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Abstract— Recently a distributed algorithm has been pro-
posed for multi-agent networks to solve a system of linear
algebraic equations, by assuming each agent only knows part of
the system and is able to communicate with nearest neighbors to
update their local solutions. This paper investigates how the net-
work topology impacts exponential convergence of the proposed
algorithm. It is found that networks with higher mean degree,
smaller diameter, and homogeneous degree distribution tend
to achieve faster convergence. Both analytical and numerical
results are provided.

I. INTRODUCTION

A major goal in studying networked systems is to un-
derstand the impact of network topology within the context
of the application of interest, from epidemic spreading [2]
to synchronization [3], controllability [4]–[6] , observability
[7], flocking [8] and consensus [9], [10].

Recently, Mou et al. proposed a network-based distributed
algorithm to solve for x in the linear equation Ax = b [11],
[12]. In this algorithm it is assumed that each agent is located
in a communication network and has partial knowledge of
A and b. Under mild conditions on the connectivity of the
underlying network, all the agents’ states (or local solutions)
converge to the exact solution x = A−1b.

The proposed algorithm in [12] is distributed, applicable
for all linear equations as long as they have solutions,
works for time-varying networks, converges exponentially
fast, operates asynchronously, and does not involve any small
step-size. Note that many other algorithms formulate the
problem of solving Ax = b as a distributed optimization
problem or a least square problem. But those algorithms are
less efficient than the algorithm proposed in [12] in many
aspects. See Ref. [13] for detailed discussions. The aim of
this paper is to further characterize the relation between
its exponential convergence and the network topology. The
main contribution of this work is an analytical bound that
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connects the convergence rate of the algorithm to the network
topology and the linear equation. Both theoretical and nu-
merical results show that networks with higher mean degree,
smaller diameter, and homogeneous degree distributions tend
to speed up this distributed algorithm.

The following notation is used throughout the paper. The
ℓ2-norm is denoted as ∥ · ∥. Matrices are denoted by upper
case letters in bold such as A and P. A partition of a
matrix is denoted by an upper case letter with a subscript,
i.e. Ai is a partition of matrix A, which can also be a row
vector. Vectors are denoted by lower case italic letters, such
as x, y, z. A network or graph is denoted as G(V, E), where
V is the node (or vertex) set and E is the link (or edge)
set. The network topology is represented by the adjacency
matrix A = {αij} of the network. This paper is organized
as follows. The network-based distributed algorithm is
briefly presented in Section II. The theory of how the
network topology impacts the algorithm performance is
presented in Section III. The main proof is presented in
Section IV. Finally, the conclusion is presented in Section V.

II. A DISTRIBUTED ALGORITHM FOR SOLVING LINEAR
EQUATIONS

Consider a system of linear algebraic equations

Ax = b, (1)

which has a unique solution x∗. Here A ∈ Rn×n , b ∈ Rn

and x ∈ Rn. The partition of the matrix A is defined as
A = col {A1, A2, · · · , Am}, where col{·} is an operator that
stacks elements into a column, Ai ∈ Rni×n, and the partition
of the vector b is defined as b = [b1, b2, · · · , bm]

T, bi ∈ Rni ,
where

∑m
i=1 ni = n. Assume that the entire system (A, b) is

unavailable to a single agent; instead different partitions of
the system

(
Ani×n

i , bni
i

)
are available to different agents. In

this paper we consider the simplest case: ni = 1 and m = n,
i.e. each agent knows exactly one row of A matrix and one
element of the b vector.

The distributed algorithm proposed in [12] computes the
solution of the linear equation (1) through a multi-agent
network G(V, E), where V = {1, 2, · · · , n} and E ⊆ V × V .
The topology of this n-agent network is represented by its
adjacency matrix A(G) = [αij ]n×n with

αij =

{
1 if(i, j) ∈ E
0 otherwise.
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Agent i in the network is synonymous with vertex i in the
graph G(V, E). The topology of the multi-agent network is
completely independent of the linear equation in (1).

For simplicity we make the following assumption:
Assumption 1: The graph G is undirected and connected.

Every vertex has a self loop and there are no multiple edges
between two vertices.

