Tutorial 12

Solutions

Spring 2007
Scott Page
Find z-transforms and ROCs

(a) $x_a[n] = 3\delta[n+4] - 5\delta[n+3] + 2\delta[n+2]$

if $x_a[n] = 3\delta[n+4]$:

\[
\text{Z-Transform: } X(z) = \sum_{n=-\infty}^{\infty} x_a[n] z^{-n} = 3 \sum_{n=-\infty}^{\infty} \delta[n+4] z^{-n} = 3 z^{-4} = 3z^{-4}
\]

converges for all z except $z = \infty$

$\delta[n-m] \rightarrow z^{-m}$ ROC: All z except 0 (m>0)

or ∞ (if m<0)

So

\[
X_a(z) = 3z^{-4} - z^{-3} + 2z^{-2}
\]

ROC: All z except ∞

(b) $x_b[n] = x_a[n-3] = 3\delta[n+1] - 5\delta[n] + 2\delta[n-1]$

Can use time-shifting property:

$X[n-n_0] \rightarrow z^{-n_0} X(z)$

\[
X_b(z) = z^{-3} X_a(z) = z^{-3} \left[3z^{-4} - z^{-3} + 2z^{-2} \right] = 3z^{-7} - z^{-6} + 2z^{-5}
\]

$X_b(z) = 3z^{-1} - 2z^{-4}$ ROC: All z except ∞ and 0

$X_b(z)$ does not converge for $z = \infty$ because of the $3z$ term.

$X_b(z)$ does not converge for $z = 0$ because of the $2z^{-4}$ term.
12.1 (c) \(X_c[n] = 2^n u[n-1] + 4^n u[-n] \)

Method 1: \(z \)-transform

\[
X_c(z) = \sum_{n=0}^{\infty} (2)^n z^{-n} + \sum_{n=\infty}^{0} (4)^n z^{-n}
\]

\[
= \sum_{n=1}^{\infty} (2z^{-1})^n + \sum_{n=-\infty}^{0} (4z^{-1})^n
\]

\[
= \frac{(2z^{-1}) - (2z^{-1})^{\infty+1}}{1-2z^{-1}} + \frac{(4z^{-1}) - (4z^{-1})^{\infty}}{1-4z^{-1}},
\]

converges for
\[|2z^{-1}| < 1 \]

\[
= \frac{2z^{-1}}{1-2z^{-1}} + \frac{-4z^{-1}}{1-4z^{-1}} = \frac{2z^{-1} - 8z^{-2} - 4z^{-1} + 8z^{-2}}{(1-2z^{-1})(1-4z^{-1})}
\]

\[
= \frac{-2z^{-1}}{(1-2z^{-1})(1-4z^{-1})} = -\frac{2z}{(z-2)(z-4)}
\]

\[
\text{So } 2 < |z| < 4
\]

Method 2: Properties + Table

\(2^n u[n-1] = 2 \left[(2)^{-n} u[\neg n-1] \right] \)

using time shift property \(u[n-n] \leftrightarrow z^{-n}X(z) \)

\[
\frac{2z^{-1}}{1-2z^{-1}} \text{ ROC: } |z| > 2
\]

\(4^n u[-n] = \left(\frac{1}{4}\right)^{-n} u[-n] \) time reversal property \(\text{ROC} \)

\[
\frac{1}{1-\left(\frac{1}{4}\right)z^{-1}} \text{ ROC: } |z| > \frac{1}{4}
\]

\((\frac{1}{4})^n u[n] \rightarrow \frac{1}{1-\left(\frac{1}{4}\right)z^{-1}} \text{ ROC: } |z| > \frac{1}{4} \)

\[
X_c(z) = \frac{2z^{-1}}{1-2z^{-1}} \text{ ROC: } 2 < |z| < 4
\]

\[
= \frac{2z}{z-2} + \frac{-4}{z-4} = \frac{2z^2 - 8 - 4z + 8}{(z-2)(z-4)}
\]

\[
X_c(z) = \frac{-2z}{(z-2)(z-4)} \quad 2 < |z| < 4
\]
Method 1: \(Z \)-transform

\[
X_d(z) = \sum_{n=-\infty}^{\infty} (\frac{1}{2^n}) z^{-n} - (\frac{1}{2-z})^5 = \frac{\left(\frac{1}{2z^{-1}}\right)^{\infty} - \left(\frac{1}{2z^{-1}}\right)^5}{1 - \frac{1}{2z^{-1}}}
\]

