
Adaptive Control and the Definition of Exponential Stability

Travis E. Gibson and Anuradha M. Annaswamy

Abstract—Several definitions of exponential stability are
revisited so as to address some possible confusion in the adaptive

control literature when terms like exponentially convergent,
exponentially asymptotically stable, or exponentially stable are
used. It is also shown that in general the direct adaptive control
problem can never be exponentially stable in the large and can
at best be uniformly asymptotically stable in the large.

I. INTRODUCTION

As the analysis of parameter convergence in adap-

tive control wound through the 60’s 70’s and 80’s

[1, 3–5, 12, 13, 17–19, 22] the persistence of excitation con-

dition was moved from the regressor vector to the reference

input, and the stability was shown to be exponential under

checkable conditions on an external signal. The technical

bridge for this jump came via the stability analysis of a

class of linear time varying systems in [2]. There has been

a misunderstanding, however, on what parameters should be

independent when determining whether a system is exponen-

tially stable.

Persistence of excitation of the reference input, also re-

ferred to as sufficient richness, does not imply persistence

of excitation of the regressor vector. The authors of [4, 5]

are careful in proving that richness of the reference input

only implies exponential convergence. The careful wording

of convergence however is changed to exponential stability

countless times elsewhere in the literature. It is then inap-

propriately concluded that uniform asymptotic stability in

the large is equivalent to exponential stability in the large

for adaptive systems.

This note is intended to be a cautionary tale and com-

plements the works of [21] and [14] in carefully defining

persistence of excitation and a weaker version that is not

globally uniform in initial conditions. Where as [21] and [14]

focus on the various stability results when two different kinds

of persistence of excitation are studied, we illustrate why in

general adaptive systems can never satisfy the original strong

version of persistence of excitation. Along that ideology

we pick up where [19] left off and in so doing hope

to clarify the true stability properties of adaptive systems.

An interesting perspective on the similarity and differences

between exponential and asymptotic stability is given in [6],

but we are interested in a simpler treatment.

The main contribution of this work is a detailed account

of where caution should be exercised when taking the persis-

tence of excitation condition from the reference model state

to the regressor, and establish that adaptive systems arising
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in the control of unknown linear plants are at best uniformly

asymptotically stable in the large. This paper is organized as

follows: Section II contains stability definitions, Section III

contains the definition of persistence of excitation, Section IV

contains a detailed analysis of the convergence properties of

two sets of dynamics occurring in adaptive systems. Section

V closes with a discussion.

II. STABILITY

Consider a dynamical system defined by the following

relations

ẋ(t) = f(x(t), t)

where x(t0) = x0, t ∈ [t0,∞) is time, and x ∈ R
n denotes

the state vector. We are interested in systems with equilib-

rium at x = 0, so that f(0, t) = 0 for all t. The solution

to the differential equation above for t ≥ t0 is a transition

function s(t;x0, t0) such that ṡ(t;x0, t0) = f(s(t;x0, t0), t)
and s(t0;x0, t0) = x0. Various definitions of stability now

follow [7, 11, 16].

Definition 1 (Stability and Asymptotic Stability). Let t0 ≥ 0,

the equilibrium is

(i) Stable, if for all ǫ > 0 there exists a δ(ǫ, t0) > 0 such

that ‖x0‖ ≤ δ implies ‖s(t;x0, t0)‖ ≤ ǫ for all t ≥ t0.

(ii) Attracting, if there exists a ρ(t0) > 0 such that for

all η > 0 there exists an attraction time T (η, x0, t0)
such that ‖x0‖ ≤ ρ implies ‖s(t;x0, t0)‖ ≤ η for all

t ≥ t0 + T .

(iii) Asymptotically Stable, if it is stable and attracting.

(iv) Uniformly Stable if the δ in (i) is uniform in t0 and

x0, thus taking the form δ(ǫ).
(v) Uniformly Attracting, if it is attracting where the ρ and

T do not depend on t0 or x0 and thus the attracting

times take the form T (η, ρ).
(vi) Uniformly Asymptotically Stable, (UAS) if it is uni-

formly stable and uniformly attracting.

(vii) Uniformly Bounded if for all r > 0 there exists a B(r)
such that ‖x0‖ ≤ r implies that ‖s(t;x0, t0)‖ ≤ B for

all t ≥ t0.

