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Abstract—This paper explores the transient properties of
direct model reference adaptive control with closed loop ref-
erence models. The transients are characterized by bounds on
the model following error, the rate of change of the adaptive
parameter and rate of change of the control input. Both
Euclidean and L2 norms are used to characterize this transient
behavior.

I. INTRODUCTION

Early developments of adaptive systems included explo-
rations of various kinds of reference models. The overall
goal behind the selection of a reference model is that the
corresponding tracking error must asymptotically decay in
the absence of parametric uncertainties in the plant being
controlled. In order to accomplish this goal, modifications of
the Open–loop Reference Models (ORM) were explored [1],
[2]. Some of these modifications retained stability properties
and were otherwise indistinguishable from ORM–adaptive
systems and as a result, not pursued. Others could not be
shown to be stable and were therefore dropped. Recently, a
class of Closed–loop Reference Models (CRM) have been
proposed for control of plants with unknown parameters
whose states are accessible (see for example [3]–[7]) all of
which are guaranteed to be stable and additionally portray
improved transient performance.

Transient behavior in adaptive systems have been ad-
dressed in recent years in [4], [6]–[8] and earlier in [9].
The results in [4] discussed the tracking error, but focused
the attention mainly on the initial interval where the CRM-
adaptive system exhibits fast time-scales. Results in [6], [7]
focus on deriving a damping ratio and natural frequency
for adaptive systems with CRM. However, assumptions are
made that the initial state error is zero and that the closed-
loop system state is independent of the feedback gain in
the reference model, both of which may not hold in general.
The results in [8] too assume that initial state errors are zero.
And in addition, the bounds derived in [8] are based upon
L∞ norms, which do not capture the transient properties
of adaptive systems. The results in [9] pertain to transient
properties of adaptive systems, and quantify them using an
L2 norm. The adaptive systems in question however are
indirect, and do not pertain to CRMs.

In this paper, we propose CRM-based adaptive systems
similar to [4], [6], [7]. Similar to these papers, we demon-
strate their stability property and proceed to address their
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transient behavior. Unlike those papers, and similar to [9],
our transient metric of choice is an L2–norm. We analyze
the tracking error using both this norm and the Euclidean
norm and show its improvement compared to ORM-adaptive
systems. We also analyze derivatives of key signals including
the adaptive parameter and the adaptive control input. We
show that their Euclidean norm as well as their L2–norm
are smaller than their ORM-counterparts.

We also establish yet another important feature of the
CRM–adaptive systems, which is a water-bed effect. While
the CRM-adaptive systems are shown to result in improved
tracking errors and derivatives of key signals, they can
introduce slow adaptation in the plant state and therefore a
larger tracking error of the original reference model. Guide-
lines for an optimal CRM–design which ensures satisfactory
transients are provided.

In comparison to [10], the previous work by the authors
of this paper on the same topic, this paper consists of (i)
new metrics of transients such as the L2 norm, and (ii) com-
parisons with the classical ORM-based MRAC. The same
notations introduced in [10] are however used. A second part
of this paper can be found in [11] which addresses CRM in
composite MRAC and adaptive systems with observer–based
feedback.

The results in this paper are organized as follows: Section
II introduces the basic structure of CRM adaptive control as
well as the Projection Operator. Section III investigates the
transient response of CRM. Section IV compares ORM and
CRM adaptive systems in terms of our performance metric.
Section V contains our concluding remarks.

II. THE CRM–ADAPTIVE SYSTEM

In this section, we describe the CRM–adaptive system,
and establish its stability and convergence properties in the
absence of any perturbations other than parametric uncertain-
ties. We first describe the CRM–adaptive system and prove
its closed–loop stability. After some preliminaries on matrix
bounds, we introduce a projection algorithm in the adaptive
law. This is used to derive exponentially converging bounds
on the key variables in the CRM–adaptive system.

Consider the linear system dynamics with scalar input

ẋ(t) = Apx(t) + bu(t) (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the control

input, Ap ∈ R
n×n is unknown and b ∈ R

n is known. Our
goal is to design the control input such that x(t) follows the
reference model state xm(t) ∈ R

n defined by the following
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closed–loop dynamics

ẋm(t) = Amxm(t) + br(t) − L(x(t)− xm(t)) (2)

where Am ∈ R
n×n is Hurwtitz and r(t) ∈ R is a bounded

possible time varying reference command. L ∈ R
n×n is

denoted as the Luenberger–gain, and is chosen such that

Ām � Am + L (3)

is Hurwitz. When L = 0 the classical ORM is recovered.

