing it follows that

eT((LT +M)D +D(L+M))e =
1
2e

T((LT + 2M)D +D(L+ 2M))e

+ 1
2x

T(LTD +DL)x (22)

Rearranging terms, recalling that Am = amIn×n, using the
definition of Q1 in (18) and the definition of eβ in (9) it
follows that

V̇ =
[

eT xT
]

[

2amD + c
2Q1 DK̃

K̃D c
2 (L

TD +DL)

] [

e

x

]

(23)

3This may seem strange, as we do not have quadratic cost in terms of k̃.
Indeed this term could be included as well. We explicitly do not include it
here, just to show that in general our proof does not exploit the fact that
learning is occurring. This continues to be an issue in DACS over directed
graphs. See Remark 2 for the same analysis with the adaptive parameter
costs explicitly included in the Lyapunov function.



when x /∈ Rn
1

. When x = 0 it follows that V̇ = eT(2am +
c
2Q1)e. Given the fact that c ≤ c∗ where c∗ is defined in
(19) (and recall that am < 0 as well) it follows by the Schur
Complement that V̇ < 0 when x /∈ Rn

1
\ 0 unless e = 0.

2) The state space x ∈ Rn
1
\0: If D is a graph balancing

then x ∈ Rn
1 \ 0 and the expression in (23) would become

V̇ =
[

eT xT
]

[

2amD + c
2Q1 DK̃

K̃D 0n×n

] [

e

x

]

.

We will now show however that x can not remain in Rn
1
\ 0

for any finite amount of time. We will first investigate the
adaptive gains and then the plant states themselves. If x ∈
Rn

1
\ 0 then from the definition of the Laplacian and our

update law it follows that

k̇i = 0, i /∈ T

k̇j = −xj(xj − xm), j ∈ T
(24)

Let t1 be a time such that x(t1) ∈ Rn
1\0, and if x(t) ∈ Rn

1\0
for a nonzero amount of time t− t1 ̸= 0 with t ≥ t1 then

ẋi(t) = amxi(t) + r + xi(t)

∫ t

t1

0 dτ

ẋj(t) = amxj(t) + r + xj(t)

∫ t

t1

−xj(τ)ej(τ) dτ + cej(t)

for i /∈ T and j ∈ T . Letting κ = k̃i(t1) which remains
constant for all i /∈ T and noting that xi = xj necessarily
when x ∈ Rn

1
it follows that in order for x to remain in this

special subspace it necessarily follows that

xi(t)κ = −xi(t)

∫ t

t1

xi(τ)ei(τ) dτ + cei(t), (25)

note that all subscripts are now i. The expression in (25)
only holds when ei = 0, see Appendix B, and thus x can not
remain in the special linear subspace Rn

1
unless e = 0.

Remark 2. Note that we did not include the parameter
error k̃ in the Lyapunov candidate. It was not necessary to
illustrate stability. Due to the fact that a projection algorithm
is used k, and thus k̃ in return, are bounded. If indeed our
Lyapunov candidate was

V (e, k̃) = eTDe+ k̃TDk̃ (26)

then the derivative of V̇ , after substitution of the update law,
would have the extra terms

−eT(L+M)TDK̃x− xTK̃D(L+M)e

on the right hand side. Exploiting the fact that D is an output
balancing, the above expression is equivalent to

−xTLTDK̃x− xTK̃DLx− eTMTDK̃x− xTK̃DMe.

Therefore, the 2× 2 block matrix in (23) would be replaced
with
[

2amD + c
2Q1 D(In×n −M)K̃

K̃D(In×n −M) c
2 (L

TD +DL)− (LTDK̃+ K̃DL)

]

which for c sufficiently negative and x not in Rn
1
\ 0 is

negative definite.

