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ABSTRACT One of the main features of adaptive systems is an oscillatory convergence that exacerbates
with the speed of adaptation. Recently, it has been shown that closed-loop reference models (CRMs) can
result in improved transient performance over their open-loop counterparts in model reference adaptive
control. In this paper, we quantify both the transient performance in the classical adaptive systems and their
improvement with CRMs. In addition to deriving bounds on L-2 norms of the derivatives of the adaptive
parameters that are shown to be smaller, an optimal design of CRMs is proposed that minimizes an underlying
peaking phenomenon. The analytical tools proposed are shown to be applicable for a range of adaptive
control problems including direct control and composite control with observer feedback. The presence of
CRMs in adaptive backstepping and adaptive robot control is also discussed. Simulation results are presented
throughout this paper to support the theoretical derivations.

INDEX TERMS Adaptive systems, adaptive algorithms, adaptive control, observers, closed-loop reference
model.

I. INTRODUCTION
A universal observation in all adaptive control systems is a
convergent, yet oscillatory behavior in the underlying errors.
These oscillations increase with adaptation gain, and as such,
lead to constraints on the speed of adaptation. The main
obvious challenge in quantification of transients in adaptive
systems stems from their nonlinear nature. A second obstacle
is the fact that most adaptive systems possess an inherent
trade-off between the speed of convergence of the tracking
error and the size of parametric uncertainty. In this paper,
we overcome these long standing obstacles by proposing
an adaptive control design that judiciously makes use of an
underlying linear time-varying system, analytical tools that
quantify oscillatory behavior in adaptive systems, and the use
of tools for decoupling speed of adaptation from parametric
uncertainty.

The basic premise of any adaptive control system is to
have the output of a plant follow a prescribed reference
model through the online adjustment of control parameters.
Historically, the reference models in Model Reference
Adaptive Control (MRAC) have been open-loop in nature
(see for example, [1], [2]), with the reference trajectory gen-
erated by a linear dynamic model, and unaffected by the plant
output. The notion of feeding back the model following error
into the reference model was first reported in [3] and more

recently in [4]–[11]. Denoting the adaptive systems with an
Open-loop Reference Model as ORM-adaptive systems and
those with closed-loop reference models as CRM-adaptive
systems, the design that we propose in this paper to alleviate
transients in adaptive control is CRM-based adaptation.
Following stability of adaptive control systems in the 80s

and their robustness in the 90s, several attempts have been
made to quantify transient performance (see for example,
[12]–[14]). The performancemetric of interest in these papers
stems from either supremum or L-2 norms of key errors
within the adaptive system. In [12] supremum and L-2 norms
are derived for the model following error, the filtered model
following error and the zero dynamics. In [13] L-2 norms
are derived for the the model following error in the con-
text of output feedback adaptive systems in the presence of
disturbances and un-modeled dynamics. The authors of [14]
analyze the interconnection structure of adaptive systems and
discuss scenarios under which key signals can behave poorly.
In addition to references [12]–[14], transient performance

in adaptive systems has been addressed in the context of
CRM adaptive systems in [4]–[11]. The results in [4], [5]
focused on the tracking error, with emphasis mainly on the
initial interval where the CRM-adaptive system exhibits fast
time-scales. In [6] and [7], transient performance is quantified
using a damping ratio and natural frequency type of analysis.
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However, assumptions are made that the initial state error is
zero and that the closed-loop system state is independent of
the feedback gain in the reference model, both of which may
not hold in general.

In this paper, we start with CRM adaptive systems as
the design candidate, and quantify the underlying transient
performance. This is accomplished by deriving L-2 bounds
on key signals and their derivatives in the adaptive system.
These bounds are then related to the corresponding frequency
content using a Fourier analysis, thereby leading to an ana-
lytical basis for the observed reduction in oscillations with
the use of CRM. It is also shown that in general, a peaking
phenomenon can occur with CRM-adaptive systems, which
then is shown to be minimized through an appropriate design
of the CRM-parameters. Extensive simulation results are pro-
vided, illustrating the conspicuous absence of oscillations in
CRM-adaptive systems in contrast to their dominant presence
in ORM-adaptive systems. The results of this paper build on
preliminary versions in [8]–[10] where the bounds obtained
were conservative. While all results derived in this paper are
applicable to plants whose states are accessible for measure-
ment, we refer the reader to [11] for extensions to output
feedback.

This paper also addresses Combined/composite direct
and indirect Model Reference Adaptive Control (CMRAC)
[15], [16], which is another class of adaptive systems in
which a noticeable improvement in transient performance
was demonstrated. While the results of these papers estab-
lished stability of combined schemes, no rigorous guarantees
of improved transient performance were provided, and have
remained a conjecture [17]. We introduce CRMs into the
CMRAC and show how improved transients can be guar-
anteed. We close this paper with a discussion of CRM and
related concepts that appear in other adaptive systems as well,
including nonlinear adaptive control [18] and adaptive control
in robotics [19].

This paper is organized as follows. Section II contains
the basic CRM structure with L-2 norms of the key signals
in the system. Section III investigates the peaking in the
reference model. Section IV contains the multidimensional
states accessible extension. Section V investigates composite
control structures with CRM. Section VI explores other forms
of adaptive control where closed loop structures appear.

II. CRM-BASED ADAPTIVE CONTROL OF SCALAR PLANTS
Let us begin with a scalar system,

ẋp(t) = apxp(t)+ kpu(t) (1)

where xp(t) ∈ R is the plant state, u(t) ∈ R is the control
input, ap ∈ R is an unknown scalar and only the sign of
kp ∈ R is known.We choose a closed-loop referencemodel as

ẋm(t) = amxm(t)+ kmr(t)− `(x(t)− xm(t)). (2)

All of the parameters above are known and scalar, xm(t) is the
reference model state, r(t) is a bounded reference input and
am, ` < 0 so that the reference model and the subsequent

error dynamics are stable. The open-loop reference model
dynamics

ẋom(t) = amxom(t)+ kmr(t) (3)

is the corresponding true reference model that we actually
want xp to converge to.
The control law is chosen as

u(t) = θ̄T (t)φ(t) (4)

where we have defined θ̄T (t) =
[
θ (t) k(t)

]T and φT (t) =[
xp(t) r(t)

]T with an update law

˙̄θ = −γ sgn(kp)eφ (5)

where γ > 0 is a free design parameter commonly referred to
as the adaptive tuning gain and e(t) = xp(t)−xm(t) is the state
tracking error. From this point forward we will suppress the
explicit time dependance of parameters accept for emphasis.
We define the parameter error ˜̄θ (t) = θ̄ (t)− θ̄∗, where

θ̄∗ ∈ R2 satisfies θ̄∗T =
[
am−ap
kp

km
kp

]T
. The corresponding

closed loop error dynamics are:

ė(t) = (am + `)e+ kp ˜̄θTφ. (6)

A. STABILITY PROPERTIES OF CRM-ADAPTIVE SYSTEMS
Theorem 1 establishes the stability of the above adaptive
system with the CRM.
Theorem 1: The adaptive system with the plant in (1), with

the controller defined by (4), the update law in (5) with the
reference model as in (2) is globally stable, limt→∞ e(t) = 0,
and

‖e‖2L2 ≤
1

|am + `|

(
1
2
e(0)2 +

∣∣kp∣∣
2γ
˜̄θT (0) ˜̄θ (0)

)
. (7)

Proof: Consider the lyapunov candidate function

V (e(t), θ̃ (t)) =
1
2
e2 +

∣∣kp∣∣
2γ
˜̄θT ˜̄θ.

Taking the time derivative of V along the system directions
we have V̇ = (am + `)e2 ≤ 0. Given that V is posi-
tive definite and V̇ is negative semi-definite we have that
V (e(t), ˜̄θ (t) ≤ V (e(0), ˜̄θ (0)) <∞. Thus V is bounded and
this means in turn that e and ˜̄θ are bounded, with

‖e(t)‖2L∞ ≤ 2V (0). (8)

Given that r and e are bounded and the fact that am < 0,
the reference model is stable. Thus we can conclude xm, and
therefore xp, are bounded. Given that θ̄∗ is a constant we can
conclude that θ̄ is bounded from the boundedness of ˜̄θ . This
can be compactly stated as e, xp, ˜̄θ, θ̄ ∈ L∞, and therefore all
of the signals in the system are bounded.