Consider agent i who knows (Ai, bi). It calculates its local
solution xi ∈ Rn to Aixi = bi and exchanges the solution
xi with its neighbors, denoted as Ni = {j ∈ V|(i, j) ∈ E}.
In this work t is a discrete time variable and takes values in
{0, 1, 2, · · · }. The exact (or global) solution to Ax = b is
obtained when all the local solutions xi’s reach consensus
through the following iteration procedure:

xi(t+ 1) = xi(t)−
1

di
Pi

dixi(t)−
∑
j∈Ni

xj(t)

 , (2)

where Pi = I−AT
i

(
Ai ·AT

i

)−1
Ai is the orthogonal projec-

tion on the kernel of Ai, i = 1, · · · , n, and di =
∑n

j=1 αij

is the degree of agent i.
Let x∗ be the true solution to (1) and it must satisfy

Aix
∗ = bi for i = 1, · · · , n. Define the error between xi(t)

and x∗ as
yi(t) = xi(t)− x∗, (3)

which is in the kernel of Ai. In addition, note that P2
i = Pi

and Piyi(t) = yi(t). Replacing xi(t+1) and xi(t) by yi(t+
1) and Piyi(t) in (2), we get the error updating equation

yi(t+ 1) =
1

di
Pi

∑
j∈Ni

Pjyj(t), (4)

for i = 1, · · · , n. These n equations can be rewritten in the
following compact form

y(t) =
(
Pdiag

[(
D−1AT

)
⊗ I
]
Pdiag

)t
y(0) = Mty(0),

(5)
where the matrix M is called the updating matrix and
y(t) = col {y1(t), y2(t), · · · , yn(t)}. The matrix Pdiag =

diag{P1,P2, · · · ,Pn} ∈ Rn2×n2

is a block diagonal matrix
with Pi ∈ Rn×n and D = diag{d1, d2, · · · , dn} is a
diagonal matrix. The operator ⊗ is the Kronecker product.

This algorithm has been proven to converge by using the
mixed norm [14] [12, Chapter 4.3.1] of M defined as

∥M∥mix = ∥Q∥∞,

where Q = {qij}, qij =
αij

di
∥PiPj∥. Indeed, Mt satisfies

limt→∞ ∥Mt∥mix = 0 if the undirected multi-agent network
is connected [12]. Therefore y = Mty(0) → 0 and thus
xi → x∗ for all i ∈ V .

Network properties play important roles in consensus
problems. In particular, the second smallest eigenvalue λ2(L)
of the graph laplacian bounds the convergence rate of con-
sensus . Given the fact that projection matrices Pi’s are used
in constructing the updating matrix M, it is not clear how
the network topology A impacts the convergence rate of
this algorithm. Thus, in this work we approach the proof
of convergence from a different angle.

III. IMPACTS OF NETWORK TOPOLOGY ON THE
DISTRIBUTED ALGORITHM

A. Theoretical Analysis

In this section, we study how network topology impacts
the performance of the network-based distributed algorithm.
Before we state the main theorem, we introduce the following
definitions.

Definition 3.1 (Walk): In a graph G, a walk wl ∈ V l+1

of length l is a sequence of vertices (v0, v1, · · · , vl) with
{vi−1, vi} ∈ E(G) for all 1 6 i 6 l when l > 1. If l = 0,
then w0 is simply a vertex v0. Specifically, we denote a walk
of length l starting at vertex v0 and ending at vertex vl as
wl

v0vl
.

Definition 3.2 (f(wl, β) Product of a Walk): Let wl be a
walk of length l. Let βvi ∈ U be a value associated with
vertex vi. We can define a function of the walk wl as

f(wl, β) = Πi=l
i=0βvi ,

where β is indexed by the walk wl = (v0, v1, · · · , vl) with
values β = (βv0 , βv1

, · · · , βvl). The function f(wl, β) ∈ U
is called the product of walk wl. In this work U is either R
or Rn×n.

Definition 3.3 (S(l) and S1(l) Spaces): In a graph G, all
the possible walks of length l form the S(l) Space. Denote
a subspace of S(l) as S1(l) if and only if

• the walk wl starts from an arbitrary vertex v0 and ends
at vl and visits all the vertices vi ∈ V of G,

• there does not exist a vertex vj ∈ V that divides wl into
two sub-walks, where one walk starts at v0 and ends at
vj , the other one starts at vj and ends at vl, that both
of them visit all the vertices vi ∈ V of G.

