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ABSTRACT: 
 
Do firms build new capabilities by hiring new people? We explore this question in the 

context of the pharmaceutical industry’s movement towards science-driven drug 

discovery. We focus particularly on the potential problem of endogeneity in interpreting 

correlation between hiring and changes in organizational outcomes as evidence of the 

impact of new hires on the firm, and on the more fundamental conceptual question of the 

conditions under which hiring might be a source of competitive advantage, given the well 

known objection that resources that are freely available through the market cannot be a 

source of differential capabilities.  Using data on the movement and publication of “star” 

scientists, we find that the adoption of science based drug discovery within the firm is 

closely correlated with the hiring of star scientists. This correlation appears to be 

reasonably robust to a number of controls for endogeneity. We also show that the hiring 

of highly talented scientists appears to have a significant impact on the behavior of 

scientists already working within the firm. We interpret this as consistent with the idea 

that hiring may change organizational capabilities through the interaction of new talent 

with the policies, routines and people already in place within the firm.  
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1. Introduction 
 

Recent work in strategic management and in organizational theory more broadly has highlighted 

the critical question of how organizational capabilities change.  Work by Levinthal (1997), Milgrom and 

Roberts (1990), and Rivkin (1998, 2000) has highlighted the degree to which complementarities between 

organizational practices make changes in “activity systems” a particularly perilous activity – an 

observation shared by a number of scholars writing in the tradition of population ecology (see, for 

example, Barnett and Carroll (1995)).  

Nonetheless, we have some evidence that firms do change organizational capabilities, and that 

these changes may significantly enhance long term performance (Cockburn et al. (2000)). Given the 

critical role of organizational capabilities in shaping long term strategic advantage, building a better 

understanding of the mechanisms that firms use to change them is thus of central interest to the study of 

strategic management.  

In this paper we explore the degree to which the hiring of particularly skilled employees 

contributes to the evolution of a firm’s organizational capabilities. The belief that hiring may play an 

important role in the building of new capabilities has a long history in the scholarly literature, and is a 

staple of the popular business press.  For example, movement of key individuals from universities to 

firms appears to be amongst the most effective mechanisms of knowledge transfer between these types of 

organizations (Dasgupta and David (1994), Zucker and Darby (1997)).  Several writers have claimed that 

particularly skilled employees are critical to a firm’s ability to integrate different, diffused forms of 

knowledge and capabilities (Henderson (1994), Grant (1996)), as well as to the productivity of the other 

members of the teams with whom they work (Hamilton et al. (2003)).  Similarly Almeida and Kogut 

(1999), Song et al. (2003), and Breschi and Lissoni (2003) use patent citation analyses to show that 

knowledge transfer amongst organizations is closely correlated with the movements of key people.  

Work in this tradition commonly models the contribution of skilled workers to the development 

of new capabilities as occurring essentially through the transfer of knowledge “embedded” in individuals, 

that is to say, acquisition of human capital by the firm.  But a number of studies have explored the broader 

question of the degree to which hiring key individuals may also bring about more fundamental change in 

the organizational capabilities of the firm.1  McKelvey (1982) argues that key workers may act as 

“carriers” of organizational capabilities or as “genes,” and Penrose (1959) hints at a similar point.  In a 

sequence of important empirical papers, Zucker, Darby and collaborators find that the birth and 

development of new biotechnology firms are positively correlated with the presence of academic star 

scientists in the same geographic area; that the enhancement in performance comes from those stars who 

                                                           
1 A long tradition of research has analyzed the characteristics of senior management teams, suggesting that the composition and 
background of top managers has a significant impact on the policies and performance of the firm. See, among others, Barker and 
Mueller (2002); Bertrand and Schoar (2002) and Murmann and Tushman (1997).  
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actually have some form of ties with the firms; and that these ties positively affect the market value of 

biotech firms (see Zucker et al. (1998), Darby et al. (1999) and related papers).  In a case study on the 

adoption of biotechnology by a large incumbent firm, Zucker and Darby (1997) stress that hiring highly 

skilled scientific personnel played a critical role in the firm’s organizational, strategic and technological 

transformation.   

Studies of this nature raise two critical methodological issues.  The first is that of simple 

endogeneity or selection bias.  Of course, a correlation between the hiring of new employees and a change 

in the organizational capabilities of the firm does not necessarily imply that the former causes the latter.  