(viii) Uniformly Attracting in the Large if for all ρ > 0 and

η > 0 there exists a T (η, ρ) such that ‖x0‖ ≤ ρ implies

‖s(t;x0, t0)‖ ≤ η for all t ≥ t0 + T .

(ix) Uniformly Asymptotically Stable in the Large (UASL)

if it is uniformly stable, uniformly bounded, and uni-

formly attracting in the large.

The definitions regarding stability and asymptotic stability

are universally accepted and repeated consistently in the

literature. The definition of exponential stability however has

not had the same consistent treatment. This is most likely due
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to the fact that for linear systems, they all become equivalent.

The first formal definition of exponential stability is credited

by [16] to have first appeared in [15] and repeated here in:

the state trajectory s(t) is exponentially asymptotically stable

if there exists ν > 0 and for all ǫ > 0 there exists a δ(ǫ) such

that ‖x0‖ ≤ δ implies that ‖s(t;x0, t0)‖ ≤ ǫe−ν(t−t0). The

term exponential asymptotic stability is no longer used in

modern control text and the shortened phrase exponential

stability is used instead. There are however several different

ways to classifiy systems that portray exponential conver-

gence. We now give four different definitions of exponential

stability, beginning with a slightly modified version of the

exponential asymptotic stability definition given in [16].

Definition 2 (Exponential Stability). Let t0 ≥ 0, the equi-

librium is

(i) Exponentially Asymptotically Stable (EAS) if for all

ǫ > 0 there exists a δ(ǫ), ν(ǫ) > 0 such that ‖x0‖ ≤ δ
implies that ‖s(t;x0, t0)‖ ≤ ǫe−ν(t−t0)

(ii) Exponentially Asymptotically Stable in the Large

(EASL) if for all ρ > 0 there exists an ǫ(ρ), ν(ρ) > 0
such that ‖x0‖ ≤ ρ implies that ‖s(t;x0, t0)‖ ≤
ǫe−ν(t−t0)

(iii) Exponentially Stable (ES) if for every ρ > 0 there

exists ν(ρ) > 0 and κ(ρ) > 0 such that ‖x0‖ ≤ ρ
implies ‖s(t;x0, t0)‖ ≤ κ‖x0‖e−ν(t−t0)

(iv) Exponentially Stable in the Large (ESL) if there

exists ν > 0 and κ > 0 such that ‖s(t;x0, t0)‖ ≤
κ‖x0‖e−ν(t−t0) for all x0.

The definition of EAS is repeated here only for historical

context. The definition is then extended analogously to

UASL with EASL, where the size of the neighborhoods

for the initial condition can be arbitrarily large. It is clear

from the definition that EASL implies UASL, let T (ρ, η) =
1

ν(ρ) log
(

ǫ(ρ)
η

)

. The same definition can be used to show that

EAS implies UAS. A slightly stronger version of EASL is

that of ES. The exponential stability definition is motivated

by the analysis of linear differential equations, where it is

easy to explicitly extract x0 from ǫ in the definition. Finally,

ESL was introduced which is stronger than ES due to the fact

that κ and most importantly ν hold globally and uniformly.

Note that for linear systems, i.e. ẋ = A(t)x, UAS implies

ESL [11, Theorem 3: (C) & (D)]. Thus, for linear systems

all of the definitions are equivalent. The relationship between

these definitions of stability are illustrated in the following

implication diagram.

ESL ES EASL EAS

UASL UAS
+ Linear

Theorem 1. Consider the scalar dynamics

ẋ(t) = a(t)x(t).

If there exists T, α1, α2 > 0 such that
∫ t+T

t
a(τ)dτ ≤ −α1

and −∞ < a(t) ≤ α2 for all t ≥ t0, then the scalar

dynamics just mentioned are ESL with κ = e
α1+α2T and

ν = α1/T .

Corollary. The scalar dynamics ẋ(t) = −y2(t)x(t) are

ESL if there exists positive constants α1 and T such that
∫ t+T

t
y2(τ) dτ ≥ α1, and y is bounded for all t ≥ t0.

A proof of the above theorem is given in the Appendix.

The previous theorem illustrates that if a(t) is on average

always negative over some sliding window in time of size T ,

then the system is exponentially stable in the large. We now

give an example of a system that is exponentially convergent,

yet is neither ESL or ES. How well the dynamics satisfy the

sufficient conditions of Theorem 1 are then analyzed.