Note that the end vertex of the previous sub-walk and the
starting vertex of the following sub-walk are repeated twice
when dividing a walk. It is trivial that for wl walks of length
l 6 n− 1, they can’t be in the S1(l) subspace.

Definition 3.4 (Order r): If a walk wl can be divided
into several walks wl1 , wl2 , · · · , wlr , where li > 1 and
wli ∈ S1(li), then all the walks of the same number r form
a subspace Sr(l) where r is called the order of the space.
We also say that r is the order of the walk wl. Sr(l) ( S(l)
for any order r.

If a walk wl does not visit all the vertices in a graph G,
then its order is r = 0 and it is in S0(l). This special case
means that there exists at least one vertex vi ∈ V which does
not appear in the sequence of the walk wl. The order of any
wl walk is uniquely determined and non-negative, i.e. r > 0.

Let φ = 1

(
√
nτ∥A−1∥)

2 , τ = max
i

(∥Ai∥), 1
d =(

1
di
, 1
dv1

, · · · , 1
dj

)
be indexed by the walk wt

ij =

(i, v1, · · · , vt−1, j) which starts at agent i and ends at agent
j where wt

ij ∈ Vt+1, then we have the following theorem
Theorem 3.5 (Convergence Bound): Given a linear equa-

tion Ax = b, A = col{Ai} ∈ Rn×n and its unique solution
x∗, let xi(t) be the local solution at agent i located in
an undirected network G(V, E) whose adjacency matrix is
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A = {αij}, then the error yi(t) defined in (3) is bounded as

∥yi(t+ 1)∥ 6
∑
Nj

rm(t)∑
r=0

∑
wt

ij∈Sr
f(wt

ij ,
1

d
) (1− φ)

nr
2 ∥yj(0)∥

(6)
for i = 1, · · · , n. Here rm(t) 6 ⌊ t

n⌋ is the maximum order
of the product. Note that w0

ij = w0
ii = (i) and w1

ij = (i, j).
Theorem 3.5 provides another method to prove that the

distributed algorithm converges to the true solution x∗ be-
sides the mixed norm method in [12], which is discussed
at the end of this work. The bound in (6) connects the
network topology with the convergence rate of the algorithm,
by the degree di of agent i explicitly, and by counting
the number of wt ∈ Sr(t) walks in every order r > 0
in the network implicitly. Before moving to the detailed
proof of this theorem, we first discuss how topology impacts
the performance of the algorithm. To illustrate the topology
impacts, we start with the definition of a walk wt, then we
discuss the properties of the corresponding f(wt, 1

d ) product.
Given a network G of size n, all the possible walks of

length t are determined by its adjacency matrix A = {αij}.
Let 1

di
be the inverse degree of agent i, then the product

1
di0

1
di1

· · · 1
dit

can be represented by fr(wt
i0it

, 1
d ), where we

recall that 1
d is indexed by the walk wt

i0it
. For simplicity,

we let i = i0 and j = it. Hence given a starting agent i,
the summation of all products of the walk w1 from i to all
the agents j = 1, 2, · · · , n is represented as

∑n
j=1

αij

didj
. In

general, we have
rm(t)∑
r=0

∑
wt

ij

fr(wt
ij ,

1

d
) =

n∑
lt−1=1

· · ·
n∑

l1=1

αil1αl1l2

didl1
· · ·

αlt−1j

dlt−1

1

dj
.

It is trivial that for any r, i, j and the walk wt
ij , f(wt

ij ,
1
d ) ∈

(0, 1). We now explore a scenario when the above mentioned
sum remains a constant, even if the walk length increases.