Converges for

\[
|\frac{1}{2}z^{-1}| > 1 \quad \text{or} \quad |z| < \frac{1}{2}
\]

\[
= \frac{0 - \frac{1}{32}z^{-5}}{1 - \frac{1}{2}z^{-1}} \quad |z| < \frac{1}{2}
\]

\[
X_d(z) = \frac{-z^{-5}}{32(1-\frac{1}{2}z^{-1})} \quad |z| < \frac{1}{2}
\]

Method 2: Properties & Tables

\[
X_d[n] = (2)^{-n}u[-n+4]
\]

Time reversal property

\[
X[-n] \leftrightarrow X(z^{-1}) \quad \text{Inverted ROC}
\]

Time shift property

\[
X[n-m] \leftrightarrow z^{-m}X(z)
\]

So, with time shift:

\[
\frac{1}{16} (2)^{-n+4}u[-n+4] \xrightarrow{z^{-1}} \frac{-z^{-4}}{16(1-2z^{-1})} \quad \text{ROC: } |z| > 2
\]

with time reversal:

\[
\frac{1}{16} (2)^n u[-n+4] \xrightarrow{z^{-1}} \frac{z^{-4}}{16(1-2z^{-1})} \quad \text{ROC: } |z| < \frac{1}{2}
\]

\[
X_d(z) = \frac{z^{-5}}{16(z^{-1}-2)} = \frac{-z^{-5}}{16(2-z^{-1})} = \frac{-z^{-5}}{32(1-\frac{1}{2}z^{-1})} \quad |z| < \frac{1}{2}
\]
12.2: Semi-periodic $x[n]$:

- $x[n] = 0$ for $n < 0$
- $x[0] = 2$
- $x[1] = 3$
- $x[2] = -1$
- $x[n] = x[n-3]$ for $n > 2$

$x(z) = ? \quad$ ROC = ?

This can be thought of as the convolution between two signals

$$x_a[n] \quad x_b[n]$$

$$x[n] = \begin{cases} 2 & \text{if } n = 0 \\ 2 & \text{if } n = 1 \\ \vdots \end{cases} \ast \begin{cases} 1 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ \vdots \end{cases}$$

$x(z) = x_a(z) \cdot x_b(z)$

$x_a(z) = 2 + 3z^{-1} - z^{-2} \quad$ ROC: all z except 0

Two ways to get $x_b(z)$:

1. z-transform:

$$x_b[n] = \sum_{k=0}^{\infty} x_b[n-3k]$$

$$x_b(z) = \sum_{n=0}^{\infty} x_b[n] z^{-n} = \sum_{n=0}^{\infty} z^{-3n} = \sum_{n=0}^{\infty} \left(z^{-3}\right)^n = \frac{1}{1 - z^{-3}}$$

2. Time expansion property:

We can recognize that $x_b[n]$ is a time expanded unit impulse function.

$$x_b[n] = U[n-\frac{3}{2}]$$

So $x_b[n] = U(n) \iff n \gg 0$ using $X_u[n] \leftrightarrow X(z)$

if $x_0[n] = U[n]$

$$X_u(z) = \frac{1}{1-z^{-1}}$$

$$x_0[n] \Rightarrow X_u(z) = \frac{1}{1-(\frac{3}{2})^{-1}} = \frac{1}{1-2^{-3}}$$

Thus

$$X(z) = x_a(z) \cdot x_b(z) = \frac{2 + 3z^{-1} - z^{-2}}{1 - 2^{-3}} \quad \text{ROC: } |z| > 1$$
\[X(z) = \frac{4 + \frac{1}{2} z^{-1}}{(1 - \frac{1}{2} z^{-1})(1 + \frac{1}{3} z^{-1})} = \frac{4 + \frac{1}{2} z^{-1}}{1 - \frac{1}{2} z^{-1} + \frac{1}{3} z^{-2}} = \frac{4 + \frac{1}{2} z^{-1}}{\left(1 - \frac{1}{2} z^{-1}\right)\left(1 + \frac{1}{3} z^{-1}\right)} \]

