Problem 11.1

(a) \[G(s) = \frac{1}{s(s-5)} \]

\(G(s) \) is not stable.

(b) \[H(s) = \frac{1}{s^2 - 5s + K_p} \]

Using the Routh-Hurwitz criteria, notice that for \(s^2 - 5s + K_p \), \(a_1 = -5 \neq 0 \) which means that \(H(s) \) cannot be stabilized using a controller \(K(s) = K_p \). If \(K(s) = K_ds + K_p \) is used, then with a proper choice of \(K_p \) and \(K_d \), the system is stabilized as seen in the lecture.

Problem 11.2

(a) The steady state tracking error, \(e(\infty) \), is zero. Therefore, as long at \(K \) is positive \(e(\infty) \) does not change.

(b) The steady state tracking error is infinity when \(K \leq 0 \) and \(e(\infty) = \frac{10}{K} \) when \(K > 0 \).

Problem 11.3

(a) Open-loop pole: 1. Open-loop zero: one at infinity. Characteristic equation: \(0 = 1 + KL_0(s) = 1 + \frac{K}{s-2} = s - (1 - K) \). Thus, the single closed-loop pole is at \(1 - K \). We need \(K > 1 \) to make the closed-loop system stable. The root locus plot is shown below:

(b) Open-loop poles: two at 2. Open-loop zeros: one at -1, one at infinity. Characteristic equation: \(0 = 1 + KL_0(s) = 1 + \frac{K(s+1)}{(s-2)} = s^2 + (K-4)s + (K+4) \). Thus, the closed-loop poles are:

3
\[p_\pm = \frac{-(K - 4) \pm \sqrt{(K - 4)^2 - 4(K + 4)}}{2}. \]

When \(0 < K < 12\), \(p_\pm\) are both complex. When \(K = 12\), \(p_+ = p_- = -4\) (both poles meet at -4). When \(K > 12\), \(p_+ \to -1\) and \(p_- \to -\infty\) (both real). When \(K < 0\), \(p_+ \to +\infty\) and \(p_- \to -1\) (both real). According to Routh and Hurwitz, we need \(K > 4\) to make the closed-loop system stable. The root locus plot is shown below:

(c) Open-loop poles: -2, -3. Open-loop zeros: two at infinity. Characteristic equation: \(0 = 1 + KL_0(s) = 1 + \frac{K}{(s+2)(s+3)} = s^2 + 5s + (6 + K)\). Thus, the closed-loop poles are at:

\[p_\pm = \frac{-5 \pm \sqrt{1 - 4K}}{2}. \]

When \(0 < K < \frac{1}{4}\), \(p_\pm\) are between -3 and -2. When \(K = \frac{1}{4}\), \(p_+ = p_- = -2.5\) (both poles meet at -2.5). When \(K > \frac{1}{4}\), both poles are complex and have -2.5 as their real part; the imaginary parts go to \(\pm\infty\). When \(K < 0\), both closed-loop poles are real and grow further apart. According to Routh and Hurwitz, we need \(K > -6\) to make the closed-loop system stable. The root locus plot is shown below:
(d) Open-loop poles: -2, -3. Open-loop zeros: -1, 2. Each open-loop pole is paired up with an explicit open-loop zero, so there are no open-loop zeros or poles at infinity. Characteristic equation: \(0 = 1 + KL_0(s) = 1 + \frac{K(s+1)(s-2)}{(s+2)(s+3)} = (K + 1)s^2 + (5 - K)s + (6 - 2K)\). Thus, the closed-loop poles are at:

\[
p_{\pm} = \frac{K - 5 \pm \sqrt{9K^2 - 26K + 1}}{2(K + 1)}.
\]

When \(K > 0\), the closed-loop poles move toward each other. When \(K \approx 0.3899\), the poles meet at around -2.387 (on the real axis). As \(K\) is increased further, the poles become complex and move in a curved manner back toward the real axis. When \(K \approx 2.8499\), they meet on the real axis again at around -0.279. As \(K\) is increased, they move apart toward the open-loop zeros. When \(K < 0\), both closed-loop poles are real. One moves from -2 (open-loop pole) to -1 (open-loop zero). The other one starts at -3 and heads towards negative infinity. When \(K = -1\), it hits infinity and starts coming back (“wrap around”) on the positive real axis toward 2 (open-loop zero). Overall, the closed-loop system is stable when \(-1 < K < 3\). The root locus plot is shown below:

The wrap around effect for \(p_-\) is interesting, and it can be verified that it actually happens. The following shows the location of \(p_-\) as a function of \(K\). We see that as \(K\) goes from 0 to -1, \(p_-\) goes from -3 down to negative infinity. As \(K\) goes from -1 down to negative infinity, \(p_-\) goes from positive infinity down to 2.