Given a network G and given a starting agent i, if all
walks wt

ij , j = 1, 2, · · · , n are repeated by walks wt+1
ij′ who

visit one more agent j′ at the end, after reaching agent j,
then the summation of all f(wt+1

ij′ , 1
d ) products remains the

same. This visit of agent j′ generates n products based on
each f(wt

ij ,
1
d ) and each of them equals to αjj′

dj′
f(wt

ij ,
1
d ),

j = 1, 2, · · · , n. Only dj out of n products are not zero when
αjj′ = 1. The summation of all newly generated products is
unchanged, which is∑

Nj′

1

dj′

∑
Nj

f(wt
ij ,

1

d
) =

∑
Nj

f(wt
ij ,

1

d
) (7)

for
∑

Nj′
= dj′ . In general, the summation of all products

of all walks by t+ 1 visits starting from a given agent i to
all the neighbors of all the agents j is∑

Nj

rm(t)∑
r=0

∑
wt

ij∈Sr(t)

f(wt
ij ,

1

d
)

=
n∑

j′=1

n∑
j

n∑
it−1

· · ·
n∑
i1

αii1

di
· · ·

αit−1j

dit−1

αjj′

dj
= 1.

(8)

Given a network G and a starting agent i, the summation∑
Nj

∑
wt

ij∈S0(t) f(w
t
ij ,

1
d ) is never increasing and the order

r of the f(wt, 1
d ) product is never decreasing as the walk

length t grows. Given an arbitrary f(wt
i0it

, 1
d ) product of the

walk wt
i0it

∈ S0(t), when the walk wt
i0it

makes one more
visit from agent it to the next agent it+1, it forms dit new
products and the summation of all dit products is unchanged,
which is already shown in (7). However, there exists a walk
of length t1 when there exists at least one walk changing
from the S0(t1) subspace to the S0(t1 + 1) subspace. For
every wt2 walk (of order r > 1) of length t2, it never changes
to a walk of order r = 0. This hold for any walk wt ∈ S0(t),
hence the summation of all f(wt, 1

d ), w
t ∈ S0(t) product is

never increasing, that is∑
Nj

∑
wt+1

ij ∈S0(t+1)

f(wt+1
ij ,

1

d
) 6

∑
Nj

∑
wt

ij∈S0(t)

f(wt
ij ,

1

d
)

and given a walk of length t and a starting agent i, the bound
in (6) decreases when the order of walks increases, due to
the exponential factor limr→∞ (1− φ)

nr
2 = 0. Since the

summation of all f products starting from a chosen agent
i is always 1 (8), the bound in 3.5 can only be decreased
by either i) for a fixed length t, increasing the percentage of
walks with higher r, or ii) by increasing the order r for all
walks as rapidly as possible.

With the above two observations we conclude that given
any two networks G1 and G2, the distributed algorithm (2)
tends to converge faster on networks G1 if G1 and G2 have
similar topology properties except any combinations of the
following

1 G1 has a shorter diameter,
2 G1 has a more homogeneous degree distribution,
3 G1 has a higher mean degree.
Although Theorem 3.5 has 1

d as a factor in the products,
it is not trivial to conclude that higher degree makes the
products smaller since higher degree decreases each product
while increases the number of products. The summation of
all products remains a constant, as shown in (8). However the
bound decreases when the order r of the products increases.
We address these three points in order.

1) Diameter: For two graphs G1 and G2 with the same
degree distribution and hence the same mean degree, if G1

has a shorter diameter than G2, then for fixed t, walks
from G1 will necessarily have a larger minimum order r as
compared to those from G2. This follows from the fact that
all the agents can be visited with fewer steps in a network
with shorter diameter. Thus, all things being equal between
two graphs, if r(t) increases more rapidly for one graph
as opposed to another, the exponential factor (1− φ)

nr
2

will decrease more rapidly. Therefore networks with shorter
diameter make the distributed algorithm converge faster.

2) Degree Distribution: Let G1 and G2 be two graphs with
same mean degree but different degree distributions. Let G1

have a more homogeneous degree distribution than G2. Walks
in G2 typically have lower order r than the walks of the
same length in G1. This is because walks on G2 rather than
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G1 have to walk though the high degree vertices again and
again to reach all the other low degree vertices. Hence for
a given length of walks, the order r from the walks on G1

is higher. Therefore homogeneous degree distribution makes
the algorithm converges faster.

3) Mean Degree: Adding edges to a graph typically
results in a shorter diameter. Given two graphs G1 and
G2 with similar degree distribution where G1 has a higher
mean degree, the diameter of G1 is typically no larger
than G2. Hence the orders r’s from G1 are typically higher
than those in G2 for walks of fixed length. Adding a new
edge can either make the degree distribution homogeneous
or make it heterogeneous, depending on where the new
edge is added. The overall change of degree distribution for
each newly added edge is difficult to analyze. However, if
multiple new edges are added uniformly to a graph, this will
typically result in a more homogeneous degree distribution,
thus increasing the mean degree of the network makes the
distributed algorithm converge faster.