Determine \(X[n] = ? \)

ROC:
(i) \(|z| < \frac{1}{3} \)

Use PFE:
\[X(z) = \frac{4 + \frac{1}{2} z^{-1}}{(1 - \frac{1}{2} z^{-1})(1 + \frac{1}{3} z^{-1})} = \frac{A}{1 - \frac{1}{2} z^{-1}} + \frac{B}{1 + \frac{1}{3} z^{-1}} \]

Method 1: Cover up (headdside)
\[A = (1 - \frac{1}{2} z^{-1})X(z) \bigg|_{z^{-1} = 2} = \frac{4 + \frac{1}{2} z^{-1}}{2} - \frac{1}{3} \] \(\Rightarrow \) \(\frac{5}{2} \beta = \frac{5}{2} \beta = 1 \) \(\Rightarrow \) \(A = 3 \)

\[\frac{5}{2} B = \frac{5}{2} \beta \Rightarrow B = \frac{5}{3} \]

So:
\[X(z) = \frac{3}{1 - \frac{1}{2} z^{-1}} + \frac{1}{1 + \frac{1}{3} z^{-1}} \]

\[X[n] = -3(\frac{1}{2})^{n} u[-n-1] - (\frac{1}{3})^{n} u[-n-1] \] for \(|z| < \frac{1}{3} \)

\[X[n] = u[-n-1] \] for \(|z| > \frac{1}{3} \)

(ii) \(\frac{1}{3} < |z| < \frac{1}{2} \)

So for first term \(|z| < \frac{1}{3} \) & second term \(|z| > \frac{1}{3} \)

\[X[n] = -3(\frac{1}{2})^{n} u[-n-1] + (\frac{1}{3})^{n} u[n] \]

(iii) \(|z| > \frac{1}{2} \)

First term \(|z| > \frac{1}{3} \) & second term \(|z| > \frac{1}{3} \)

\[X[n] = 3(\frac{1}{2})^{n} u[n] + (\frac{1}{3})^{n} u[n] \]
12.3 (b)

\[X_a(z) = 1 + 2z^{-2} - 5z^{-3}, \quad |z| > 0 \]

\[X_a[n] = ? \]

\[X_b(z) = \sin z, \quad |z| > 0 \]

using taylor series, ...

\[X_b(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \ldots \]

\[X_b[n] = 5[n] + \frac{1}{3!} 5[n+3] + \frac{1}{5!} 5[n+5] - \frac{1}{7!} 5[n+7] + \ldots \]

\[X_b[n] = \sum_{k=0}^{\infty} \frac{(-1)^k}{5[n+2k+1]} \]
12.3 (c)

\[X(z) = \ln(1 + z^{-1}) \quad , \quad |z| > 1 \]

\[x[n] = ? \]

Differentiation property:

\[
 n \times x[n] \longleftrightarrow -z^{-1} \frac{dX(z)}{dz}
\]

so

\[
 n \times x[n] = z^{-1} \left\{ -z^{-2} \frac{dX(z)}{dz} \right\}
\]

so

\[
 \frac{dX(z)}{dz} = \frac{1}{1 + z^{-1}} \cdot -z^{-2}
\]

\[
 -z \frac{dX(z)}{dz} = \frac{z^{-1}}{1 + z^{-1}}
\]

\[
 z^{-1} \left\{ -z^{-2} \frac{dX(z)}{dz} \right\} = z^{-1} \left\{ \frac{z^{-1}}{1 + z^{-1}} \cdot z^{-1} \right\} = (-1)^{n-1} u[n-1]
\]

so

\[
 n \times x[n] = (-1)^{n-1} u[n-1]
\]

\[
 x[n] = \frac{(-1)^n \cdot u[n-1]}{n}
\]

\[
 x[n] = \frac{(-1)^n}{n} u[n-1]
\]
12.4

(1) \(H(z) = \frac{z^2}{z-1} \), \(|z| > 1\)

so

- but is it causal?

\[
H(z) = \frac{1}{z-1} \cdot z^2
\]

using time shift property

\[
x[n]\rightarrow x[n-n_0]
\]

\[
h[n] = u[n+1]
\]

right sided signal but noncausal

(2) Which system function(s) can be both stable and causal?