C. DACS with unknown constant input r

In this subsection we will not assume global knowledge
of r and thus the input is now given as

u = K̂x+ r̂+Ceβ

where the term r̂ appears in place of r in (14). The update
law for k̂ remains the same as in the previous section and
the update term for r̂ is defined as

˙̂r = −eβ + cLr̂. (27)

The term cLr̂ illustrates the fact that agents share their local
estimates r̂i with their neighbors. For ease of analysis we
scale the term Lr̂ with the same c that scales the error
consensus feedback in the input. The dynamics in this section
can be compactly written as

ẋ = Amx+ K̃x+ r+ r̃+Ceβ (28)

ė = Ame+ K̃x+ r̃+Ceβ. (29)

Theorem 3. For the dynamics in (28), the reference model

in (7), the error dynamics in (29), and the update laws in

(15) and (27), communicating over a directed graph G with

the target nodes denoted by M and satisfying assumptions
1, 2 and 3, if c is sufficiently negative, then all states are

uniformly bounded and limt→∞ e(t) = 0.

Proof. Consider the Lyapunov candidate

V (e, r̃) = eTDe+ r̃TDr̃. (30)

The time derivative of eTDe will now introduce two new
terms in the derivative of the Lyapunov function that were
not present in (23)

eTDr̃+ r̃De. (31)

These two terms appear because of the presence of r̃ in (29).
The time derivative of r̃TDr̃ with the update law in (27) will
introduce the following four terms in the Lyapunov derivative
that are not present in (23)

−eTBTDr̃− r̃TDBe+ cr̃TDLr̂+ cr̂TLTDr̃ (32)

Given that r by definition is in Rn
1

it follows that (32) is
equivalent to

−eTBTDr̃− r̃TDBe+ cr̃TDLr̃+ cr̃TLTDr̃ (33)

where we have replaced r̂ in the last two expressions with r̃.
Adding the terms in (31) and (33) to the derivative of V̇ in
(23) results in the following for the derivative of V in (30)

V̇ = zTQ2z

where zT = [eT, xT, r̃]T and

Q2 =

⎡

⎣

2amD + c
2Q1 DK̃ (In×n − B)TD

K̃D c
2 (L

TD +DL) 0n×n

D(In×n − B) 0n×n c(LTD +DL)

⎤

⎦ .

For c sufficiently negative and x /∈ Rn
1
\0 it follows that V̇ is

negative definite. The analysis for the case when x ∈ Rn
1 \0

is not presented here, but similar steps to those carried out in
the proof of Theorem 2 can be carried out here as well.



VI. SIMULATION EXAMPLES

We now present simulation results for the control design
presented in Sections V-C. The parameters for the plant were
constructed as follows. The graph is a directed cycle with
|V| = 10 and a single target node. The reference model
Jacobian am = −1 and r = 1. The values ai are drawn from
a uniform distribution with values in [0, 1], and thus all plants
are initially unstable. The initial conditions of the plant xi(0)
and xm(0) are drawn from a normal distribution with mean
0 and variance 1. All the adaptive parameters start with an
initial condition of 0. For the first simulation c = −1 and for
the second c = 0. Note that while we proved stability for the
controller in Theorem 3 when c is sufficiently negative, we
did not prove stability of the controller when we do not have
the linear consensus input or when the estimates of r̂i are
not shared locally. We did however prove stability for c = 0
when the graph is undirected in Theorem 1, but as already
stated, these simulation results are for a directed graph. We
will discuss this more later.

From Figure 1 we can see that with c = −1 the system
is stable and e asymptotically approaches 0. An interesting
phenomenon occurs however starting at about 5 seconds
where there is a small burst in the error that lasts for
about 10 seconds. This phenomenon has been observed
elsewhere in the adaptive literature, see for instance [8, 9].
The phenomenon can be explained as follows. The use of
error feedback into the plant can retard adaptation. So for
instance, it is possible for the model following error to be
small, because of the linear consensus input, while the local
state feedback combined with the open-loop plant Jacobian
ai + k̂i can be positive, [9, Section II].

From Figure 2 we can see that the system is stable even
without the linear consensus input. While we were able to
prove stability in the case of undirected graphs, we were not
able to prove stability for directed graphs with c = 0. Future
research will look to close this theoretical gap.