In order to prove asymptotic stability in the error
we begin by noting that −

∫ t
0 V̇ = V (e(0), θ̃ (0)) −

V (e(t), θ̃ (t)) ≤ V (e(0), θ̃ (0)). This in turn can be simplified
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as |am + `|
∫ t
0 e(t)

2
≤ V (0) ∀ t ≥ 0. Dividing by |am + `| and

taking the limit as t →∞ we have

‖e‖2L2 ≤
V (0)
|am + `|

(9)

which implies (7). Given that e ∈ L2 ∩ L∞ and ė ∈ L∞,
Barbalat’s Lemma is satisfied and therefore
limt→∞ e(t) = 0 [1].

Theorem 1 clearly shows that CRM ensures stability of the
adaptive system. Also, from the fact that e ∈ L2 we have
that xm(t) → xom(t) as t → ∞ [20, §IV.1, Theorem 9(c)].
That is, the closed-loop reference model asymptotically con-
verges to the open-loop reference model, which is our true
desired trajectory. The questions that arise then is one, if
any improvement is possible in the transient response with
the inclusion of `, and second, how close is xm(t), the
response of the CRM in relation to that of the original ref-
erence model, xom(t). These are addressed in the following
section.

B. TRANSIENT PERFORMANCE OF CRM-ADAPTIVE
SYSTEMS
The main impact of the CRM is a modification in the realiza-
tion of the reference trajectory, from the use of a linear model
to a nonlinear model. This in turn produces a more benign
target for the adaptive closed-loop system to follow, resulting
in better transients. It could be argued that the referencemodel
meets the closed-loop system half-way, and therefore reduces
the burden of tracking on the adaptive system and shifts it
partially to the reference model. In what follows, we precisely
quantify this effect.

As Equation (7) in Theorem 1 illustrates, the L-2 norm of
e has two components, one associated with the initial error
in the reference model, e(0), and the other with the initial
error in the parameter space, ˜̄θ (0). The component associated
with ˜̄θ (0) is inversely proportional to the product γ |`| and the
component associated with the initial model following error
e(0) is inversely proportional to |`| alone. Therefore, without
the use of the feedback gain ` it is not possible to uniformly
decrease the L-2 norm of the model following error. This
clearly illustrates the advantage of using the CRM over the
ORM, as in the latter, ` = 0.
While CRM-adaptive systems bring in this obvious advan-

tage, they can also introduce an undesirable peaking phe-
nomenon. In what follows, we introduce a definition and
show how through a proper choice of the gain `, this phe-
nomenon can be contained, and lead to better bounds on the
parameter derivatives. As mentioned in the introduction, we
quantify transient performance in this paper by deriving L-2
bounds on the parameter derivative ˙̄θ , which in turn will
correlate to bounds on the amplitude of frequency oscillations
in the adaptive parameters. For this purpose, we first discuss
the L-2 bound on e and supremum bound for xm. We then
describe a peaking phenomenon that is possible with CRM-
adaptive systems.

1) L-∞ NORM OF xm

The solution to the ODE in (2) is

xm(t) = eamtxm(0)+
∫ t

0
eam(t−τ )r(τ )dτ

−`

∫ t

0
eam(t−τ )e(τ )dτ. (10)

The solution to the ODE in (3) is

xom(t) = eamtxom(0)+
∫ t

0
eam(t−τ )r(τ )dτ. (11)

For ease of exposition and comparison, xm(0) = xom(0) and
thus

xm(t) = xom(t)− `
∫ t

0
eam(t−τ )e(τ )dτ. (12)

Denoting the difference between the open-loop and closed-
loop reference model as 1xm = xm − xom, using Cauchy
Schwartz Inequality on

∫ t
0 e

am(t−τ )‖e(τ )‖dτ , and the bound
for ‖e(t)‖L2 from (9), we can conclude that

‖1xm(t)‖ ≤ |`|

√
1
|2am|

√
V (0)
|am + `|

. (13)

We quantify the peaking phenomenon through the follow-
ing definition.
Definition 1: Let α ∈ R+, a1, a2 are fixed positive con-

stants, x : R+ × R+→ R and x(α; t) ∈ L2,

y(α; t) , α

∫ t

0
e−a1(t−τ )x(α; τ )dτ,

Then the signal y(α; t) is said to have a peaking exponent s
with respect to α if

‖y(t)‖L∞ ≤ a1α
s
+ a2.

Remark 1: We note that this definition of peaking differs
from that of peaking for linear systems given in [21], and
references there in. In these works, the underlying peaking
behavior corresponds to terms of the form κe−αt , α, κ > 0,
where any increase in α is accompanied by a corresponding
increase in κ leading to peaking. This can occur in linear
systems where the Jacobian is defective [22]. In contrast,
the peaking of interest in this paper occurs in adaptive sys-
tems where efforts to decrease the L2 norm of x through the
increase of α leads to the increase of y causing it to peak. This
is discussed in detail below.
From Eq. (12), it follows that 1xm can be equated with y

and e with x in Definition 1. Expanding V (0), the bound on
1xm(t) in (13) can be represented as

‖1xm(t)‖ ≤ b1|`|1/2 + b2

(
|`|

γ

)1/2

where b1 =
√

e(0)2
2|am|

and b2 =

√
‖
˜̄θ (0)‖2
2|am|

. We note that γ is a
free design parameter in the adaptive system. Therefore, one
can choose γ = |`| and achieve the bound

‖1xm(t)‖ ≤ b1|`|1/2 + b2. (14)
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From (14) and Definition 1, it follows that with γ = O(|`|),
1xm has a peaking exponent of 0.5 with respect to |`|. Similar
to (14) the following bound holds for xm:

‖xm(t)‖L∞ ≤ b1|`|
1/2
+ b3 (15)

where b3 = b2 + ‖xom(t)‖L∞ and γ = |`|. That is the bounds
in (14) and (15) increase with |`|, which implies that 1xm(t)
and therefore xm(t) can exhibit peaking.
While it is tempting to simply pick e(0) = 0 so that b1 = 0,

as is suggested in [6], [7] to circumvent this problem, it is
not always possible to do so, as x(0) may not be available as
a measurement because of noise or disturbance that may be
present. In Section III, we present an approach where tighter
bounds for xm(t) are derived, which enables us to reduce the
peaking exponent of 1xm from 0.5 to zero.
Before moving to the L-2 bounds on k̇ and θ̇ , we motivate

the importance of L-2 bounds on signal derivatives and how
they relate to the frequency characteristic of the signals of
interest. We use a standard property of Fourier series and
continuous functions [23], [24] summarized in Lemma 1 and
Theorem 2 below.
Lemma 1: Consider a periodic signal f (t) ∈ R over a

finite interval T = [t1, t1 + τ ] where τ is the period of f (t).
The Fourier coefficients of f (t) are then given by
F(n) = 1

τ

∫
T f (t)e

−iω(n)tdt with ω(n) = 2πn/τ . If f (t) ∈ C1,
given ε1 > 0, there exists an integer N1 such that

(i)
∥∥∥f (t)−∑N1

n=−N1
F(n)eiω(n)t

∥∥∥ ≤ ε1, ∀t ∈ T.

If in addition f (t) ∈ C2, then for all ε2 > 0 there exists an
integer N2 such that

(ii)
∥∥∥ d
dt f (t)−

∑N2
n=−N2

iω(n)F(n)eiω(n)t
∥∥∥ ≤ ε2,∀t ∈ T.

Remark 2: We note that one can use the notion of general-
ized functions as presented in [25] in order to obtain Fourier
approximations with assumptions of the interval being finite
and periodicity relaxed.
Theorem 2: If f (t) ∈ C2 and periodic with period τ , then

the following equality holds∫
T
‖ḟ (t)‖2dt =

∞∑
n=−∞

|F(n)|2 |ω(n)2πn| (16)

where F(n) = 1
τ

∫
T f (t)e

−iω(n)tdt , ω(n) = 2πn/τ and
T = [t1, t1 + τ ].