(a) \(H_a(z) = \frac{1}{z^2} = \frac{1}{z} \cdot \frac{1}{z} \)

\[h_a[n] = \delta[n-2]\]

causal & stable

- Converges for all \(z \) except \(0 \to \) so both conditions are possible.

1. Causal if ROC is exterior of circle including \(\infty \).
2. Stable if ROC includes unit circle \(|z|=1 \).

(b) \(H_b(z) = \frac{2z^2 - \frac{5}{2}z}{z^2 - \frac{5}{2}z + 1} \)

\[= \frac{2z^2 - \frac{5}{2}z}{(z-2)(z-\frac{1}{2})} \]

poles at \(|z| = 2 \) & \(|z| = \frac{1}{2} \)

no way to include \(|z| = 1 \)

and make the ROC the exterior of a circle

(c) \(H_c(z) = \frac{(1-e^{-j\frac{\pi}{4}}z^{-1})(1-e^{-j\frac{\pi}{4}}z^{-1})}{(1-0.98e^{-j\frac{\pi}{4}}z^{-1})(1-0.98e^{j\frac{\pi}{4}}z^{-1})} \)

poles at \(0.98e^{-j\frac{\pi}{4}} = 0.98(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}) \)

\[= 0.98 \frac{\sqrt{2}}{2} + j 0.98 \frac{\sqrt{2}}{2} \]

\[= 0.693 + j 0.693 \]

so it is possible to have ROC exterior of circle & include unit circle

(d) \(H_d(z) = \frac{2 + \frac{1}{2}z^{-1}}{(1-\frac{1}{2}z^{-1})z^{-1}} = \frac{2z + \frac{1}{2}}{z - \frac{1}{2}} \)

\[= \frac{(2z+1)}{(z-\frac{1}{2})} \]

ROC will not include \(\infty \)

because it extra zero

So \(H_a(z) \& H_c(z) \)
\[H_{12}(z) = \frac{(z+1)(z-(\frac{1}{2}+j\frac{\sqrt{3}}{2}))(z-(\frac{1}{2}-j\frac{\sqrt{3}}{2}))(z-(-\frac{1}{2}+j\frac{\sqrt{3}}{2}))(z-(-\frac{1}{2}-j\frac{\sqrt{3}}{2}))}{z^5} \]

\[H_{15}(z) = \frac{(z+1)(z^2-z+1)(z^2+z+1)}{z^5} = \frac{(z+1)(z^4+z^2+1)}{z^5} = \frac{z^5+z^4+z^3+z^2+z+1}{z^5} \]

\[H_{2}(z) = 1 + z^{-1} + z^{-2} + z^{-3} + z^{-4} + z^{-5} \]

Corresponds to \(h_d \in \mathbb{C}^3 \)

\[H(e^{i\theta}) = \prod_{n=1}^{\mu} \frac{\text{length of vector connecting } i\text{th zero to } e^{i\theta}}{\prod_{n=1}^{\mu} \text{(length of vector connecting } j\text{th pole to } e^{i\theta})} \]

For \(w = 0 \): \[\sqrt{(3^2 + (\frac{\sqrt{3}}{2})^2)} = \sqrt{13} \]

Length of zeros:

\[(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}i) \]

\[\text{length} = \sqrt{(\frac{3}{2})^2 + (\frac{3}{2})^2} = 1 \]

\[(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}i) \]

\[\text{length} = \sqrt{(\frac{3}{2})^2 + (-\frac{3}{2})^2} = 1 \]

Lengths of poles:

\[e^{i\frac{\pi}{10}} \]

\[\text{all 5 poles have length 1} \]

\[|H(e^{i\theta})| = \frac{1 \cdot 1 \cdot \sqrt{3} \cdot \sqrt{3} \cdot 2}{1 \cdot 1 \cdot 1 \cdot 1 \cdot 1} = 6 \]