Assumption 1. A parameter vector θ∗ ∈ R
n exists that

satisfies the matching condition

Am = Ap + bθ∗T . (4)

The control input is chosen in the form

u(t) = θT (t)x(t) + r(t) (5)

where θ(t) ∈ R
n is the adaptive control gain with the update

law
θ̇(t) = −Γx(t)e(t)TPb (6)

with Γ = ΓT > 0, e(t) = x(t) − xm(t) is the model follow-
ing error and P = PT > 0 is the solution to the algebraic
Lyapunov equation

ĀT
mP + PĀm = −In×n. (7)

The underlying error model in this case is given by

ė(t) = Āme(t) + bθ̃(t)x(t) (8)

where θ̃(t) = θ(t) − θ∗ is the parameter error.

Theorem 1. The closed-loop adaptive system with (1), (2),
(5) and (6) is globally stable with e(t) tending to zero
asymptotically, under the matching condition in (4).

Proof: It is straight forward to show using (6) and (8)
that

V (e, θ̃) = eTPe+ θ̃TΓ−1θ̃ (9)

is a Lyapunov function. Since e is bounded, the structure of
(2) implies that xm is bounded. x in turn and u are bounded.
Barbalat lemma ensures asymptotic convergence of e(t) to
zero.

Corollary 2. For all ε > 0 there exists T (ε, L) > 0 such
that t ≥ T (ε, L) implies ‖e(t)‖ ≤ ε.

The overall CRM–adaptive system is defined by (1), (2),
(5), and (6). The standard open-loop reference model is given
by

ẋo
m(t) = Amxo

m(t) + br(t) (10)

with the corresponding tracking error

eo(t) = x(t)− xo
m(t). (11)

One can in fact view the error eo as the true tracking
error and e as a pseudo–tracking error. The question that
arises is whether the convergence properties that are assured
in an ORM–adaptive system, of eo(t) tending to zero, is

guaranteed in a CRM–adaptive system as well. This is
addressed in the following corollary:

Corollary 3. The state vector x(t) converges to xo
m(t) as

t → ∞.

Proof: From Theorem 1 we can conclude that e(t) → 0
asymptotically. Thus we can conclude that xm(t) → xo

m(t)
as e(t) → 0, emplying that eo → 0, thus x(t) → xo

m(t) as
t → ∞.

Remark 1. The choice of the CRM as in (2) essentially
makes the reference model nonlinear, as x depends on θ
which in turn depends on xm in a highly nonlinear manner.
As we will show in Section III, the CRM-adaptive system
has an additional desirable property, of quantifiable transient
properties. We will also show in this section that this is
made possible by virtue of the additional degree of freedom
available to the adaptive system in the form of the feedback
gain in the CRM.

A. Preliminaries

All norms unless otherwise noted are the Euclidean
norm and the induced Euclidean norm. The other
norms used in this work are the L2 and the L∞

norm defined below. Given a vector ν ∈ R
n and

finite p ∈ N>0 ‖ν(t)‖Lp
�

(∫∞

0 ‖ν(s)‖pds)1/p and

‖ν(t)‖Lp,τ �
(∫ τ

0 ‖ν(s)‖pds
)1/p

. The infinity norm is
defined as ‖ν(t)‖L∞

� sup‖ν(t)‖.

Definition 1. Given a Hurwtiz matrix Am ∈ R
n×n

σ � −max
i

(real(λi(Am)))

s � −min
i

(
λi

(
Am +AT

m

)
/2

)
a � ‖Am‖.

(12)

For ease of exposition, throughout the paper, we choose L
in (2) and Γ in (17) and (43) as follows:

L � −�In×n (13)

Γ � γIn×n. (14)

Lemma 4. The constants σ and s are strictly positive and
satisfy s ≥ σ > 0.

Lemma 5. With L chosen as in (13), Am Hurwitz with
constants σ and s as defined in (12), P in (7) satisfies

(i) ‖P‖ ≤ m2

σ + 2�
(15)

(ii) min
i

λi(P ) ≥ 1

2(s+ �)
(16)

where m = (1 + 4κ)n−1 and κ � a
σ .

Proof: See [10, Lemma 2].

B. Projection Algorithm

Before we evaluate the benefits of closed–loop reference
models, we introduce a modification in the adaptive law to
ensure robustness properties.
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Assumption 2. A known θ∗max exists such that ‖θ∗‖ ≤
θ∗max.