Example 1. Consider the differential equation

ẋ(t) = −|x0|x(t).
It follows that s(t;x0, t0) = e

−|x0|(t−t0)x0 is a solution to

the differential equation of interest. While the dynamics are

exponentially decreasing for all nonzero initial conditions,

the exponent can not be lower bounded for any neighborhood

of the origin. Thus, the dynamics are not ESL or ES. The

sufficient conditions of Theorem 1 are now investigated.

Let α1 = T |x0| and α2 = 0, therefore |s(t;x0, t0)| ≤
e
T |x0|

e
−|x0|(t−t0)|x0|. Taking the limit as T tends to zero

in the above inequality we recover the least upper bound of

|s(t;x0, t0)| ≤ e
−|x0|(t−t0)|x0|. Even though the sufficient

conditions of Theorem 1 are not satisfied, as α1 tends to

zero as x0 tends to zero, this illustrates that the theorem is

not overly conservative.

The example just presented seems to be completely un-

feasible. In the strict equality we agree, there are not many

systems where the decay rate is strictly proportional to

the initial condition. However, as will be shown later, in

adaptive control the scenario is often encountered where

the convergence rate of a function is bounded by the initial

conditions of the system.

III. PERSISTENCE OF EXCITATION

Definition 3 (Persistence of Excitation). Let ω ∈ [t0,∞) →
R

p be a time varying parameter with initial condition defined

as ω0 = ω(t0), then the parameterized function of time

y(t, ω) : [t0,∞)× R
p → R

m is

(i) Persistently Exciting (PE) if there exists T > 0 and

α > 0 such that
∫ t+T

t

y(τ, ω)yT(τ, ω)dτ ≥ αI

for all t ≥ t0 and ω0 ∈ R
p, and we denote this as

y(t, ω) ∈ PE.

(ii) weakly Persistently Exciting (PE∗(ω,Ω)) if there exists

a compact set Ω ⊂ R
p, T (Ω) > 0, α(Ω) such that

∫ t+T

t

y(τ, ω)yT(τ, ω)dτ ≥ αI

for all ω0 ∈ Ω and t ≥ t0, and we denote this as

y(t, ω) ∈ PE∗(ω,Ω).
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IV. ASYMPTOTIC AND EXPONENTIAL STABILITY IN

ADAPTIVE CONTROL

We now present two adaptive systems, first the algebraic

identification problem and then the standard adaptive control

problem.

Identification in Simple Algebraic Systems [20]

Let u : [t0,∞) → R
n be the input and y : [t0,∞) → R be

the output of the following algebraic system of equations

y(t) = uT(t)θ

where θ ∈ R
n is an unknown parameter. If we assume

that u is known and y is measurable, then an estimate of

the unknown parameter θ̂ : [t0,∞) → R
n can be used in

constructing an adaptive observer

ŷ(t) = uT(t)θ̂(t)

where the update for the estimate of the uncertain parameter

is defined as

˙̂
θ(t) = −u(t) (ŷ(t)− y(t)) .

Denoting the parameter error as φ(t) = θ̂(t)−θ the parameter

error evolves as

φ̇(t) = −u(t)uT(t)φ(t). (1)

Theorem 2. If u(t) is PE and either 1) there exists β > 0
such that

∫ t+T

t

u(τ)uT(τ)dτ ≤ βI

or 2) there exists a umax > 0 such that ‖u(t)‖ ≤ umax, then

φ in equation (1) is ESL.

The proof is given in two flavors the first follows that of

[1] and the second follows that of [20], and then the two

methods are compared.

Proof of the theorem following Anderson [1, proof of

Theorem 1]: Note that the existence of a umax and a T that

is finite implies the existence of β. The existence of T , α, and

β such that αI ≤
∫ t+T

t
u(τ)uT(τ)dτ ≤ βI is equivalent to

the following system being uniformly completely observable

Σ1 : ẋ1 = 0n×nx1, y1 = uT(t)x1 [10, Definition (5.23)

dual of (5.13)]. If Σ1 is uniformly completely observable

then if follows that Σ2 : ẋ2 = −u(t)uT(t)x2, y2 = uT(t)x2

is uniformly completely observable as well [2, Dual of

Theorem 4]. Therefore, there exists α2 and β2 such that

α2I ≤
∫ t+T

t

ΦT

2 (τ, t)u(τ)u
T(τ)Φ2(τ, t)dτ ≤ β2I (2)

where Φ2(t, t0) is the state transition matrix for Σ2. Note that

the upper bound β is needed to ensure that Φ2(τ, t) is not

singular, detΦ2(t, t0) = exp
[

−
∫ t

t0
trace(u(τ)uT(τ)) dτ

]

.