Proof: This follows from Parseval’s Theorem. From
Lemma 1(ii),

∫
T‖ḟ (t)‖

2dt =
∫
T
∥∥∑∞

n=−∞ iω(n)F(n)eiω(n)t
∥∥2

dt . Using the orthogonality of eiω(n)t we have that
∫ t1+τ
t1

eiω(n)te−iω(m)t dt = 0 for all integers m 6= n. It also trivially
holds that

∫ t1+τ
t1

eiω(n)te−iω(n)tdt = τ . Using these two facts
along with the fact that the convergence in Lemma 1(ii) is uni-
form, the integral above can be simplified as

∫
T‖ḟ (t)‖

2dt =∑
∞

n=−∞ ω(n)
2 |F(n)|2 τ . Expanding one of the ω(n) terms

and canceling the τ term gives us (16).
Remark 3: From Theorem 2 it follows that when the L-2

norm of the derivative of a function is reduced, the product

|F(n)|2 |ω(n)2πn| is reduced for all n ∈ Z. Given that ω(n)
is the natural frequency for each Fourier approximation and
|F(n)| their respective amplitudes, reducing the L-2 norm
of the derivative of a function implicitly reduces the the
amplitude of the high frequency oscillations.

2) L-2 NORM OF k̇, θ̇
With the bounds on e and xm in the previous sections, we now
derive bounds on the adaptive parameter derivatives. From (5)
we can deduce that ‖k̇‖2 = γ 2e2r2. Integrating both sides and
taking the supremum of r we have∫ t

0
‖k̇(τ )‖2dτ ≤ γ 2

‖r(t)‖2L∞‖e(t)‖
2
L2 . (17)

Using the bound on ‖e‖L2 from (9) we have that

‖k̇(t)‖2L2 ≤
2γ 2
‖r(t)‖2L∞V (0)

|am + `|
. (18)

Similarly, from (5) we can derive the inequality∫ t

0
‖θ̇ (τ )‖2dτ ≤ 2γ 2

‖e(t)‖2L∞

∫ t

0
e(τ )2dτ

+ 2γ 2
‖xm(t)‖2L∞

∫ t

0
e(τ )2dτ. (19)

Using the bounds for ‖e(t)‖L∞ in (8), ‖e(t)‖L2 in (9), and the
following bound on

‖xm(t)‖2L∞ ≤ 2‖xom(t)‖
2
L∞ +

|`|2 V (0)
|am| |am + `|

, (20)

which follows from the bound on 1xm(t) in (13), the bound
in (19) can be simplified as

‖θ̇ (t)‖2L2 ≤ 4γ 2V (0)‖x
o
m(t)‖

2
L∞

|am + `|
+ 4γ 2 V (0)2

|am + `|

+ 2γ 2 |`|
2

|am|
V (0)2

|am + `|2
. (21)

From (18) it is clear that by increasing |`| one can arbi-
trarily decrease the L-2 norm of k̇ . The same is not true,
however, for the L-2 norm of θ̇ given in (21). Focusing on
the first two terms we see that their magnitude is proportional
to γ 2/ |am + `|. Letting ` approach negative infinity, the first
and second second terms in (21) approaches zero and the
third term converges to a bound which is proportional to
γ 2V (0)2. When ` = 0, the second term becomes proportional
to γ 2V (0)2 and the last term in (21) becomes zero. From the
previous discussion it is clear that regardless of our choice
of `, the only way to uniformly decrease the L-2 norms of
the derivatives of the adaptive terms is by decreasing γ . This
leads to the classic trade-off present in adaptive control. One
can reduce the high frequency oscillations in the adaptive
parameters by choosing a small γ , this however leads to poor
reference model tracking. This can be seen by expanding the
bound on ‖e(t)‖L∞ in (8),

‖e(t)‖2L∞ ≤ e(0)
2
+

1
γ

˜̄θ (0)T ˜̄θ (0). (22)
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If one chooses a small γ , then poor state tracking performance
can occur, as the second term in (22) is large for small γ .
Therefore it still remains to be seen as to how and when CRM
leads to an advantage over ORM. As shown in the following
subsection and subsequent section, this can be demonstrated
through the introduction of projection in the adaptive law
and a suitable choice of ` and γ . This in turn will allow the
reduction of high frequency oscillations.

C. EFFECT OF PROJECTION ALGORITHM
It is well known that some sort of modification of the adap-
tive law is needed to ensure boundedness in the presence of
perturbations such as disturbances or unmodeled dynamics.
We use a projection algorithm [26] with CRMs as

˙̄θ = Proj�(−γ sgn(kp)eφ, θ̄ ) (23)

where θ̄ (0), θ̄∗ ∈ �, with � ∈ R2 a closed and convex set
centered at the origin whose size is dependent on a known
bound of the parameter uncertainty θ̄∗. Equation (23) assures
that θ̄ (t) ∈ � ∀ t ≥ 0 [26]. The following definition will be
used throughout:

2max , sup
θ̄ ,θ̄∗∈�

‖
˜̄θ‖. (24)

Beginningwith the already proven fact that V̇ ≤ (am+`)e2,
we note that the following bound holds as well with the use
of (23):

V̇ (t) ≤ −2|am + `|V +
|am + `|
γ

∣∣kp∣∣22
max. (25)

Using Gronwall-Bellman [27] it can be deduced that

V (t) ≤

(
V (0)−

∣∣kp∣∣
2γ

22
max

)
e−2|am+`|t +

∣∣kp∣∣
2γ

22
max (26)

which can be further simplified as

V (t) ≤
1
2
‖e(0)‖2e−2|am+`|t +

∣∣kp∣∣
2γ

22
max (27)

which informs the following exponential bound on e(t):

‖e(t)‖2 ≤ ‖e(0)‖2e−2|am+`|t +

∣∣kp∣∣
γ
22

max. (28)

The discussions in Section II show that with a projection
algorithm, the CRM adaptive system is not only stable but
satisfies the transient bounds in (9), (15), (18), (21), (27)
and (28). The bounds in (15), (18) and (21) leave much to be
desired however, as it is not clear how the free design param-
eters ` and γ can be chosen so that the bounds on ‖k̇‖L2 and
‖θ̇‖L2 can be systematically reduced while simultaneously
controlling the peaking in the reference model output xm.
Using the bounds in (27) and (28), in the following section,
we propose an ‘‘optimal’’ CRM design that does not suffer
from the peaking phenomena, and show how the bounds in
(15), (18) and (21) can be further improved. We also make a
direct connection between the L-2 norm of the derivative of a
signal, and the frequency and amplitude of oscillation in that
signal.

III. BOUNDED PEAKING WITH CRM ADAPTIVE SYSTEMS
A. BOUNDS ON xm

We first show that the peaking that ‖xm(t)‖ was shown to
exhibit in Section II-A can be reduced through the use of
a projection algorithm in the update law as in (23), and a
suitable choice of γ and `. For this purpose we derive two
different bounds, one over the time interval [0, t1] and another
over [t1,∞).
Lemma 2: Consider the adaptive system with the plant

in (1), with the controller defined by (4), the update law
in (23) with the reference model as in (2). For all δ > 1 and
ε > 0, there exists a time t1 ≥ 0 such that

‖xp(t)‖ ≤ δ‖xp(0)‖ + ε‖r(t)‖L∞
‖xm(t)‖ ≤ δ‖xp(0)‖ + ε‖r(t)‖L∞ +

√
2V (0) (29)

∀ 0 ≤ t ≤ t1.
Proof: The plant in (1) is described by the dynamical

equation

ẋp = (am + kpθ̃ )xp + kpk̃r

where we note that (am + kpθ̃ ) can be positive. This leads to
the inequality

‖xp(t)‖ ≤ ‖xp(0)‖e(am+|kp|2max)t

+

∫ t

0
e(am+|kp|2max)(t−τ )

∣∣kp∣∣2max‖r(τ )‖L∞dτ.