The projection based adaptive law, which replaces (6), is
given by

θ̇(t) = ProjΓ
(
θ(t),−xeTPb, f

)
(17)

where the Γ–projection function, ProjΓ, is defined as in
Appendix A and f is a convex function given by

f(θ;ϑ, ε) =
‖θ‖2 − ϑ2

2εϑ− ε2
(18)

where ϑ and ε are positive constants chosen as ϑ = θ∗max and
ε > 0.

Definition 2. Using the design parameters of the convex
function f(θ;ϑ, ε) we introduce the following definitions

θmax � ϑ+ ε and

θ̃max � 2ϑ+ ε.
(19)

C. Convergence of the Adaptive System

Theorem 6. Let Assumptions 1 and 2 hold. Consider the
adaptive system defined by the plant in (1) with the reference
model in (2), the controller in (5), the adaptive tuning law in
(17) and L and Γ as in (13)-(14). For any initial condition
in e(0) ∈ R

n, and θ(0) such that ‖θ(0)‖ ≤ θmax, e(t) and
θ(t) are uniformly bounded for all t ≥ 0 and the trajectories
in the Lyapunov candidate in (9) converges exponentially to
a set E as

V̇ ≤ −α1V + α2 (20)

where

α1 �
σ + 2�

m2
and α2 �

σ + 2�

m2γ
θ̃2max, (21)

and E �

{
(e, θ̃)

∣∣∣‖e‖2 ≤ β1θ̃
2
max, ‖θ̃‖ ≤ θ̃max

}
with

β1 = 2
s+ �

γ
. (22)

Proof: See Appendix C.

III. TRANSIENT PERFORMANCE OF CRM–ADAPTIVE

SYSTEMS

In the following subsections we derive the transient prop-
erties of the CRM-adaptive systems. Five different subsec-
tions are presented, the first of which quantifies the Euclidean
and the L2–norm of the tracking error e. In the second
subsection we compute the same norms for the parameter
derivative θ̇(t). In both cases, we show that the L2–norms
can be decreased by increasing �. In the third theorem, we
address the performance of the true error eo and show its
dependence on �. In the fourth subsection, we define our
metric for transient performance in terms of a truncated
L2 norm of the rate of control effort. The last subsection
compares ORM and CRM adaptive systems using these
metrics.

Let
ρ =

γ

σ + �
. (23)

The results in the following subsections are presented in
terms of the two free design parameters ρ and �, which is
just a reparameterization of γ and �. Then it is assumed that
ρ is chosen independent of � so that the product ΓP is of
the same size while � is being adjusted, where we note that

‖Γ‖‖P‖ ≤ ρm2. (24)

This follows from the bound given in (15).

A. Bound on e(t)

Theorem 7. Let Assumptions 1 and 2 hold. Consider the
adaptive system defined by the plant in (1) with the reference
model in (2), the controller in (5), the adaptive tuning law
in (17) and L and Γ as in (13) and (14).

‖e(t)‖2 ≤ κ1‖e(0)‖2 exp
(
−σ + 2�

m2
t

)
+

κ2

ρ
θ̃2max (25)

‖e(t)‖2L2
≤ 1

σ + �

(
m‖e(0)‖2 + 1

ρ
‖θ̃(0)‖2

)
(26)

where κi, i = 1, 2, 3 are independent of ρ and �.

Proof: see Appendix D.

B. Bound on θ̇(t)

In addition to ‖e(t)‖L2
we explicitly compute upper

bounds for ‖θ̇(t)‖ and ‖θ̇(t)‖L2
. From the definition of θ̇(t)

in (17), it follows that

‖θ̇(t)‖ ≤ ‖Γ‖‖P‖‖b‖‖x(t)‖‖e(t)‖.
We note that x(t) = e(t)+xm(t) and from (2) and (44) that

‖xm(t)‖ ≤xm(0)m exp
(−σ

2 t
)

+m

∫ t

0

exp
(−σ

2 (t− τ)
)
(l‖e‖+ ‖b‖‖r‖)dτ

(27)

Using the bound for ‖e(t)‖L2
from (17) and the Cauchy–

Schwartz inequality, we simplify (27) as

‖xm(t)‖ ≤ xm(0)m exp
(−σ

2 t
)
+

lm√
σ
‖e(t)‖L2

+
r02‖b‖m

σ
.

(28)
The above bounds make the following theorem possible.

Theorem 8. Let Assumptions 1 and 2 hold. Consider the
adaptive system defined by the plant in (1) with the reference
model in (2), the controller in (5), the adaptive tuning law
in (17) and L and Γ as in (13) and (14).