At \(\theta = \frac{\pi}{3} \times 1 \):

\[\text{this zero will cause } |H(e^{i\theta})| \text{ to have zero in numerator} \]

\[\frac{\pi}{10} \]

\[\text{corresponds to } |H_{12}(e^{i\theta})| \]

\[\text{corresponds to } |H_{15}(e^{i\theta})| \]
System II:

\[h_{II}(z) = \frac{z - \frac{3}{4}}{z + \frac{3}{4}} = \frac{1}{1 + \frac{3}{4}z^{-1} - \frac{3}{4}z^{-2}} \]

For causal system:

\[h_{II}[n] = (\frac{3}{4})^n u[n] - \frac{3}{4} (\frac{3}{4})^n u[n-1] \]

- Time shift property: \(x[n] \rightarrow x[n-m] \)

\[h_{II}[n] = (\frac{3}{4})^n u[n] + (\frac{3}{4})^{n-1} u[n-1] \]

Corresponds to \(h_E[n] \)

- At \(w=0 \) \(\frac{1/4}{1/4} = \frac{1}{7} \)
- Increases until
- At \(w=\pi \) \(\frac{3/4}{1/4} = 7 \) corresponds to \(|H_2(e^{jw})| \)

System III:

\[h_{III}(z) = \frac{z + \frac{3}{4}}{z - \frac{3}{4}} = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{3}{4}z^{-2}} \]

For causal system:

\[h_{III}[n] = (\frac{3}{4})^n u[n] + \frac{3}{4} (\frac{3}{4})^n u[n-1] \]

\[h_{III}[n] = (\frac{3}{4})^n u[n] + (\frac{3}{4})^{n-1} u[n-1] \]

Corresponds to \(h_E[n] \)

- At \(w=0 \) \(\frac{3/4}{1/4} = \frac{7}{1} \)
- Decreases until
- At \(w=\pi \) \(\frac{1/4}{1/4} = \frac{1}{7} \) corresponds to \(|H_5(e^{jw})| \)

Note: On these two problems the magnitude plots start and end at around 9.

This means that the poles and zeros should probably be at \(\frac{1+x}{1-x} = 9 \Rightarrow x = \frac{4}{5} \)

So, not same shapes though.
System IV: so assuming poles at $\frac{1}{2} \pm \frac{i}{2}$ 4 zeros at $\frac{1}{2} \pm j\left(\frac{\sqrt{2}}{2}\right)$ say $\frac{1}{2} \pm \frac{1}{2}j$

$$H_{IV}(z) = \frac{(z - \left(\frac{1}{2} + j\frac{\sqrt{2}}{2}\right))(z - \left(\frac{1}{2} - j\frac{\sqrt{2}}{2}\right))}{(z - \left(\frac{1}{2} + j\frac{1}{2}\right))(z - \left(\frac{1}{2} - j\frac{1}{2}\right))} = \frac{z^2 - z + \frac{41}{64}}{z^2 - z + \frac{1}{2}}$$

To use partial fractions must use long division.

$$\frac{1}{z^2 - z + \frac{1}{2}} = \frac{\frac{9/64}{z - (\frac{1}{2} + j\frac{1}{2})}}{z^2 - z + \frac{1}{2}} + \frac{\frac{9/64}{z - (\frac{1}{2} - j\frac{1}{2})}}{z^2 - z + \frac{1}{2}}$$

so $H(z) = 1 + \frac{\frac{9/64}{z - (\frac{1}{2} + j\frac{1}{2})}}{z - (\frac{1}{2} - j\frac{1}{2})}$

$$A = \left.\frac{\frac{9/64}{(\frac{1}{2} + j\frac{1}{2})}}{z^2 - z + \frac{1}{2}}\right|_{z = \frac{1}{2} + j\frac{1}{2}} = \frac{9/64}{j} = -\frac{9/64}{j}$$