Let V (φ, t) = 1
2φ

T(t)φ(t) and note that Σ2

and (1) have the same state transition matrix. Thus

φ(t; t0) = Φ2(t, t0)φ(t0). Differentiating V along the

system trajectories in (1) we have V̇ (φ, t; t0) =
−φT(t0)Φ

T

2 (t, t0)u(t)u
T(t)Φ2(t, t0)φ(t0). Using the bound

in (2) and integrating as
∫ t+T

t
V̇ (φ, τ ; t)dτ , it follows that

V (t+ T )− V (t) ≤ −2α2V (t). Thus V (t + T ) ≤ (1 −
2α2)V (t) and therefore the system is UASL and due to

linearity it follows that the systems is ESL.

Proof of the theorem following Narendra and An-

naswamy [20, proof of Theorem 2.16]: First we note that

u(t) being PE is equivalent to
∫ t+T

t
|uT(τ)w|2dτ ≥ α

holding for any fixed unitary vector w. Let ũ(t) ,
u(t)
umax

,

then it follows that
∫ t+T

t

|uT(τ)w|2dτ = u2
max

∫ t+T

t

|ũT(τ)w|2dτ

≤ u2
max

∫ t+T

t

|ũT(τ)w|dτ

where the second line of the above inequality follows due

to the fact that ‖ũ‖ ≤ 1 and thus |ũT(τ)w|2 ≤ |ũT(τ)w|.
Therefore, u being PE and bounded implies that

α

umax
≤
∫ t+T

t

|uT(τ)w|dτ. (3)

The above bound will be called upon shortly. Moving

forward with the proof, consider the Lyapunov candidate

V (φ, t) = 1
2φ

T(t)φ(t). Then differentiating along the system

directions it follows that V̇ (φ, t) = −φT(t)u(t)uT(t)φ(t).
Integrating V̇ and using the Cauchy Schwartz inequality it

follows

−
∫ t+T

t

V̇ (φ, τ)dτ =

∫ t+T

t

|uT(τ)φ(τ)|2dτ

≥ 1

T

(

∫ t+T

t

|uT(τ)φ(τ)|dτ
)2

.

The above inequality can equivalently be written as

√

T (V (t)− V (t+ T )) ≥
∫ t+T

t

|uT(τ)φ(τ)|dτ. (4)

Using the reverse triangle inequality, the righthand side of

the inequality in (4) can be bounded as

∫ t+T

t

|uT(τ)φ(τ)|dτ ≥
∫ t+T

t

|uT(τ)φ(t)|dτ−
∫ t+T

t

|uT(τ)[φ(t) − φ(τ)]|dτ. (5)

Using the bound in (3) the first integral on the righthand side

of the above inequality can be bounded as
∫ t+T

t

|uT(τ)φ(t)|dτ ≥ ‖φ(t)‖ α

umax
. (6)

The second integral on the righthand side of (5) can be

bounded as
∫ t+T

t

|uT(τ)[φ(t) − φ(τ)]|dτ

≤ umaxT sup
τ∈[t,t+T ]

‖φ(t)− φ(τ)‖

≤ umaxT

∫ t+T

t

‖φ̇(τ)‖dτ

≤ u2
maxT

∫ t+T

t

‖uT(τ)φ(τ)‖dτ.

(7)
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The second line in the above inequality follows by the fact

that the arc-length between two points in space is always

greater than or equal to a strait line between them. The

third line in the above inequality follows by substition of

the dynamics in (1). Substitution of the inequalities in (5)-

(7) into (4) it follows that

∫ t+T

t

|uT(τ)φ(τ)|dτ ≥
‖φ(t)‖ α

umax

1 + u2
maxT

.

Substitution of the above bound into (4) and squaring both

sides it follows that

V (t+ T ) ≤
(

1− 2α2/u2
max

T (1 + u2
maxT )

2

)

V (t).

Therefore the dynamics in (1) are UASL and by linearity

this implies ESL as well.