‖θ̇(t)‖ ≤ρ exp
(−σ+2�

2m2 t
) [

a1 +
√
�
(
a2 + a3

√
1
ρ

)]
+
√
ρ exp

(−σ
2 t

)
a4 +

√
1
ρ exp

(−σ+2�
m2

)
a5

+
√
�ρa6 +

√
�a7 + ρa8

(29)

‖θ̇(t)‖2L2
≤ρ2ν0(ρ)

(
b1√
σ + �

+
√
ν(ρ)b2 +

b3√
σ + �

)2

(30)

where ν(ρ) = m‖e(0)‖2 + 1
ρ‖θ̃(0)‖

2
, and the ai and bi are

independent of ρ and �.

Proof: see Appendix E.
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C. Bound on eo(t)

While e(t) denotes the error between the CRM and the
closed–loop system, the true error that is of interest is eo(t)
defined in (10).

Theorem 9. Let the assumptions from Theorem 8 hold. The
difference between the open–loop reference model and the
closed loop reference model satisfy the following bound

‖eo(t)‖ ≤ ‖e(t)‖+
√

�

σ
m
√
ν(ρ). (31)

Proof: see Appendix F

D. Bound on u̇(t)

We now derive a final transient measure of the CRM–
adaptive system that pertains to u̇. This is chosen as the
transient performance metric because the rate of change of
the control authority requested by the controller directly
affects the robustness of the system to unmodelled dynamics
and actuator rate limits. Before the bounds are derived,
several variables must be defined.

Definition 3. Let time-constants τ1(�), τ2 be defined as

τ1(�) =
2m2

σ + 2�
and τ2 =

2

σ
(32)

Let constants aθ and δ1(�,N) be defined as

aθ �a+ ‖b‖θ̃max,

δ1(�,N) = exp (aθNτ1(�))− 1.
(33)

where N > 0, and three intervals of time

T1 = [0, Nτ1)

T2 = [Nτ1, T1)

T3 = [T1,∞)

(34)

where T1 � max{Nτ2, T (ε,−�In×n)} and T (ε,−�In×n) is
defined in Corollary 2.

Remark 2. t1(�) is a time constant associated with the
exponential decay of ‖e(t)‖ which is derived from the upper
bound on V from (20) and τ2 is the time constant associated
with Am in (2). aθ is a positive scalar that upper bounds
the open–loop eigen values of Ap from (2) and δ1(�) will
be used in the following Lemma to formally define our time
scale separation condition. The time interval T1 is the time
interval over which ‖e(t)‖ decays by N time constants, T3 is
the asymptotic time scale for e(t) and T2 is an intermediate
time interval. We note that T1 exists but is unknown.

Lemma 10. For any N > 0 an �∗ exists such that

(i) δ1(�
∗, N) < δ where 0 < δ ≤ 1.

(ii) τ1(�
∗) ≤ τ2.

Remark 3. The condition Lemma 10 (i) defines the time
scale separation condition. Recall that τ1 is the time scale
associated with e(t) and aθ is an upper bound on the uncer-
tain open–loop eigen values of the plant. When � ≥ �∗ we
are able to show that at tN = Nτ1, e(tN) has exponentially

decade by N time constants, while x(tN ) has not deviated
far from x(0).

Assumption 3. ∃r0, r1 > 0 s.t. |r(t)| ≤ r0, |ṙ(t)| ≤ r1.

Remark 4. The bound on ṙ(t) is needed so that u̇(t) is
well defined. The analysis techniques that follow in proving
Theorem 11 will still hold for reference inputs with disconti-
nuities. The metric for transient performance however would
change from u̇ to d

dt

(
θT (t)x(t)

)
.

Assumption 4. For ease of exposition we will assume that
xm(0) = 0. We note that the same analysis holds for xm(0)
with addition of exponentially decaying terms proportional
to xm(0).

Theorem 11. Let Assumptions 1–4 hold. Given arbitrary
initial conditions in x(0) ∈ R

n and ‖θ(0)‖ ≤ θmax, for any
ε > 0, N > 0 and � ≥ �∗ , u̇ satisfies the following inequal-
ities:

sup
t∈Ti

|u̇(t)| ≤ m2γ

σ + 2�
‖b‖Ge,iG

2
x,i

+ θmax (aθGx,i + r0) + r1

(35)

for i = 1, 2, 3, where

Gx,1 �(1 + δ1)‖e(0)‖+ δ1‖b‖
aθ

r0

Ge,1 �
√
κ1‖e(0)‖+

√
κ2

ρ
θ̃max

Gx,2 �κ3‖e(0)‖+ (1 + κ4�)

√
κ2

ρ
θ̃max + κ5r0

Ge,2 �
√
κ1‖e(0)‖ε1 +

√
κ2

ρ
θ̃max

Gx,3 �κ6‖e(0)‖+ ε+ (1 + κ4�)

√
κ2

ρ
θ̃max + κ5r0

Ge,3 �ε

(36)

where ε1 � exp(−N) and the κi are independent of ρ and
�, and N ≥ 3

Proof: see Appendix G.