0 5 10 15 20 25

-5

0

5

e
i

0 5 10 15 20 25

-5

0

5

k̂
i

0 5 10 15 20 25

t

-5

0

5

r̂
i

Fig. 1. Trajectories for the plant and controller from Section V-C, c = −1.

VII. CONCLUSIONS

In this work it was shown that synchronization can be
achieved for our plants solely through adaptation and without
a linear consensus input when the graph is undirected. We
also explored DACS and presented proofs that did not require
a-priori knowledge of a plant state bound. Our analysis ex-
ploited the existence of output balancing weights for strongly
connected graphs and the adaptive laws were local without
any global network knowledge. A proof of Theorem 1 for
directed graphs is an important open problem. We close by
conjecturing that indeed Theorem 1 holds even for directed
graphs.
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APPENDIX A
PROOFS OF TECHNICAL LEMMAS NOT CONTAINED IN

THE MAIN TEXT

Proof of Lemma 1. Let h ∈ R>0 be the maximum in-
degree over all n nodes in the network, then the matrix
F = hIn×n − L is a non-negative matrix, and thus FT is
non-negative as well. Also, given that the graph is strongly
connected it follows that there exists a unique largest eigen-
value of 0 for −L with algebraic multiplicity 1. Therefore the
PF eigenvalue of FT is h. The PF Theorem also states that
the eigenvector p ∈ Rn, FTp = hp, is positive. Subtracting
cIn×n from both sides it follows that −LTp = 0. Therefore,
the left eigenvector for the eigenvalue 0 of L is p. If we
define a weighted graph as the triple G̃ = (V , E , Ã) where the

weighted adjacency matrix is defined as Ã = diag(p)A(G),
then it follows that the Laplacian of the weighted graph,
defined as L̃ = diag(p)(D(G)−A(G)) satisfies the following
two properties 1TL̃ = 0T and L̃1 = 0. From [21, The-
orem 6] it follows that G̃ is therefore balanced. Setting
D = diag(p) completes the proof.

APPENDIX B
DISCUSSION REGARDING THE SECOND PART OF THE

PROOF OF THEOREM 2

In this section we will continue the discussion from V-B2
picking up just after Equation (25) where i /∈ T . Given that
xi ̸= 0 when x ∈ Rn

1 \ 0 the expression in (25) can be
divided by xi, resulting in

κ = −

∫ t

t1

xi(τ)ei(τ) dτ + cei(t)x
−1
i ,

Differentiating and suppressing the explicit time dependen-
cies, we have

0 = −xiei + cėixix
−2
i − ceiẋix

−2
i .

Multiplying both sides by x2
i we have

0 = −x3
i ei + cėixi − ceiẋi.

Substituting the dynamics for xi and noting that k̃ = κ is a
constant and x ∈ Rn

1
\ 0 it follows that

0 = −x3
i ei + cėixi − cei(amxi + κxi + r).

Dividing by cxi and moving i̇ to the lefthand side, it follows
that

ėi =
1

c
x2
i ei + ei

(

am + κ+
r

xi

)

.

Taking eiam out of the parenthesis and expanding the term
κei = κxi − xm

ėi = amei + κxi +
1

c
x2
i ei − κxm +

rei
xi

. (34)

From the fact that x and thus e are necessarily in the special
linear subspace Rn

1
it follows that xi = xj and ei = ej for

all i, j. Therefore, the dynamics in (34) must also satisfy the
error dynamics for the agents i /∈ T and thus ei must also
satisfy

ėi = amei + κxi. (35)

Equating (34) and (35) it follows that

1

c
x2
i ei − κxm +

rei
xi

= 0

which is not a solution to the dynamics. Therefore, in order
for x to remain in the special linear subspace of interest, e
must remain zero over that same period of time, and only
then can the two equations above (25) (for the dynamics ẋi

and ẋj) remain equal.