For any δ >1 and any ε > 0, it follows from the above
inequality that a t1 exists such that e(am+|kp|2max)t ≤ δ and∫ t
0 e

(am+|kp|2max)(t−τ )
∣∣kp∣∣2maxdτ ≤ ε, ∀ t ≤ t1. The bound

on xm(t) follows from the fact that ‖xm‖ ≤ ‖xp‖ + ‖e‖ and
from (8).
Remark 4: The above lemma illustrates the fact that if t1

is small, the plant and reference model states cannot move
arbitrarily far from their respective initial conditions over
[0, t1].
Lemma 3: For any a ≥ 0 ∃ an x∗ < 0 such that for all

x ≤ x∗ < 0

exa ≤ |x|−
1
2 ∀ x ≤ x∗ < 0.

Proof: Exponential functions with negative exponent
decay faster than any fractional polynomial.
We now derive bounds on xm(t) when t ≥ t1. For this

purpose a tighter bound on the error e than that in (9) is first
derived.
Lemma 4: Consider the adaptive system with the plant

in (1), with the controller defined by (4), the update law
in (23) with the referencemodel as in (2). Given a time t1 ≥ 0,
there exists an `∗ s.t.√∫

∞

t1
‖e‖2dτ ≤

‖e(0)‖
√
2 |am + `|

+

√ ∣∣kp∣∣
2γ |am + `|

2max (30)

for all ` ≤ `∗.
Proof: Substitution of t = t1 in (27) and using the

fact that V̇ (t) = −|am + `|‖e(t)‖2, the following bound is
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obtained: ∫
∞

t1
‖e‖2dτ ≤

‖e(0)‖2e−2|am+`|t1

2 |am + `|

+

∣∣kp∣∣
2γ |am + `|

22
max. (31)

Noting that
√
e−2|am+`|t1 = e−|am+`|t1 , and using the result

from Lemma 3, we know that there exists an `∗ such that for
all ` < `∗, e(am+`)t1 ≤ |am + `|−1/2. This leads to (30).

Similar to the definition of1xm(t) in Section II.Bwe define

1x̄m(t) , |`|
∫ t

t1
e−|am|(t−τ )‖e(τ )‖dτ

for all t ≥ t1. Choosing ` ≤ `∗ with `∗ defined in Lemma 4,
using the bound on e(t) in (30) and the Cauchy Schwartz
inequality, we have that

‖1x̄m(t)‖L∞ ≤ b4 + b5

(
|`|

γ

)1/2

∀t ≥ t1

where b4 =
‖e(0)‖
2
√
|am|

and b5 =
√
|kp|2max

2
√
|am|

. Choosing γ = |`|
the bound above becomes

‖1x̄m(t)‖L∞ ≤ b4 + b5 t ≥ t1. (32)

Comparing the bound in (32) to the bound in (14), we note that
the peaking exponent (Definition 1) has been reduced from
1/2 to 0 for the upper bound on the convolution integral of
interest. Thus, as |`| is increased, the term 1x̄m(t) will not
exhibit peaking. That is, the response of the CRM is fairly
close to that of the ORM. This result allows us to obtain a
bound on the closed-loop reference model xm(t) that does not
increase with increasing |`|. This is explored in the following
theorem and subsequent remark in detail.
Theorem 3: Consider the adaptive system with the plant in

(1), the controller defined by (4), the update law in (23) with
the reference model as in (2), with t1 chosen as in Lemma 2
and ` ≤ `∗ where `∗ satisfies (30). It can then be shown that

‖xm(t)‖2t≥t1 ≤ c1(t)+
‖e(0)‖2

|am|
+
|`|
∣∣kp∣∣22

max

γ |am|
(33)

where

c1 , 2
(
‖xom‖L∞ + ‖xm(t1)‖e

−|am|(t−t1)
)2
.

Proof: The solution of (2) for t ≥ t1 is given by

‖xm(t)‖ ≤ ‖xom‖L∞ + ‖xm(t1)‖e
−|am|(t−t1)

+ |`|

∫
∞

t1
e−|am|(t−τ )‖e(τ )‖dτ.

Using the Cauchy Schwartz Inequality and (30) from
Lemma 4, we have that

‖xm(t)‖t≥t1 ≤ ‖x
o
m‖L∞ + ‖ xm(t1)‖e

−|am|(t−t1)

+
|`|
√
2 |am|

·

 ‖e(0)‖
√
2 |am+`|

+

√∣∣kp∣∣2max
√
2γ |am+`|

,
for all ` < `∗. Squaring leads to (33).

Corollary 4: Following the same assumptions as
Theorem 3, with γ = |`|

‖xm(t)‖2t≤t1 ≤ 2(δ‖xp(0)‖ + ε‖r(t)‖L∞ )
2
+ 4V (0) (34)

‖xm(t)‖2t≥t1 ≤ c1(t)+
‖e(0)‖2
|am|
+
|kp|22

max
|am|

(35)

Remark 5: Through the use of a projection algorithm in the
adaptive law, the exploitation of finite time stability of the
plant in Lemma 1, and through the use of the extra degree
of freedom in the choice of `, we have obtained a bound for
‖xm(t)‖2t≤t1 in (34) which is only a function of the initial con-
dition of the plant and controller. Similarly for ‖xm(t)‖2t≥t1 , we
have derived a bound in (34) which is once again a function
of the initial condition of the plant and controller alone. The
most important point to note is that unlike (15), the bound
on xm in (34) and (35) is no longer proportional to ` in any
power. This implies that even for large |`|, an appropriate
choice of the adaptive tuning parameter γ can help reduce
the peaking in the reference model. This improvement was
possible only through the introduction of projection and the
use of the Gronwall-Bellman inequality.

B. BOUNDS ON PARAMETER DERIVATIVES AND
OSCILLATIONS
We now present the main result of this paper.
Theorem 5: The adaptive system with the plant in (1), the

controller defined by (4), the update law in (23) with the
reference model as in (2), with t1 chosen as in Lemma 2 and
` ≤ `∗ where `∗ is given in Lemma 4 and γ = |`|, the
following bounds are satisfied for all γ ≥ 1:∫
∞

t1
‖k̇‖2dτ ≤

(
‖e(0)‖2 +

∣∣kp∣∣22
max

)
‖r(t)‖L∞∫

∞

t1
‖θ̇‖2dτ ≤

(
‖e(0)‖2 +

∣∣kp∣∣22
max

)
c2

+

(
‖e(0)‖2 +

∣∣kp∣∣22
max

)( c3
√
|`|
+
c4
γ

)
(36)

where c2, c3, c4 are independent of γ and `, and are only a
function of the initial conditions of the system and the fixed
design parameters.

Proof: Using (17) and (30), together with the fact that
γ = |`|, we obtain the first inequality in (36). To prove the
bound on θ̇ we start with (19), and note that

γ 2
∫
∞

t1
e(τ )2dτ ≤

(
‖e(0)‖2 +

∣∣kp∣∣22
max

)
. (37)

Using the bound in (37) and setting c2 = ‖xm(t)‖2t≥t1 from
(33) we have the first term in the bound on θ̇ in (36).
We note from (28) and Lemma 3 that

‖e(t)‖ ≤
e(0)2
√
|am + `|

+

∣∣kp∣∣2max

γ
∀t ≥ t1.

This together with (37) leads to the second term in the bound
on θ̇ in (36). Therefore, c2, c3 and c4 are independent of
γ and `.
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Remark 6: From the above Theorem it is clear that if γ and
|`| are increased while holding γ = |`|, the L-2 norms of
the derivatives of the adaptive parameters can be decreased
significantly. Two important points should be noted. One is
that the bounds in (36) are much tighter than those in (21),
with terms of the form γ 2/` no longer present. Finally, from
Theorem 2, it follows that the improved L-2 bounds in (36)
result in a reduced high frequency oscillations in the adaptive
parameters.
Remark 7: Noting the structure of the control input in

(4), it follows directly that reduced oscillations in θ (t) and
k(t) results in reduced oscillation in the control input for the
following reason. We note that

xp(t) = eamtxp(0)+
∫ t

0
eam(t−τ )kp

(
k̃r + θ̃xp

)
dτ.