While the first proof is more generic, the brute force

method deployed in the second proof gives direct insight

as to how the degree of persistency of excitation α and the

upper bound umax affect the rate of convergence

rcon ,

(

1− 2α2/u2
max

T (1 + u2
maxT )

2

)

. (8)

In the method by Anderson the rate of convergence is an

existence one given by (1−2α2). No closed form expression

is given relating α2 to the original measures of PE, α and

β.1 It is clear however that for fixed T an increase in umax

conservatively implies an increase in β. It is also clear

from (8) that an increase in umax decreases the convergence

rate. It is comforting therefore to know that an increase in

β also implies a decrease in the convergence rate, which

is now shown. Recall the Abel-Jacobi-Liouville identity,

detΦ2(t, t0) = exp
[

−
∫ t

t0
trace(u(τ)uT(τ)) dτ

]

, and thus as

β increases, detΦ2(t, t0) decreases. Now using this fact and

the bound in (2) it follows that as β increases α2 decreases.

Thus the two proofs support the conclusions of the other and

highlight one of the non-trivial characteristic of persistence

of excitation and UASL [20, §6.5.3(a)].

Returning to the main point of this note we consider a

system were the degree of PE is a function of the initial

conditions of the system. Consider the system

φ̇(t) = −u(t, φ)uT(t, φ)φ(t) (9)

with φ0 = φ(t0).

Theorem 3. Let Ω(r) = {φ : ‖φ‖ ≤ r}. If u(t, φ) ∈
PE∗(φ,Ω(r)) for all r and there exists umax(r) > 0 such

that ‖u(t, φ)‖ ≤ umax for all φ0 ∈ Ω(r), then φ in equation

(9) is UASL and it does not follow that (9) is ESL.

Proof: Given that u(t, φ) ∈ PE∗(φ,Ω(r)), it follows that

there exists T (r) and α(r) such that
∫ t+T

t
|uT(τ, φ)w|2dτ ≥

α for all φ0 ∈ Ω(r). Choosing a Lyapunov candidate as

V (φ, t) = 1
2φ

T(t)φ(t) and following the same steps as in the

1If one carefully follows the steps outlined in [1] it may be possible to
come up with a closed form relation, but it appears to be non-trivial.

proof of Theorem 2 it follows that V (t+ T (r)) ≤ rconV (t)
for all φ0 ∈ Ω(r) where

rcon(r) =

(

1− 2α2(r)/u2
max(r)

T (r)(1 + u2
max(r)T (r))

2

)

.

Given that the convergence rate is upper bounded for all

‖φ0‖ ≤ r and r can be arbitrarily large, the dynamics in (9)

are UASL. Due to the fact that rcon is not globally uniform

in φ0 it can not be concluded that the dynamics are ESL.

If for instance rcon increases as ‖φ0‖ increases then either κ
or ν in the definition of ESL would have to be increased

or decreased respectively, thus breaking the definition of

interest.

This is still a rather fictitious scenario similar to Example

1. In the next section we introduce the direct adaptive

control problem, where this scenario is precisely what is

encountered, the degree of persistence of excitation becomes

initial condition dependent and thus the convergence rate will

become initial condition dependent as well.

Direct Model Reference Adaptive Control

Let u : [t0,∞) → R be the input and x : [t0,∞) → R
n

the state of a dynamical system

ẋ(t) = Ax(t)− BθTx(t) +Bu(t)

where A ∈ R
n×n is known and Hurwtiz and B ∈ R

n is

known as well, with the parameter θ ∈ R
n unknown. The

goal is to design the input so that x follows a reference

model state xm : [t0,∞) → R
n defined by the linear system

of equations

ẋm(t) = Axm(t) +Br(t)

where r : [t0,∞) → R is the reference command. Defining

the model following error as e = x − xm the control input

u(t) = θ̂T(t)x(t)+r(t) achieves this goal when the adaptive

parameter θ̂ : [t0,∞) → R
n is updated as follows

˙̂
θ(t) = −xeTPB

where P = PT ∈ R
n×n is the positive definite solution to

the Lyapunov equation ATP +PA = −Q for any real n×n
dimensional Q = QT > 0. So as to simplify the notation

we let C , PB and the adaptive system can be compactly

represented as
[

ė(t)

φ̇(t)

]