B. Simulation Results

To verify our theoretical predictions, we perform extensive
numerical simulations. We first quantify the convergence rate
of the network-based distributed algorithm. One measure
is the solution accuracy of the algorithm, which is the
Euclidean distance between the local solution and the exact
(or global) one:

ϵi(t) = ∥xi(t)− x∗∥, i = 1, 2, · · · , n.

Smaller ϵi means faster convergence rate and hence better
algorithm performance. The impacts of different network
topologies are measured by the statistical performances of
the distributed algorithm, i.e. E (

∑n
i=1 ϵi) on an ensemble

of linear equations. We notice that the Euclidean distance
defined above needs a reference. For example, if the true
solutions of two cases are ∥x∗,1∥ = 100 and ∥x∗,2∥ = 0.1
respectively, while the summation of Euclidean distances of
all local solutions to x∗,j are both

∑n
i=1 ϵ

j
i =

∑n
i=1 ∥x

j
i −

x∗,j∥ = 1, j = 1, 2, it is obvious the accuracy of the former
iterative process is much higher than the latter one. Therefore
the Euclidean distance should be scaled by the initial error∑n

i=1 ϵi(0), yielding the relative error

R(t) =

∑n
i=1 ϵi(t)∑n
i=1 ϵi(0)

=

∑n
i=1 ∥xi(t)− x∗∥2∑n
i=1 ∥xi(0)− x∗∥2

. (9)

In this way, convergence performances among a system of
linear equations can be compared.

Figure. 1 shows the relative error changes with different
network topologies, including small-world (SW) networks
[15] with random rewiring probability p, scale-free (SF)
networks [16] with degree exponent γ, Erdös-Rényi (ER)
random graphs [17] with connectivity probability p and
random regular (RR) graphs [18] with mean degree ⟨k⟩.
The networks in each subfigure are the same in their mean
degree and they are different on only one parameter. Small-
world networks (a-c) are different in rewiring probabilities
p, which determines network diameters. Scale-free networks,
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Fig. 1. Impact of network topology on the performance of the network-
based distributed algorithm. . Tens of different linear equations are solved
by the distributed algorithm on six groups of networks of size n = 100.
The complex networks in each group are (a-c) Small-world (SW) networks;
(d-f) Scale-free (SF) networks, Erdös-Rényi (ER) random graphs, random
regular (RR) graphs. In each case, we show the box-and-whisker plots and
the median value of the relative error (or convergence rate) R(t) as functions
of t. At each marked iteration step t, a box-and-whisker plot is drawn. The
mean degree of the complex networks is represented as ⟨k⟩.

Fig. 2. Convergence rate at a chosen time step for complex networks
with different topologies. The box-plot shows the relative errors at a given
step Ts = 2000. Networks with similar topological features are grouped
together in a particular subfigure.

graphs and RR graphs are drastically different in their degree
distributions: scale-free networks are most heterogeneous and
random regular graphs are most homogeneous.

The numerical results shown in Figure. 1 clearly verify
our theoretical predictions, i.e. if two networks share sim-
ilar topological properties, the one with smaller diameter
(or more homogeneous degree distribution, or higher mean
degree) perform better than the other. To further demonstrate
the topology impacts, consider R(t) at t = 2000 shown
as box-and-whisker plots in Figure. 2. The smaller relative
error R(t) means higher convergence rate. It is clear from
Figure. 2a-c and Figure. 2d-f that the upper bound of relative
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errors decreases as the mean degree increases for a given
network model. In other words, higher mean degree makes
the algorithm reach the true solution faster, and is consistent
with our theoretical analysis. Figure. 2a-c display that small-
world networks with higher rewiring probability (and hence
smaller diameters) have smaller relative errors R , confirming
our theoretical prediction smaller diameter contributes to
higher convergence rate. As shown in Figure. 2d-f, for any
given mean degree, the random regular graphs have the
smallest relative errors while scale free networks perform
the worst. This means that the degree heterogeneity degrades
the performance of the network-based distributed algorithm
in solving linear equations (1).