Since θ̃ and k̃ have reduced oscillations, xp(t) will be smooth,
resulting in θ (t)xp(t) and therefore u(t) to have reduced oscil-
lations. It should also be noted that with ` < `∗ and γ = |`|,
it follows that ‖x(t)‖L∞ is independent of `.

C. SIMULATION STUDIES FOR CRM
Simulation studies are now presented to illustrate the
improved transient behavior of the adaptive parameters and
the peaking that can occur in the reference model. For these
examples the reference system is chosen such that am = −1,
km = 1 and the plant is chosen as ap = 1, kp = 2.
The adaptive parameters are initialized to be zero. Figures 1
through 3 are for an ORM adaptive system with the tuning
gain chosen as γ ∈ {1, 10, 100}. Walking through Figures 1
through 3 it clear that as the tuning gain is increased the
plant tracks the reference model more closely, at the cost of
increased oscillations in the adaptive parameters. Then the
CRM is introduced and the resulting responses are shown in
Figures 4 through 6, for γ = 100, and ` = −10,−100,
and −1000 respectively. First, it should be noted that no
high frequency oscillations are present in these cases, and the
trajectories are smooth, which corroborates the inequalities
(36) in Theorem 5. As the ratio |`| /γ increases, as illustrated
in Figures 4 through 6, the reference trajectory xm starts to
deviate from the open-loop reference xom, with the peaking
phenomenon clearly visible in Figure 6 where |`| /γ = 10.
This corroborates our results in section III as well.

IV. CRM FOR STATES ACCESSIBLE CONTROL
In this section we show that the same bounds shown previ-
ously easily extend to the states accessible case. Consider the
n dimensional linear system

ẋp = Axp + B3u (38)

with B known, A unknown, and 3 an unknown diagonal
matrix of positive elements. An a priori upper bound on 3
is known and therefore we define

λ̄ , max
i
λi(3),

FIGURE 1. Trajectories of the ORM adaptive system γ = 1.

FIGURE 2. Trajectories of the ORM adaptive system γ = 10.

FIGURE 3. Trajectories of the ORM adaptive system γ = 100.

FIGURE 4. Trajectories of the CRM adaptive system γ = 100, ` = −10.

where λi denotes the i-th Eigenvalue. The reference model is
defined as

ẋm = Amxm + Br − Le. (39)
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FIGURE 5. Trajectories of the CRM adaptive system γ = 100, ` = −100.

FIGURE 6. Trajectories of the CRM adaptive system γ = 100, ` = −1000.

The control input is defined as

u = 2xp + Kr . (40)

It is assumed that there exists 2∗ and K∗ such that

A+ B32∗ = Am
3K∗ = I

and the parameter errors are then defined as 2̃ = 2−2∗ and
K̃ = K − K∗. Defining the error as e = xp − xm, the update
law for the adaptive parameters is then

2̇ = Proj�1
(−0BTPexTp,2)

K̇ = Proj�2
(−0BTPerT,K )

(41)

where P = PT > 0 is the solution to the Lyapunov equation
(Am + L)TP + P(Am + L) = −Q which exists for all
Q = QT > 0. With a slight abuse of notation the following
definition is reused from the previous section,

sup
2,2∗∈�1

‖2̃‖F , 2max and sup
K ,K∗∈�2

‖K̃‖F , Kmax,

(42)

where ‖·‖F denotes the Frobenius norm. The adaptive system
can be shown to be stable by using the following Lyapunov
candidate,

V (t) = eTPe+ Tr(32̃T0−12̃)+ Tr(3K̃T0−1K̃ )

where after differentiating we have that V̇ ≤ −eTQe. We
choose L and 0 in a special form to ease the analysis in the
following sections.

Assumption 1: The free design parameters are chosen as

0 = γ In×n
L = −Am + gIn×n

(43)

where γ > 0 and g < 0.
Assumption 1 allows us to choose a P = 1/2In×n in

the Lyapunov equation and therefore Q = −gIn×n. Using
these simplification the Lyapunov candidate derivative can be
bounded as

V̇ (t) ≤ − |g| ‖e(t)‖2, (44)

and by direct integration we have

‖e(t)‖2 ≤
V (0)
|g|

. (45)

Using the Gronwall-Bellman Lemma as was previously used
in (25)-(28), we can deduce that

V (t) ≤
1
2
‖e(0)‖2e−2|g|t +

λ̄

γ

(
22

max + K
2
max

)
. (46)

Lemma 5: For all ε > 0 and δ > 1 there exists a t2
such that the plant and reference model in (38) and (39)
respectively satisfy the bounds in (29) with t2 replacing t1.
Lemma 6: Consider the adaptive system with the plant

in (38), the controller in (40), the update law in (41), the
reference model as in (39) and 0 and L parameterized as in
Assumption 1. Given a time t2 ≥ 0, there exists a g∗ s.t.√∫

∞

t2
‖e‖2dτ ≤

‖e(0)‖
√
2 |g|
+

√
λ̄(22

max + K 2
max)

γ |g|
(47)

for all g ≤ g∗.
Proof: From (59) we have that

V (t2) ≤
1
2
‖e(0)‖2e−2|g|t2 +

λ̄

γ

(
22

max + K
2
max

)
.

Using the above bound and integrating −V̇ in (59) from t2 to
∞ and dividing by |g| leads to∫
∞

t2
‖e‖2dτ ≤

‖e(0)‖2e−2|g|t2

2 |g|
+

λ̄

γ |g|

(
22

max + K
2
max

)
(48)

Taking the square root, noting that
√
e−2|g|t2 = e−|g|t2 , and

using the result from Lemma 3, we know that there exists an
g∗ such that for all g < g∗, e−|g|t2 ≤ |g|−1/2.
Theorem 6: Consider the adaptive system with the plant

in (38), the controller in (40), the update law in (41), the
reference model as in (39), 0 and L parameterized as in
Assumption 1, with t2 chosen as in Lemma 5 and g ≤ g∗

where g∗ is given in Lemma 6. It can be shown that

‖xm(t)‖2t≥t2 ≤ c5(t)+ 2
(
‖Am‖2

|g|2
+ 1

)
a1
a2
‖e(0)‖2

+ 4λ̄
(
‖Am‖2

γ |g|2
+
|g|
γ

)
a1
a2

(
22

max + K
2
max

)
(49)

710 VOLUME 1, 2013



T. Gibson et al.: On Adaptive Control With Closed-Loop Reference Models

where

c5 , 2
(
‖xom‖L∞ + ‖xm(t2)‖a1e

−a2(t−t2)
)2

eAmt ≤ a1ea2t

with a1, a2 > 0.
Proof: The existence of a1, a2 > 0 such that eAmt ≤

a1e−a2t follows from the fact that Am is Hurwitz [22].
Consider the dynamical system in (39) for t ≥ t2,

‖xm(t)‖t≥t2 ≤ ‖x
o
m‖L∞ + ‖xm(t1)‖a1e

−a2(t−t1)

+‖L‖a1

∫
∞

t2
e−a2(t−τ )‖e(τ )‖dτ.

Using Cauchy Schwartz along with (47) in Lemma 6 we have
that

‖xm(t)‖t≥t2 ≤ ‖x
o
m‖L∞ + ‖ xm(t2)‖e

−|am|(t−t1)

+
‖L‖
√
a1

√
2a2

‖e(0)‖√
2 |g|
+

√
λ̄(22

max + K 2
max)

γ |g|

.
Squaring and using the fact that L = −Am + gIn×n and thus
‖L‖ ≤ ‖Am‖ + g we have that

‖xm(t)‖2t≥t2 ≤ c5(t)+
(‖Am‖ + g)2

|g|2
a1
a2
‖e(0)‖2

+
2(‖Am‖ + g)2λ̄

γ |g|
a1
a2

(
22

max + K
2
max

)
.