Remark 5. There are two “small” terms in the above
analysis, ε and ε1. ε1 is determined by the number of
time constants N of interest. ε is free to choose and from
Corollary 2 proves the existence of a finite T and is used to
define when T3 begins.

From Theorem 11, it follows that

sup
t∈T1

|u̇(t)| ≤c1ρ+ c2
√
ρ+ r1

sup
t∈T2

|u̇(t)| ≤√
ρc3 + (1 + c4l)c5 +

√
1

ρ
(1 + c4�)

2c6

+ ε1L1(ρ, �,
√
ρ, �

√
ρ, �2) + r1

sup
t∈T3

|u̇(t)| ≤
√

1

ρ
(1 + c4�)c7 + c8

+ εL2(ρ, �,
√
ρ, �

√
ρ, �2, ε1) + r1

(37)
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where ci > 0, i = 1 to 8 are independent of � and ρ,
L1(·) and L2(·) are globally lipschitz with respect to their
arguments. The inequalities in (37) lead us to the following
three main observations (see Figure 1)
(A1) Over T1, |u̇(t)| is bounded by a linear function of ρ

and
√
ρ,

(A2) Over T2, |u̇(t)| is bounded by a linear function of√
ρ, �,

√
1
ρ , �

√
1
ρ and �2

√
1
ρ

(A3) Over T3, |u̇(t)| is bounded by a linear function of
√

1
ρ

and �
√

1
ρ

(A4) τ1 decreases with �.

Remark 6. The main idea used for the derivation of the
bounds in Theorem 11 is time–scale separation of the error
dynamics decay, and the worst case open–loop eigen values
of the uncertain plant. The most important point to note is
that τ1 can be made as small by choosing a large �. There is
a penalty, however, in choosing a large �, as the bound Gx,2

increases linearly with �. Therefore, after choosing an � witch
satisfies the time scale separation as needed in Lemma 10, a
ρ (which through (23) defines a choice for γ) can be chosen
such that the integral in the following theorem is minimized.

Theorem 12. There exist optimal ρ and � such that

(ρopt, �opt) = argmin
ρ>0

�≥�∗

‖u̇(ρ, �)‖L2,τ (38)

for any 0 < τ < T1.

Proof: ‖u̇(ρ, �)‖L2,τ is continuous with respect to ρ and
� where ρ and � appear in the numerator of (37) and are
positive. Therefore, ρopt and �opt exist and are finite.
τ in Theorem 12 denotes the interval of interest in

the adaptive system where the transient response is to be
contained. Given that T , and therefore T1 is a function of �,
(38) can only be minimized over T1 ∪T2. From the authors
definition of smooth transient performance in the beginning
of this section choosing ρopt and �opt will guarantee smooth
transient performance.

E. Comparison of CRM and ORM-adaptive systems

The bounds on e(t) and the L2–norm of θ̇ directly show
that CRM–adaptive systems lead to smaller e(t) than with
the ORM which are obtained by settling � = 0 in (25) and
(26). However, the same cannot be said for either eo or for
the Euclidean norm of θ̇; for a non-zero �, the bound on eo is
larger than that of e. This indicates that there is a trade-off
between fast transients and true tracking error. The signal
that succinctly captures this trade off is u̇, whose behavior is
captured in detail using the time intervals T1, T2, and T3.
We also showed in Theorem 12 that this trade-off can be
optimized via a suitable choice of � and ρ. In what follows,
we compare this optimized CRM with ORM and show that
the former is clearly better than the latter.

Definition 4. The following two time constants

τ ′2 � τ1(0) =
2m2

σ
and τ∗1 = τ1(�

∗) (39)

|u̇
|

Nτ∗1 Nτ2Nτ1

T1 T2

T ′
1 T1

T
′
3

T3

T
′
1 T

′
2

Nτ ′2
t

� = �∗

� = 0

Fig. 1. Transient bounds for u̇.

are used to describe the three time intervals that will be used
in the analysis of u̇ for the ORM case

T
′
1 = [0, Nτ∗1 )

T
′
2 = [Nτ ′2, T

′
1)

T
′
3 = [T ′

1,∞).