IV. PROOF OF THE BOUND THEOREM

Before the formal proof of Theorem 3.5, we discuss the
structure of the matrix Mt (5) and introduce some technical
lemmas.

Let m
(1)
ij ∈ Rn×n be the i, j-th partition matrix of M,

then
m

(1)
ij =

αij

di
Pi ·Pj ,

where we recall that Pi is an orthogonal projection matrix
defined right after (2). Theses block matrices m

(1)
ij are

actually the updating matrix of yi(t), which means yi(t +

1) =
∑n

j=1 m
(1)
ij yj(t). Similarly, let m(t)

ij denote the partition
matrix of Mt, then

m
(t)
ij =

n∑
lt−1=1

· · ·
n∑

l1=1

mil1 · · ·mlt−1j

=

n∑
lt−1=1

αlt−1j

dlt−1

· · ·
n∑

l1=1

αil1 · αl1l2

di · dl1
Pi · · ·Plt−1Pj .

Although the expression of m
(t)
ij is long, it shows that Mt

is simply a weighted sum of projection products. It follows
that (4) can be written as yi(t) =

∑n
j=1 m

(t)
ij yj(0). Define

µij =
αij

di
∈ [0, 0.5], then we have

yi(t) =

n∑
j=1

· · ·
n∑

l1=1

µil1 · · ·µlt−1ljPi · · ·Plt−1Pjyj(0).

(10)
Note that it is a summation of nt products. We now separate
µil1µl1l2 · · ·µlt−1ljPiPl1 · · ·Plt−1Pjyj(0) into a µ product

µil1µl1l2 · · ·µlt−1j (11)

and its corresponding projection product with yj(0), which
is called error sequence,

PiPl1 · · ·Plt−1Pjyj(0). (12)

From (7) the summation of all µ products (11) satisfies the
following equality

n∑
j=1

n∑
lt−1=1

· · ·
n∑

l1=1

µil1µl1l2 · · ·µlt−1j = 1. (13)

The construction of Mt as a µ product and an error
sequence of projections allows us to separate the topological

features from the part of the algorithm that is specific to
a particular linear equation. We first analyse each product
in the error updating equation (10) by bounding the error
sequences of (12).

Define a sequence of vectors z(t) ∈ Rn as following

z(j)(t+ 1) = z(t) +
bj −Ajz(t)

∥Aj∥2
AT

j , (14)

where t > 0 and the superscript (j) corresponds to its row
vector Aj and its scaler bj . Then

Pi (z(0)− x∗) = z(0)− Aiz(0)

∥Ai∥2
AT

i − x∗ +
bj

∥Ai∥2
AT

i

= z(0) +
bi −Aiz(0)

∥Ai∥2
AT

i − x∗

= z(i)(1)− x∗.

Let z(j)(0) = xj(0), then each error sequence in (12) can
be written as
PiPl1 · · ·Plt−2Plt−1Pjyj(0)

=PiPl1 · · ·Plt−2Plt−1

(
z(j)(0)− x∗

)
=Pi · · ·Plt−2

(
z(j)(0) +

blt−1 −Alt−1z
(j)(0)

∥Alt−1∥2
AT

lt−1
− x∗

)
=Pi · · ·Plt−2

(
z(jlt−1)(1)− x∗

)
=z(il1···lt−2lt−1j)(t)− x∗.

(15)
Essentially, z(il1···lt−2lt−1j)(t) forms the sequence of z(t)

by taking different combinations of orthogonal projection
Pi at different agents, i = 1, 2, · · · , n. We now show that
sequences z(t) can be bounded, so that the error sequence
is bounded as well.

We now present two theorems for bounding z(t) − x∗,
first for the case when the walk wt is associated with
the product f (wt,Pi), wt ∈ S0(t), and second for the
f (wt,Pi) product where wt ∈ Sr(t) and r > 1.