Inequality (49) follows since (‖Am‖ + |g|)2 ≤ 2‖Am‖2+
2 |g|2.
Remark 8: Just as in the scalar case, we have derived a

bound for ‖xm(t)‖2t≥t2 which is once again a function of the
initial condition of the plant and controller, but also dependent
on a component which is proportional to |g|/γ . Therefore, by
choosing |g|

γ
= 1 with γ > 0 we can have bounded peaking

in the reference model.
Theorem 7: The adaptive system with the plant in (38), the

controller in (40), the update law in (41), the reference model
as in (39), 0 and L parameterized as in Assumption 1, with t2
chosen as in Lemma 5, g ≤ g∗ where g∗ is given in Lemma 6
and γ chosen such that γ = |g| the following bounds are
satisfied for all γ ≥ 1:∫
∞

t2
‖K̇‖2dτ ≤ ‖B‖

(
‖e(0)‖2 + K 2

max +2
2
max

)
‖r(t)‖L∞∫

∞

t2
‖2̇‖2dτ ≤ ‖B‖

(
‖e(0)‖2 +22

max + K
2
max

)
·

(
c6 +

c7
g2
+

c8
√
|g|
+
c9
γ

)
(50)

where c6, c7, c8, c9 are independent of γ and g, and are only
a function of the initial conditions of the system and the fixed
design parameters.

Proof: The proof follows the same steps as used to
derive the bounds in Theorem 5.

Remark 9: It should be noted that if γ and |g| are increased
while holding γ = |g|, the L-2 norms of the derivatives of the
adaptive parameters can be decreased significantly.
Remark 10: The similarity of the bounds in Theorem 7 to

those in Theorem 5 implies that the same bounds on frequen-
cies and corresponding amplitudes of the overall adaptive
systems as in Theorem 2 hold here in the higher-order plant
as well.
We note that robustness issues have not been addressed

with the CRM architecture in this work. However, recent
results in [28]–[31] have shown that adaptive systems do have
a time-delay margin and robustness to unmodeled dynamics
when projection is used in the update law. While we expect
similar results to hold with CRM as well, a detailed investi-
gation of the same as well as comparisons of their robustness
properties to their ORM counterparts are topics for further
research.

V. CRM COMPOSITE CONTROL WITH OBSERVER
FEEDBACK
In this section, we show that the tools introduced to demon-
strate smooth transient in CRM-adaptive systems can be used
to analyze CMRAC systems introduced in [15]–[17]. As
mentioned in the introduction, these systems were observed
to exhibit smooth transient response, and yet no analytical
explanations have been provided until now for this behavior.
Our focus is on first-order plants for the sake of simplicity.
Similar to Section IV, all results derived here can be directly
extended to higher order plants whose states are accessible.
The CMRAC system that we discuss in this paper differs

from that in [15] and includes an observer whose state is
fed back for control rather than the plant state. As men-
tioned in the introduction, we denote this class of systems as
CMRAC-CO and is described by the plant in (1), the reference
model in (2), an observer as

ẋo(t) = `(xo − xp)+ (am − kpθ̂ )xo(t)+ kpu(t), (51)

and the control input is given by
u = θxo + k∗r . (52)

In the above kp is assumed to be known for ease of exposition.
The feedback gain ` is chosen so that

gθ , am + `+
∣∣kpθ∗∣∣ < 0. (53)

Defining em = xp − xm and eo = xo − xp, the error dynam-
ics are now given by

ėm(t) = (am + `)em + kpθ̃xo + kpθ∗eo
ėo(t) = (am + `)eo − kpθ̄xo. (54)

where θ̃ = θ − θ∗ and θ̄ = θ̂ − θ∗ with θ∗ satisfying
ap + kpθ∗ = am and kpk∗ = km. The update laws for the
adaptive parameters are then defined with the update law

θ̇ = Proj�(−γ sgn(kp)emxo, θ)− ηεθ
˙̂
θ = Proj�(γ sgn(kp)eoxo, θ̂ )+ ηεθ
εθ = θ − θ̂ (55)
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where γ, η > 0 are free design parameters. As before we
define the bounded set

2max , max

{
sup

θ,θ∗∈�

‖θ̃‖, sup
θ̂ ,θ∗∈�

‖θ̄‖

}
. (56)

We first establish stability and then discuss the improved

transient response.

A. STABILITY
The stability of the CMRAC-CO adaptive system given
by (1), (2), (51)-(55) can be verified with the following
Lyapunov candidate

V (t) =
1
2

(
e2m + e

2
o +

∣∣kp∣∣
γ
θ̃2 +

∣∣kp∣∣
γ
θ̄2

)
(57)

which has the following derivative

V̇ ≤ gθe2m + gθe
2
o −

η
∣∣kp∣∣
γ

ε2θ . (58)

Boundedness of all signals in the system follows since
gθ < 0. From the integration of (58) we have {em, eo, εθ } ∈
L∞ ∩ L2 and thus limt→∞{em, eo, εθ } = {0, 0, 0}. Using
the Gronwall-Bellman Lemma as was previously used in
(25)-(28), we can deduce that

V (t) ≤
1
2

(
em(0)2 + eo(0)2

)
e−2|gθ |t +

∣∣kp∣∣
γ
θ2max. (59)

It should be noted that the presence of a non-zero ` is cru-
cial for stability, as gθ cannot be guaranteed to be negative
if ` = 0.

B. TRANSIENT PERFORMANCE OF CMRAC-CO
Similar to Sections II and III we divide the timeline into
[0, t3] and [t3,∞), where t3 is arbitrarily small. We first
derive bounds for the system states over the initial [0, t3]
in Lemma 7, bounds for the tracking, observer, parameter
estimation errors em, eo and εθ over [t3,∞) in Lemma 8,
bounds for xo over [t3,∞) in Theorem 8, and finally bounds
for the parameter derivatives θ̇ and ˙̂θ in Theorem 10.
Lemma 7: Consider the CMRAC-CO adaptive system

with the plant in (1), with the controller defined by (52), the
update law in (55) and with the reference model as in (2).
For all δ > 1 and ε > 0, there exists a time t3 ≥ 0 such
that

‖xp(t)‖ ≤ δ‖xp(0)‖ + ε
(
‖r(t)‖L∞ +

√
2V (0)

)
‖xo(t)‖ ≤ δ‖xp(0)‖ + ε‖r(t)‖L∞ + (1+ ε)

√
2V (0) (60)

∀ 0 ≤ t ≤ t3.
Proof: The plant in (2) with the controller in (52) can be

represented as

ẋp = (ap + kpθ )xp + kp (r + θeo)

where we note that (ap + kpθ ) can be positive. This leads to
the inequality

‖xp(t)‖ ≤ ‖xp(0)‖e(ap+|kp|2max)t +

∫ t

0
e(ap+|kp|2max)(t−τ )

·
∣∣kp∣∣ (2max‖r(τ )‖ +2max‖eo(τ )‖) dτ.

For any δ > 1 and any ε > 0, it follows from the above
inequality that a t3 exists such that e(ap+|kp|2max)t ≤ δ

and
∫ t
0 e

(ap+|kp|2max)(t−τ )
∣∣kp∣∣2maxdτ ≤ ε, 0 ≤ t ≤ t3 given

δ > 0 and ε > 0. From the structure of the Lyapunov
candidate in (57) and the fact that V̇ ≤ 0 we have that
‖eo(t)‖L∞ ≤

√
2V (0). The bound on xo(t) follows from the

fact that ‖xo‖ ≤ ‖xp‖ + ‖eo‖.
Lemma 8: Consider the adaptive system with the plant

in (1), the controller in (52), the update law in (55), and the
reference model as in (2). Given a time t2 ≥ 0, there exists a
g∗θ s.t.√∫

∞

t3
em2dτ ≤

√
em(0)2 + eo(0)2
√
2 |gθ |

+

√ ∣∣kp∣∣
γ |gθ |

2max√∫
∞

t3
eo2dτ ≤

√
em(0)2 + eo(0)2
√
2 |gθ |

+

√ ∣∣kp∣∣
γ |gθ |

2max√∫
∞

t3
εθ 2dτ ≤

√
γ
√
em(0)2 + eo(0)2√
2η
∣∣kp∣∣ |gθ | +

√
1
η
2max (61)

for all gθ ≤ g∗θ .
Theorem 8: Consider the adaptive system with the plant

in (1), the controller in (52), the update law in (55), the
reference model as in (2), with t3 chosen as in Lemma 7 and
gθ ≤ g∗θ where g

∗
θ is given in Lemma 8. It can be shown that

‖xo(t)‖2t≥t3 ≤ c10(t)+
|`|2

|gθ |2
2
√
a4
(
em(0)2 + eo(0)2

)
+
|`|2

∣∣kp∣∣
γ |gθ |

4a422
max (62)

where

c10 , 2
(
a3
∣∣kp∣∣ ‖r‖L∞ + ‖xo(t3)‖eaθ (t−t3))2

aθ , am + kpεθ

and ∫
∞

t3
eaθ (t−τ )dτ ≤ a3∫

∞

t3
e2aθ (t−τ )dτ ≤ a4

with 0 ≤ ai <∞, i ∈ {3, 4}.
Proof: Given that limt→∞ εθ (t) = 0 we have from (53)

that limt→∞ aθ = am. Thus limt→∞ eaθ t = 0. Therefore,
a3, a4 < ∞. Consider the dynamical system in (51) for
t ≥ t3.