(40)

where T ′
1 � max{Nτ ′2, T (ε, 0)} where T (ε, 0) is from

Corollary 2.

As in Definition 3, here too, T exists but is unknown.
While these periods for both CRM and ORM are indicated
in Figure 1, one cannot apriori conclude if T1 is greater than
or smaller than T ′

1. The time instants indicated as in Figure
1 are meant to be merely sketches.

Proposition 13. Let

ρ0 �
γ

σ
. (41)

For the adaptive system with the classical MRAC given by
Eqs (1), (2), (5), (17)–(18) and (13)–(14) with � = 0, it can
be shown that

sup
t∈T

′
1

|u̇(t)| ≤ρ0d1 +
√
ρ0d2 + r1,

sup
t∈T

′
2

|u̇(t)| ≤√
ρ0d3 + d4 +

√
1

ρ0
d5 + ε1M1(ρ0,

√
ρ0) + r1

sup
t∈T

′
3

|u̇(t)| ≤
√

1

ρo
d6 + d7 + εM2(ρo,

√
ρ0) + r1

(42)

di > 0, i = 1 to 7 are independent of ρ0, and M1(·) and
M2(·) are globally lipschitz with respect to their arguments

The proof of Proposition 13 follows the same steps as in
the proof of Theorem 11 and is therefore omitted.

The bounds in (42) indicate that in the classical ORM,
one can only derive a bound for u̇ over the period T

′
1, T′

2

and T
′
3. Unlike the CRM case, the procedure in Appendix

G cannot be used to derive satisfactory bounds for u̇ over
[Nτ∗1 , Nτ ′2). It also can be seen that unlike the CRM case,
τ ′2 is fixed and cannot be changed with �. These points are
summarized below.

(B1) Over T′
1, |u̇(t)| is bounded by a linear function of ρ0

and
√
ρ0
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Fig. 2. Plot of |u̇(t)|.

(B2) Over T′
2, |u̇(t)| is bounded by a linear function of

√
ρ0

and
√

1
ρ0

(B3) Over T′
3, |u̇(t)| is bounded by a linear function of

√
1
ρ0

(B4) τ ′2 is fixed and unlike τ1, can not be adjusted.

We now compare the bounds on u̇ using observations
(A1)–(A3) and (B1)–(B3). In order to have the same basis for
comparison, we assume that γ, σ, and � are such that ρ = ρ0
and that both CRM– and ORM–adaptive systems start with
the same bound at t = 0. As noted above, a tight bound
cannot be derived for the ORM-based adaptive system over
[Nτ∗1 , Nτ ′2). In the best scenario, one can assume that this
bound is no larger than that over [0, Nτ∗1 ]. This allows us to
derive the bounds shown in Figure 1. The main observations
that one can make from this figure are summarized below:

• Even though at time t = 0, both the ORM and CRM
have the same bound, since τ1 can be made much
smaller than τ ′2, this bound is valid for a much shorter
time with the CRM-system than in the ORM–system.
This helps us conclude that the initial transients can be
made to subside much faster in the former case than the
latter, by suitably choosing �.

• The bound on u̇ for T2 with the CRM–adaptive system
is however linear in powers of � and hence can be larger
than the bound on u̇ with the ORM-adaptive system
over T′

2.
• The above observations clearly illustrate, if the cost

function U(Nτ ′2; ρ, �) is minimized then the CRM sys-
tem will have smoother transients than the ORM. Then,
at larger times the error dynamics will asymptotically
converges to zero.

F. Water–Bed Effect

The discussions in the preceding sections clearly show
that CRM-adaptive systems introduce a trade–off: a fast
convergence in e(t) with a reduced ‖θ̇(t)‖L2

occurs at the
expense of an increased eo(t). While an optimal choice of ρ
and � can minimize this trade–off, it also implies that a badly
chosen � and ρ can significantly worsen the adaptive system
performance in terms of eo(t) and u̇(t). We denote this as the
water–bed effect and illustrate it through a simulation. Due
to space considerations, the details of the adaptive system
are omitted and can be found in [10, Section III.E]. Figure

2 shows the behavior of u̇(t) for the ORM, the optimized
CRM, and a poorly chosen CRM. The plots clearly show
the water–bed effect for the last case and the improved
performance of the optimized CRM over the ORM. The free
design parameters are also shown in the figure.