Theorem 4.1 (f0 Bound): For any wt ∈ S0(t) it follows
that ∥f(wt,P)∥ 6 1 and thus ∥f(wt,P)∥ 6 1. Therefore
the dynamics in (14) satisfy the following inequality

∥z(t)− x∗∥ 6 ∥z(0)− x∗∥ (16)
Proof: Given that Pi is a normalized projection matrix

it follows that ∥Pi∥ = 1.
Theorem 4.2 (f Bound): The sequence z(t) − x∗ of the

part whose PiPl1 · · ·Plt−1Pj product is an f (wt,P) prod-
uct where wt ∈ Sr(t) and r > 1, then all the sequence
Pi1Pi2 · · · yj(0) in this part from (15) can be written as

z(t)− x∗ = f
(
wt,P

)
yj(0),

where z(t) − x∗ consists of several f(wi,P), wi ∈ S1(i)
products. Then all the sequences z(t) − x∗ in this part are
bounded by

∥z(t)− x∗∥ 6
(
1− 1

(
√
nτ∥A−1∥)2

)nr
2

∥z(0)− x∗∥

<
(
1− κ(A)−2

)nr
2 ∥z(0)− x∗∥,
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where κ(A) = ∥A∥ · ∥A−1∥ is the usual condition number
of A and we recall the definition τ = max

i
(∥Ai∥).

The proof of Theorem 4.2 requires several technical Lem-
mas.

Lemma 1 (Orthogonal Projection): Let z(t) ∈ Rn,
∥z(0)∥ = 0 be a sequence that follows

z(j)(t+ 1) = z(t) +
bj −Ajz(t)

∥Aj∥2
AT

j ,

where Aj , bj are defined as those in linear equation (1),
which is the same as (14). Then the orthogonal projection
matrix P⋆

i onto the solution space of the linear equation (1)
is given in [19] as

z(t+ 1) = P⋆
i z(t).

Let ⟨z(t+1), z(t)⟩ denotes the inner product of two vectors
z(t+1) and z(t), then the above equation can be written as
follows by using the updating function (14)

P⋆
i z(t) = z(t)− Aiz(t)− bi

∥Ai∥2
AT

i

= z(t)− Aiz(t)−Aiz
∗

∥Ai∥
AT

i

∥Ai∥
= z(t)− ⟨z(t)− z∗, Zi⟩ZT

i ,

where Zi = Ai

∥Ai∥ , i = 1, 2, · · · , n, ∥Zi∥ = 1 is a set of
normal vectors in the hyperplane {z(t) : ⟨Ai, z(t)⟩ = bi}.

Lemma 2 (Orthogonality): Consider the linear equation
(1) and let x∗ be the unique solution. The difference of two
vectors z(t+1) and z(t) is in the kernel of P⋆

i by Orthogonal
Projection Lemma 1, which means that it is orthogonal to the
solution space. Therefore it is also orthogonal to z(t+1)−x∗.
In other words, the orthogonality of two vectors z(t+1)−z(t)
and z(t+ 1)− x∗ satisfies

∥z(t+ 1)− z(t)∥2 + ∥z(t+ 1)− x∗∥2 = ∥z(t)− x∗∥2.
Lemma 3 (Inequality): Let A = col{Ai}, A ∈ Rn×n is

full rank. Then the following inequality holds
n∑

i=1

∥⟨ Ai

∥Ai∥
, x⟩∥2 > 1

(τ∥A−1∥)2
∥x∥2.

where ⟨Ai, x⟩ denotes the inner product of vector Ai and x
and we recall the definition τ = max

i
(∥Ai∥).

Due to the page limitation, we skip the detailed proof
of Lemma 3, Theorem 4.2, Theorem 3.5, as well as the
discussion of the algorithm convergence. See Ref. [1] for
all the details.

V. CONCLUSIONS

In this work, we studied the impact of network topology
on the performance of a network-based distributed algorithm
that solves linear algebraic equations. Both theoretical anal-
ysis and simulation results show that networks with higher
mean degree, smaller diameter, and more homogeneous
degree distribution make the algorithm converge faster. Inter-
estingly, k-regular random networks with small mean degree
can have comparable performance to a degree-heterogeneous

network with very high mean degree. Hence, it is possible
to reduce the communication cost (i.e. by designing sparser
networks) while maintaining the same convergence rate.

Besides classical consensus problems, we expect that more
complicated problems can also be solved with network-based
distributed algorithms. Our results presented here provide
a method to analyze the topology impacts on a network-
based distributed algorithm. It may shed light on the design
of better network topologies to improve the performance of
general multi-agent distributed algorithms in solving more
challenging real-world problems.
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