=

[

A BxT(t)
−x(t)CT 0

] [

e(t)
φ(t)

]

(10)

where the initial conditions of the model following error and

parameter error are denoted as e0 = e(t0) and φ0 = φ(t0).
For the dynamics of interest it follows that V (e, φ) = eTPe+
φTφ is a Lyapunov candidate with time derivative along the

state trajectories satisfying the inequality, V̇ ≤ −eTQe. This

implies that e(t) and φ(t) are bounded for all time with

‖e‖ ≤
√

V (e0, φ0)/Pmin and ‖φ‖ ≤
√

V (e0, φ0) (11)

where Pmin is the minimum eigenvalue of P . The reference

command is bounded by design and thus xm is bounded and

along with the bounds above implies that x is bounded. The
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boundedness of x and φ in turn implies that ė is bounded

for all time. Integration of V̇ shows that e ∈ L2 with

‖e‖L2
≤
√

V (e0, φ0)/Qmin (12)

where Qmin is the minimum eigenvalue of Q. From the fact

that e ∈ L2∩L∞ and ė ∈ L∞ it follows that e → 0 as t → ∞
[20, Lemma 2.12]. Before discussing the asymptotic stability

of the dynamics in (10) the following lemma is critical

in relating persistence of excitation between the reference

model state and the plant state. Let z = [eT, φT]T, then the

dynamics in (10) can be compactly expressed as

ż(t) =

[

A BxT(t, z; t0)
−x(t, z; t0)C

T 0

]

z(t) (13)

where we have explicitly denoted x as a function of the state

variable z.

Lemma 4. For the dynamics in (13) if xm(t) is PE, there

exists α and T such that
∫ t+T

t
xm(τ)xT

m(τ)dτ ≥ αI , and

there exists a β such that ‖xm(t)‖ ≤ β, then x(t, z) is

PE∗(z, Z(ζ)) with Z(ζ) = {z : V (z) ≤ ζ} for all ζ > 0
with the following bounds holding

∫ t+pT

t

x(τ)xT(τ)dτ ≥ α′I (14)

with p > pmin where

√
pmin ,

(√

ζ
Pmin

+ 2β
)√

T ζ
Qmin

α
(15)

and

α′ , pα−
(

√

ζ
Pmin

+ 2β

)

√

pT ζ
Qmin

. (16)

Before going to the proof of this lemma a few comments

are in order. First, note that the state variable z contains

both the model following error e and the parameter error φ.

Therefore, what is being said is that x is weakly persistently

exciting for all initial conditions e0 and φ0 in the compact

regions defined by the level sets of the Lyapunov function

V (z) = eTPe+φTφ. Furthermore, because these conditions

hold for arbitrarily large level sets, i.e. ζ can be arbitrarily

large, x is weakly persistently exciting for any initial con-

dition z0 ∈ R
2n. However, because the parameters in the

persistence of excitation bound in (14), namely p, are not

globally uniform in z0 it can not be concluded that x is PE.

Proof: This proof follows closely that of [4, Theorem

3.1]. For any fixed unitary vector w, consider the following

equality, (xT

mw)2−(xTw)2 = −(xTw−xT

mw)(xTw+xT

mw).
Using the definition of e, the bound in (11) for e and the

bound β in the statement of the lemma, it follows that

(xT

mw)2 − (xTw)2 ≤ ‖e‖(
√

V (z0)/Pmin + 2β).

Moving (xT

mw)2 to the righthand side, multiplying by −1
and integrating from t to t + pT where p is defined just

above (15)

∫ t+pT

t

(xT(τ)w)2dτ ≥
∫ t+pT

t

(xT

m(τ)w)2dτ

−
(

√

V (z0)
Pmin

+ 2β

)
∫ t+pT

t

‖e(τ)‖dτ.

Applying Cauchy-Schwartz to the integral on the right hand

side and using the fact that
∫ t+T

t
(xT

m(τ)w)2dτ ≥ α we have

that

∫ t+pT

t

(xT(τ)w)2dτ ≥ pα

−
(

√

V (z0)
Pmin

+ 2β

)

√

pT

∫ t+pT

t

‖e(τ)‖2dτ .

Applying the bound in (12) for the L2 norm of e, it follows

that
∫ t+pT

t

(xT(τ)w)2dτ ≥ pα−
(

√

V (z0)
Pmin

+ 2β

)

√

pT V (z0)
Qmin

.