IV. CONCLUSION

This paper concerns the introduction of a feedback gain
L in the reference model. In particular we show that, with
CRMs, direct adaptive control structures result in guaranteed
transient performance. These are primarily realized using the
extra degree of freedom available in the CRM in terms of
a feedback gain, and by exploiting exponential convergence
properties of the CRM–adaptive system. The main impact
of this work is the quantification of transient performance
in adaptive systems through the investigation of L2 norms
of the model following error, rate of change of the adaptive
parameter and the rate of control input.
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APPENDIX A
PROJECTION OPERATOR

The Γ–Projection Operator for two vectors θ, y ∈ R
k,

a convex function f(θ) ∈ R and with symmetric positive
definite tuning gain Γ ∈ R

k×k is defined as

ProjΓ(θ, y, f) =

⎧⎪⎨
⎪⎩
Γy − Γ ∇f(θ)(∇f(θ))T

(∇f(θ))TΓ∇f(θ)Γyf(θ)

if f(θ) > 0 ∧ yTΓ∇f(θ) > 0

Γy otherwise
(43)

where ∇f(θ) =
(

∂f(θ)
∂θ1

· · · ∂f(θ)
∂θk

)T

. The projection opera-
tor was first introduced in [12] with extensions in [13] and
for a detailed analysis of Γ–projection see [14].

APPENDIX B
PROPERTIES OF MATRIX EXPONENTIAL

Lemma 14 ( [10, Corollary 8]). Any Hurwitz matrix
Am ∈ R

n×n with constants a and σ as defined in (12)
satisfies the following bound for the matrix exponential

‖exp(Amτ)‖ ≤ m exp
(
−σ

2
τ
)
, (44)

where m = 3
2 (1 + 4κ)

n−1 and κ = a
σ .

APPENDIX C
PROOF OF THEOREM 6

Proof: Recall the Lyapunov candidate in (9), Taking its
time derivative one has that

V̇ ≤ −‖e‖2 ≤ − 1

‖P‖V +
1

‖P‖γ θ̃
2
max.

Using the upper bound on P from (15)

V̇ ≤ −α1V + α2 (45)

with α1 defined in (21) and α2 � σ+2�
m2γ θ̃2max. Using the

Gronwall Bellman Inequality, (45) implies that

V (e, θ̃) ≤
(
V (e(0), θ̃(0))− α2

α1

)
exp(−α1t) +

α2

α1
. (46)

Thus, e(t) exponentially converges to the set defined by the
following inequality

lim
t→∞

e(t)TPe(t) ≤ 1

γ
θ̃2max.

Using the bound in Lemma 5(ii) we have that

eTPe ≥ 1

2(s+ �)
‖e‖2, (47)

then we can conclude that limt→∞‖e(t)‖2 ≤ β1θ̃
2
max where

β1 is defined in (22). The boundedness of θ(t) follows from
the properties of the Projection Algorithm.

APPENDIX D
PROOF OF THEOREM 7

Proof: From (46) and (47), we know that

‖e(t)‖2 ≤ k0 exp

(
−σ + 2�

m2
t

)
+ k1

where

k0 =
2(s+ �)m2

σ + 2�
‖e(0)‖2 + 2(s+ �)

γ
‖θ̃(0)‖2 − k1

k1 =
2(s+ �)

γ
θ̃2max.

(48)

Using the following inequalities

2(s+ �)m2

σ + 2�
≤ 2sm2

σ
and

2(s+ �)

γ
≤ 2s

σ

σ + �

γ

the fact that ‖θ̃(0)‖ ≤ θ̃max and the definition of ρ from (23),
the result in (25) holds with

κ1 =
2sm2

σ
and κ2 =

2s

σ
. (49)

Beginning with

‖e(t)‖2L2
≤

∫ ∞

0

−V̇ (e(t), θ̃(t)) ≤ V (e(0), θ̃(0))

≤ m2

σ + 2�
‖e(0)‖2 + 1

γ
‖θ̃(0)‖2,

(50)

using the definitions of ρ from (23) and the fact that 1
σ+2� ≤

1
σ+� the bound in (26) holds.

APPENDIX E
PROOF OF THEOREM 8

Proof: Using (15), the choice for Γ in (14) and the
definition of ρ from (23) we have that ‖Γ‖‖P‖ ≤ m2ρ.
Using the bounds in (28) and (25) for ‖xm(t)‖ and ‖e(t)‖
the results in (29) follow immediately.