‖xo(t)‖t≥t3 ≤ ‖xo(t3)‖e
aθ (t−t3)

+

∫
∞

t3
eaθ (t−τ )

(
|`| ‖eo(τ )‖ +

∣∣kp∣∣ ‖r(τ )‖) dτ.
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Using Cauchy Schwartz and Lemma 8 as before we have

‖xo(t)‖t≥t3 ≤ a3
∣∣kp∣∣ ‖r‖L∞ + ‖ xo(t3)‖e−|am|(t−t3)
+ |`|
√
a4

√
em(0)2 + eo(0)2
√
2 |gθ |

+ |`|
√
a4a4

√ ∣∣kp∣∣
γ |gθ |

2max.

Squaring and using the inequality (a+b)2 ≤ 2a2+2b2 twice,
we have our result.
Corollary 9: For the system presented in Theorem 8 setting

γ = |gθ | and taking the limit as ` → −∞ the following
bound holds for xo(t)

lim
`→−∞

‖xo(t)‖2t≥t3 ≤ c10(t)+ 2
√
a4
(
em(0)2 + eo(0)2

)
+
∣∣kp∣∣ 4a422

max. (63)

Theorem 10: The adaptive system with the plant in (1), the
controller defined by (52), the update law in (55) with the
reference model as in (2), with t3 chosen as in Lemma 7 and
gθ ≤ g∗θ where g

∗
θ is given in Lemma 8 and γ chosen such that

γ = |gθ | the following bounds are satisfied for all γ ≥ 1:∫
∞

t3
‖θ̇‖2dτ ≤ α and

∫
∞

t3
‖
˙̂
θ‖2dτ ≤ α (64)

with

α ,

(
`2

g2θ
+

η∣∣kp∣∣
) (

em(0)2 + eo(0)2 +
∣∣kp∣∣22

max

)
c11

where c11 is independent of γ and gθ , and is only a function
of the initial conditions of the system and the fixed design
parameters.
Remark 11: Note that

lim
`→−∞

`2

g2θ
= 1.

Thus for large |`| the truncated L-2 norm of θ̇ is simply a
function of the initial conditions of the system and the tuning
parameter η.
Remark 12: The similarity of the bounds in Theorem 10 to

those in Theorem 5 implies that the same bounds on frequen-
cies and corresponding amplitudes of the overall adaptive
system hold here in the CMRAC-CO case as well.

C. ROBUSTNESS OF CMRAC–CO TO NOISE
As mentioned earlier, the benefits of the CMRAC–CO is the
use of the observer state xo rather than the actual plant state x.
This implies that the effect of any measurement noise on
system performance can be reduced. This is explored in this
section and Section V-D.

Suppose that the actual plant dynamics is modified from
(1) as

ẋa(t) = apxa(t)+ kpu(t), xp(t) = xa(t)+ n(t) (65)

where n(t) represents a time varying disturbance. For ease of
exposition, we assume that n ∈ C1.

This leads to a set of modified error equations

ėm(t) = (am + `)em + kpθ̃ (t)xo + kpθ∗eo + ξ (t)

ėo(t) = (am + `− kpθ∗)eo − kpθ̄ (t)xo − ξ (t) (66)

where

ξ (t) , η̇(t)− apη(t) (67)

Theorem 11: The adaptive system with the plant in (65), the
controller defined by (52), the update law in (55) with the
reference model as in (2), and ` chosen such that am + ` +
2
∣∣kp∣∣ |θ∗| < 0, all trajectories are bounded and

V (t) ≤
1
2

(
em(0)2 + eo(0)2

)
e−2|gn|t

+

∣∣kp∣∣
γ
22

max +
1

4 |gn|2
‖ξ (t)‖2L∞ . (68)

where

gn , am + `+ 2
∣∣kp∣∣ ∣∣θ∗∣∣ . (69)

Proof: Taking the time derivative of V in (57) results in

V̇ ≤ gn
(
‖em‖2 + ‖eo‖2

)
−
∣∣kp∣∣ η

γ
ε2θ

+‖ξ (t)‖‖em(t)‖ + ‖ξ (t)‖‖eo(t)‖. (70)

completing the square in ‖em‖‖n‖ and ‖eo‖‖n‖

V̇ ≤ − |gn| /2
(
‖em‖2 + ‖eo‖2

)
−
∣∣kp∣∣ η

γ
ε2θ

− |gn| /2 (‖em‖ − 1/ |gn| ‖ξ (t)‖)2

− |gn| /2 (‖eo‖ − 1/ |gn| ‖ξ (t)‖)2

+1/(4 |gn|)‖ξ (t)‖2.

Neglecting the negative terms in lines 2 and 3 from above and
the term involving εθ we have that

V̇ ≤ − |gn| /2
(
‖em‖2 + ‖eo‖2

)
+ 1/(4 |gn|)‖ξ (t)‖2,

and in terms of V gives us

V̇ ≤ − |gn|V +
1
2

∣∣kp∣∣ |gn|
γ

(
θ̃2 + θ̄2

)
+

1
4 |gn|

‖ξ (t)‖2.

Using the Gronwall-Bellman Lemma and substitution of V (t)
leads to the bound in (68).

D. SIMULATION STUDY
For this study a scalar system in the presence of noise is to
be controlled with dynamics as presented in (65), where n(t)
is a deterministic signal used to represent sensor noise. n(t)
is generated from a Gausian distribution with variance 1 and
covariance 0.01, deterministically sampled using a fixed seed
at 100 Hz, and then passed through a saturation function with
upper and lower bounds of 0.1 and -0.1 respectively. For the
CMRAC-CO systems the reference model is chosen as (2)
with the rest of the controller described by (51)-(55).
The CMRAC system used for comparison is identical

to that in [15]. For CMRAC the reference dynamics are
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now chosen as xom in (3), the observer is the same as
CMRAC-CO (51).

Further differences arise with the control law being chosen
as

u = θxp + k∗r

The open-loop error eo = xp− xom updates the direct adaptive
component, with the regressor becoming xp instead of xo for
both θ and θ̂ update laws:

θ̇ = Proj�(−γ sgn(kp)e
o
mxp, θ)− ηεθ

˙̂
θ = Proj�(γ sgn(kp)eoxp, θ̂ )+ ηεθ . (71)

The complete CMRAC and CMRAC-CO systems are given
in Table 1 with the design parameters given in Table 2.

TABLE 1. Test case equations.

TABLE 2. Simulation parameters.

The simulations have two distinct regions of interest, with
Region 1 denoting the first 4 seconds, Region 2 denoting the
4 sec to 15 sec range. In Region 1, the adaptive system is
subjected to non–zero initial conditions in the state and the
reference input is zero. At t = 4 sec, the beginning of Region
2, a filtered step input is introduced. Figures 7 and 8 illustrate
the response of the CMRAC–CO adaptive system over 0 to
15 seconds, with xm, x, and em indicated in Figure 7, and u,
1u/1t , θ and θ̂ indicated in Figure 8. The addition of sensor
noise makes the output xp not differentiable and therefore we
use the discrete difference function 1 to obtain the discrete
time derivative of the control input, where

1u
1t

,
u(ti+1)− u(ti)
ti+1 − ti

, ti+1 − ti = 0.01.