For all z0 ∈ Z(ζ) it follows that V (z0) ≤ ζ and therefore

pα−
(

√

V (z0)
Pmin

+ 2β

)

√

pT V (z0)
Qmin

≥ α′.

It follows directly that
∫ t+pT

t
(xT(τ)w)2dτ ≥ α′ for all t ≥

t0 and z0 ∈ Z(ζ).

Remark 1. The main take away from this lemma is that

for a given α and T such that
∫ t+T

t
xm(τ)xT

m(τ)dτ ≥ αI

and for a fixed α′ such that
∫ t+pT

t
x(τ)xT(τ)dτ ≥ α′I , as

the size of the level set V (z) = ζ is increased, p must also

increase. This can be seen directly through (15) where pmin

increases with increasing ζ. Thus, as p increases, the time

window over which the excitation is measured pT increases

as well.

Theorem 5. If xm(t) is PE and uniformly bounded, then the

dynamics in (13) are UASL and it does not follow that they

are ESL.

Proof: Given that xm ∈ PE it follows from Lemma

4 that x(t, z) ∈ PE∗(z, Z(ζ)) for any ζ. For any fixed

ζ applying [17, Theorem 5] implies that the dynamics of

interest are UAS. Given that the above results hold for any

ζ > 0, the dynamics of interest are therefore UASL. Due to

the fact that persistence of excitation bounds for x do not

hold globally uniformly in the initial condition z0 one is not

able to conclude ESL.

A simulation example illustrating the discussion in Re-

mark 1 is now presented. Figure 1 below shows the state

error e, the plant state x, the reference model state xm,

and the parameter error φ of a first order plant for three

different initial conditions. The three different simulations

going from solid line to dash-dot line to dotted line correlate

to increasing |φ0|. The initial condition of the reference

model is selected in conjunction with the reference input

to remain constant for all time and thus xm(t) = 3. As can

be seen in the lower left plot of Figure 1 as |φ0| increases,

the amount of time that x is close to 0 increases as well.

This example illustrates the fact that while xm is persistently

exciting x is only weakly persistently exciting and shows the

slow and non-exponential convergence of the errors as the

initial conditions of the system increase. More examples of

adaptive systems exhibiting this slow convergence can be

found in [8, 9].
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V. CONCLUSION

Precise definitions of exponential stability along with

initial condition dependent definitions of persistence of ex-

citation have been given. With these definitions it has been

shown that when the reference model is persistently exciting

the direct adaptive control problem can at best be uniformly

asymptotically stable in the large.
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APPENDIX

Proof of Theorem 1: Let s(t;x0, t0) be a solution to

the scalar differential equation of interest, then s(t;x0, t0) =

e

∫

t

t0
a(τ)dτ

x0. Let δ , t− kT − t0 > 0 where k is the largest

integer such that δ < T . Using the integer k and the

parameter T the time integral can be partitioned as

s(t;x0, t0) = e

(

∫

t0+kT

t0
+

∫

t

t0+kT

)

a(τ)dτ
x0.

Multiplying both sides by e
−α1(t−t0)+α1(t−t0) we have that

s(t;x0, t0) = e

(

∫ t0+kT

t0
+

∫

t

t0+kT

)

a(τ)dτ

· e−
α1
T

(t−t0)+
α1
T

(t−t0)x0. (17)

Noting that the bound
∫ t+T

t
a(τ)dτ ≤ −α1 is uniform in

time, it follows that
∫ t0+kT

t0
a(τ)dτ ≤ −α1k. Using the

bound just derived and the definition of δ the following

bound holds
∫ t0+kT

t0

a(τ)dτ +
α1

T
(t− t0) ≤ α1

δ

T
≤ α1 (18)

where for the last inequality we have used the fact that δ is

strictly less than T . Substitution of the bound in (18) into

the equality in (17) results in the following

|s(t;x0, t0)| ≤ e
α1
e

∫

t

t0+kT
a(τ)dτ

e
−

α1
T

(t−t0)|x0|.
Finally, using the bound a(t) ≤ α2 and the fact that δ < T ,

it follows that e
∫

t

t0+kT
a(τ)dτ ≤ e

α2T and thus

|s(t;x0, t0)| ≤ e
α1+α2T

e
−

α1
T

(t−t0)|x0|.

1554