For the L2 norm we begin by observing that

‖θ̇(t)‖2L2
≤‖Γ‖2‖P‖2‖b‖2 sup‖xm(t)‖2

∫ ∞

0

‖e(t)‖2dt

+ ‖Γ‖2‖P‖2‖b‖2 sup‖e(t)‖2
∫ ∞

0

‖e(t)‖2dt.

Taking the supremum of (28) and (25) we have upper bounds
for sup‖xm(t)‖2 and sup‖e(t)‖2. The L2 norm of e(t) is
given in (26).

APPENDIX F
PROOF OF THEOREM 9

Proof: The dynamics of the CRM and the ORM are
given in (2) and (10) respectively and leed to the following

ẋm(t)− ẋo
m(t) = Am(xm(t)− xo

m(t))− Le. (51)

Given that the reference model will have the same initial
condition regardless of being closed or open, we then have
that

‖xm(t)− xo
m(t)‖ ≤

∫ t

0

exp(−σ

2
τ)�e(τ)dτ (52)
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where the matrix exponential bound came from (44). Us-
ing the Cauchy–Schwartz inequality we have the following
bound

‖xm(t)− xo
m(t)‖ ≤ �m√

σ
‖e(t)‖L2

. (53)

APPENDIX G
PROOF OF THEOREM 11

Taking the time derivative of u in (5)

u̇(t) =− bTPe(t)xT (t)γIn×nx(t)

+ θT
(
Amx(t) + b

(
θ̃Tx(t) + r(t)

))
+ ṙ(t).

(54)

Substitution of the upper bound on P from (15), using the
definition of aθ from (33) and the bounds on the reference
trajectory from Assumption 3 results in the following bound

|u̇(t)| ≤ m2γ

σ + 2�
‖b‖‖e(t)‖‖x(t)‖2

+ θmax (aθ‖x(t)‖+ r0) + r1.

(55)

A. Proof of Theorem 11, t ∈ T1

Lemma 15. [Finite time stability] If r satisfies Assumption
3, then

‖x(t)‖ ≤ ‖e(0)‖ exp (aθt) + ‖b‖r0
aθ

(exp(aθt)− 1) , (56)

t ≥ 0 where aθ is defined in (33).

This Lemma follows from [15, Theorem 8.14].
Using the fact that x(0) = e(0) which follows from

Assumption 4, Lemma 15 and the definitions of aθ and τ1
we obtain that

sup
t∈T1

‖x(t)‖ ≤ Gx,1 (57)

where Gx,1 is defined in (36).
Beginning with (25), taking the square root of the ex-

pression and noting that
√
c1 + c2 ≤ √

c1 +
√
c2 for all

c1, c2 > 0, we obtain

‖e(t)‖ ≤ √
κ1 exp

(
− 1

τ1
t
)
‖e(0)‖+

√
κ2

ρ
θ̃max (58)

where τ1 is defined in (32). This verifies that

sup
t∈T1

‖e(t)‖ ≤ Ge,1 (59)

where Ge,1 is defined in (36) . Using (55), (57), and (59),
Theorem 11 for t ∈ T1 is proved.

B. Proof of Theorem 11, t ∈ T2

From (58) it is easy to see that,

sup
t>Nτ1

‖e(t)‖ ≤ Ge,2 (60)

where Ge,2 is defined in (36).
From (2) and the bound on exp(Amt) in (44), we have

that

‖xm(t)‖ ≤ m

∫ t

0

exp
(
− 1

τ2
(t− τ)

)
(l‖e(τ)‖+ ‖b‖‖r‖)dτ

(61)

Using the integral transform of LTI systems, the bound for
exp(Am) from (44), the bound for ‖e(t)‖ from (58), (61)
takes the form

‖xm(t)‖ ≤m1‖e(0)‖
(
exp

(
− 1

τ2
t
)
− exp

(
− 1

τ1
t
))

+
2lm

σ

√
2(s+ �)

γ
θ̃max

(
1− exp

(
− 1

τ1
t
))

+
2‖b‖m

σ
r0

(
1− exp

(
− 1

τ1
t
))

(62)

where m1 �
2lm4

√
2s
σ

σ+2�−σm2 .
Given that x = e + xm, using (59) and (62) one can

conclude that
sup

t≥Nτ1

‖x(t)‖ ≤ Gx,2 (63)

where Gx,2 is defined in (36). Using (55), (60), and (63),
Theorem 11 for t ∈ T2 is proved.

C. Proof of Theorem 11, t ∈ T3

Ge,3 follows from Corollary 2. Gx,3 follows from (62),
where it is noted that t ≥ Nτ2, and the fact that ‖x‖ ≤
‖e‖+ ‖xm‖
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