In both cases, the resulting performance is compared with
the classical CMRAC system. The first point that should be
noted is a satisfactory behavior in the steady-state of the
CMRAC–CO adaptive controller. We note a significant dif-
ference between the responses of CMRAC–CO and CMRAC
systems, which pertains to the use of filtered regressors in
CMRAC–CO. An examination of 1u/1t in Figure 8 clearly
illustrates the advantage of CMRAC–CO.

FIGURE 7. (Top) reference model trajectories xm, (middle) state x , and
(bottom) model following e.

FIGURE 8. (Top) Control input u, (middle–top) discrete rate of change of
control input 1u/1t , (middle–bottom) adaptive parameter θ(t) and
(bottom) adaptive parameter θ̂(t).

E. COMMENTS ON CMRAC AND CMRAC–CO
As discussed in the Introduction, combining indirect and
direct adaptive control has always been observed to produce
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desirable transient response in adaptive control. While the
above analysis does not directly support the observed tran-
sient improvements with CMRAC, we provide a few specu-
lations below: The free design parameter ` in the identifier
is typically chosen to have eigenvalues faster than the plant
that is being controlled. Therefore the identification model
following error ei converges rapidly and θ̂ (t) will have smooth
transients. It can be argued that the desirable transient proper-
ties of the identifier pass on to the direct component through
the tuning law, and in particular εθ .

VI. CRMS IN OTHER ADAPTIVE SYSTEMS
While CRMs can be traced to [3] in the context of direct
model reference adaptive control, such a closed loop structure
has always been present in, adaptive observers, tuning func-
tion designs, and in a similar fashion in adaptive control of
robots. These are briefly described in the following sections.

A. ADAPTIVE BACKSTEPPING WITH TUNING FUNCTIONS
The control structure presented here is identical to that pre-
sented in [18, §4.3], but without nonlinear damping terms.
Consider the unknown system

ẋ1 = x2 + ϕ1(x1)T θ∗

ẋ2 = x3 + ϕ2(x1, x2)T θ∗

...

ẋn−1 = xn + ϕn−1(x1, . . . , xn−1)T θ∗

ẋn = β(x)u+ ϕn(x)T θ∗ (72)

where θ∗ is an unknown column vector, β(x) is known and
invertible, the ϕi are known, x is the state vector of the scalar
xi and the goal is to have y = x1 follow a desired n times
differentiable yr . The control law propped in [18] is of the
form

u =
1
β(x)

(
αn + y(n)r

)
(73)

with an update law

θ̇ = 0Wz (74)

where 0 = 0T > 0 is the adaptive tuning parameter, z is the
transformed state error, and W = τn(z, θ) with τi and the αi,
1 ≤ i ≤ n defined in (84) in the Appendix along with the rest
of the control design. The closed loop system reduces to

ż = Az(z, θ, t)z+W (z, θ, t)θ̃ (75)

where θ̃ = θ − θ∗ and

Az =



−c1 1 0 · · · 0
−1 −c2 1+ σ23 · · · σ2n

0 −1− σ23
. . .

. . .
...

...
...

. . .
. . . 1+ σn−1,n

0 −σ2n · · · −1− σn−1,n −cn


where σik = −

∂αi−1
∂θ

0wk . The ci are free design parameters
that arise in the definition of the αi as defined in (84) in the

Appendix. Notice that the −ci act in the same way as the `
in the simple adaptive system first presented in the reference
model in (2). They act to close the reference trajectories with
the plant state. The above system also results in similar L-2
norms for the z error state. Consider the Lyapunov candidate

V (z(t), θ̃ (t)) =
1
2
zT z+

1
2
θ̃T0−1θ̃ (76)

which results in a negative semidefinite derivative V̇ ≤

−c0‖z‖2 where c0 = min1≤i≤n (ci). Thus we can integrate
−V̇ to obtain the following bound on the L-2 norm of z

‖z(t)‖2L2 ≤
V (0)
c0

. (77)

It is addressed in [18, §4.4.1] that while it may appear
that increasing c0 uniformly decreases the L-2 norm of z,
choosing ci to be large can result in large z(t). The authors
then provide a method for initializing the z dynamics so that
z(0) = 0. We have already discussed why this may not be
possible in a real system.

B. ADAPTIVE CONTROL IN ROBOTICS
The control structure presented here is taken directly from
[19, §9.2]. Consider the dynamics of a rigid manipulator

H (q)q̈+ C(q, q̇)+ g(q) = τ (78)

where q is the joint angle, and τ is the torque input. It is
assumed that the system can be parameterized as

Y (q, q̇, q̇r , q̈r )a = H (q)q̈r + C(q, q̇)q̇r + g(q) (79)

where qr is a twice differentiable reference signal, Y is known
and a is an unknown vector. The control law is chosen as

τ = Y â− kd s and ˙̂a = −0Y T s. (80)

Then, defining the desired dynamics trajectory as qd , the
reference dynamics of the system are created by

q̇r = q̇d − λq̃ (81)

where q̃ = q− qd and

s = q̇− q̇r = ˙̃q+ λq̃. (82)

The stability of the above system can be verified with the
following Lyapunov candidate,

V =
1
2

(
sTHs+ ãT0−1ã

)
.

Differentiating and using the property that Ḣ = C + CT we
have that

V̇ = −sT kd s. (83)

We note that λ has a similar role in this control structure as
the ` in the CRM. The desired trajectory is qd (like xom in our
examples), however the adaptive parameter is updated by the
composite variable s instead of directly adjusted by the true
reference error.
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We now conjecture as to why closed-loop reference mod-
els have not been studied in direct adaptive control until
recently. In the two cases of nonlinear adaptive control, closed
reference trajectory errors are used to update the adaptive
controller. This is performed in the tuning function approach
through the selection of the ci and in the adaptive robot
control example with λ and the creation of the composite
variable s. In both cases the stability of the system necessitates
the introduction of these variables. In contrast, in model ref-
erence adaptive control, stability is derived from the inherent
stability of the referencemodel and hence any addition of new
variables becomes superfluous. When no reference model is
present, closing the loop on the reference trajectory becomes
necessary. With the recent focus on improving transients
in adaptive systems, CRM now has a role in MRAC. And
as pointed out in this paper, improved transients can result
with CRM without introducing peaking by choosing the ratio
|`| /γ carefully.

VII. CONCLUSION
An increasingly oscillatory response with increasing adapta-
tion gain is a transient characteristic that is ubiquitous in all
adaptive systems. Recently, a class of adaptive systems has
been investigated with closed-loop reference models where
such oscillatory response can be minimal. In this paper, a
detailed analysis of such adaptive systems is carried out. It
is shown through the derivation of analytical bounds on both
states of the adaptive system and on parameter derivatives
that a phenomenon of peaking can occur with CRMs and
that this phenomenon can be curtailed through a combination
of design and analysis, with the peaking exponent reduced
from 0.5 to zero. In particular, it is shown that bounds on the
parameter derivatives can be related to bounds on frequencies
and corresponding amplitudes, thereby providing an analyti-
cal basis for the transient performance. This guarantees that
the resulting adaptive systems have improved transient char-
acteristics with reduced oscillations even as the adaptation
gains are increased. CRMs are shown to be implicitly present
in other problems including composite control, adaptive non-
linear control and a class of problems in robotics.

APPPENDIX
TUNING FUNCTION PARAMETER DEFINITIONS

zi = xi − y(i−1)r − αi−1

αi = −zi−1 − cizi − wTi θ

+

i−1∑
k=1

(
∂αi−1

∂xk
+
∂αi−1

∂y(k−1)r
y(k)r

)

+
∂αi−1

∂θ
0τi +

i−1∑
k=2

∂αk−1

∂θ
0wizk

τi = τi−1 + wizi

wi = ϕi −
i−1∑
k=1

∂αi−1

∂xk
ϕk (84)
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