$$B = \left.\frac{\frac{9/64}{(\frac{1}{2} - j\frac{1}{2})}}{z^2 - z + \frac{1}{2}}\right|_{z = \frac{1}{2} - j\frac{1}{2}} = \frac{9/64}{j} = \frac{9/64}{j}$$

so $H(z) = 1 - \frac{9/64j}{z - (\frac{1}{2} + j\frac{1}{2})}z^{-1} + \frac{9/64j}{z - (\frac{1}{2} - j\frac{1}{2})}z^{-1}$

$$h[n] = 5[n] - \frac{9}{64j} \left(\frac{1}{2} + j\frac{1}{2}\right)^{n-1}u[n-1] + \frac{9}{64j} \left(\frac{1}{2} - j\frac{1}{2}\right)^{n-1}u[n-1]$$

Most of the time the lengths of the zeros are larger than the length of the poles.

Specifically between $0 < \omega < \pi$, the zeros have a little bigger π poles result = a little smaller = a little bigger than 1.

For these omega's the lengths of the poles are larger than the lengths of the zeros.

$$at \omega = \frac{\pi}{2};$$

π zero length = a little smaller π pole length = a little bigger = a little smaller than 1.

Corresponds to $|H_{IV}(e^{j\omega})|$
System V: Looks like

\[H_2(z) = \frac{z - 3/4}{z} = 1 - 3/4 z^{-1} \]

\[h_0 C_n[j] = 5 C_n[j] - \frac{3}{4} \delta C_{n-1} \]

Corresponds to \(h_0 C_n[j] \)

at z = 0 \[\frac{1}{4} = \frac{1}{4} \]

increases until at z = ±\(\frac{3}{4} \) \[\frac{3}{4} = \frac{7}{4} = 1.75 \]

Corresponds to \(|H_1(e^{j\omega})| \)

System VI: Looks like

\[H_{VI}(z) = \frac{z^2}{(z - \frac{3}{4}j)(z + \frac{3}{4}j)} = \frac{z^2}{z^2 - (\frac{3}{4})^2} = \frac{1}{z^2 + (\frac{3}{4})^2} \]

\[s_t = \frac{z^2 + 16/25}{z^2 - 25/25} = \frac{1}{z^2 + (\frac{3}{4})^2} \]

so \(H_{VI}(z) = 1 - \frac{16/25}{(z - \frac{3}{4}j)(z + \frac{3}{4}j)} \)

\[G_7(z) = \frac{16/25}{(z - \frac{3}{4}j)(z + \frac{3}{4}j)} = \frac{A}{z - \frac{3}{4}j} + \frac{B}{z + \frac{3}{4}j} \]

\[A = (z - \frac{3}{4}j)b(z) \]
\[b(z) = \frac{1}{z + \frac{3}{4}j} \]
\[B = (z + \frac{3}{4}j)b(z) \]
\[b(z) = \frac{1}{z - \frac{3}{4}j} \]

\[h_{VI}(z) = 1 + \frac{3/4j z^{-1}}{1 - (3/4j) z^{-1}} - \frac{3/4j z^{-1}}{1 + (3/4j) z^{-1}} \]

\[h_{VI} C_n[j] = 5 C_n[j] + \frac{3}{4} j C_n[j] - \frac{3}{4} j C_{n-1}[j] \]

\[h_{VI} C_n[j] = 5 C_n[j] + \frac{3}{4} j C_{n+1}[j] + \frac{1}{2} (-\frac{3}{4}j)^{n-1} C_{n-1}[j] \]

\[0 \leq \omega \text{ for } n \text{ odd} \]

Corresponds to \(h_{VI} C_n[j] \)

Ratio of zeros to poles is highest at around z = ±\(\frac{3}{4} \)

\[\frac{1.1}{(1/2)(1/4)} = \frac{1}{\sqrt{2}} = 2.77 \]

at \(\omega = 0 \) length of poles is larger than zeros

\[\frac{1.1}{\sqrt{2}} \]

Corresponds to \(\sqrt{2} \)

\[\frac{1.1}{\sqrt{2}} \]

\[\text{Corresponds to } |H_3(e^{j\omega})| \]

\[12 \]