It may be the case, for example, that the adoption of a new strategy leads simultaneously both to a 

deliberate investment in new organizational processes and routines and to the decision to hire new people 

with new skills.  Firms which have adopted such a strategy will “select into” hiring new people, with the 

result that both hiring rates and organizational capabilities may change, without hiring having caused the 

change in organizational capabilities. 

The second question is more fundamentally conceptual.  As work in the resource-based tradition 

has long stressed, if firms are homogeneous in all respects, and factor markets are perfectly competitive, 

highly skilled workers are equally valuable to all firms, competing bids from firms will result in any 

potential rents accruing to the workers rather than to the firms that seek to hire them (Barney (1986), 

Peteraf (1993)).  Since labor markets, even for quite specialized workers, would seem to be prototypically 

competitive this raises the question: How can human capital resources hired in a competitive factor 

market be a long term source of competitive advantage? 

One potential answer, of course, is that particular types of workers might be “complementary”, in 

the technical sense, to particular systems of organizational practice, including incentive systems, formal 

structures and informal cultural norms and ways of working (a systemic perspective shared by Athey and 

Stern (1998), Ichniowscki, Shaw and Prennushi (1997)).  From this perspective hiring may “cause” a 

change in organizational capability, but only to the degree that hiring is accompanied by simultaneous 

changes in other aspects of the firm’s ways of working. In this sense, endogeneity problems are also a 

consequence of the presence of important complementarities. 

A number of recent studies have highlighted the importance of these issues.  For example 

Groysberg (2001) finds that job-switching of star financial analysts reduces the short term performance of 

both the individual worker and their new employer.  The effect is stronger when an analyst moves to 

lower ranked firms; this suggests that some set of complementary factors is required for stars to improve 

performance.  Rao and Drazin (2002) explicitly recognize that other characteristics of a firm may drive 

the decision to hire, and control for this through a two-step sample selection analysis.  They find that 

under-performing firms are more likely to hire from competitors and that such hiring has a positive 

impact on the ability of such laggards to introduce new financial products in the US mutual fund industry.  
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Song et al. (2003) find that inter-firm knowledge transfer through the mobility of engineers is more likely 

to occur when the hiring firm is less exploitative of its accumulated knowledge2.  However none of these 

studies explore the degree to which hiring of new workers affects the performance of employees already 

employed at the firm. 

In this paper we explore the degree to which the hiring of “star” scientists was instrumental in 

changing the ability of pharmaceutical firms to adopt science-based drug discovery – a fundamental 

change in the nature and organization of pharmaceutical research.  Science based drug discovery 

(sometimes known as “rational” drug design) is a method for discovering drugs that relies on a deep 

knowledge of the mechanisms underlying disease which replaced the so-called “random screening” 

method of finding new drugs that dominated the industry for much of the 20th century. 3 The adoption of 

science-based drug discovery provides a particularly interesting setting in which to study questions about 

the role of hiring new workers in the process through which organizational capabilities are developed and 

transformed.  The move to a more science-driven research process appears to have been a difficult one 

that required the adoption of a range of new organizational practices, took a surprisingly long period of 

time, and acted as a significant source of competitive advantage for those firms who were able to adopt it 

first (Gambardella (1995); Cockburn et al. (2000)).  Furthermore, during this period of technological 

upheaval, industry participants often suggested that the successful adoption of the new techniques 

required the infusion of new blood and claimed that they were aggressively attempting to hire new 

researchers (see, for example, Whaldholz, 1985).  

There are a number of pathways through which newly hired scientists might plausibly have been 

able to assist firms in making the switch to science driven drug discovery.  One of these is simply through 

the addition of their own knowledge and skills.  A firm might hire an expert in the mechanisms of 

diabetes, for example, to spearhead a new diabetes program.  This individual could be expected not only 

to start doing science-driven drug discovery in the area of diabetes, but also to transfer their knowledge of 

state-of-the-art research methods to new colleagues.4  More subtly, the presence of “stars” may change 

behavioral norms, or legitimize or otherwise enable behavior by existing employees that is an important 

aspect of doing science-driven drug discovery.  For example, researchers engaged only in applied science 

may get involved in more basic, long-term oriented activities, particularly publishing and attending 

conferences if guided by some outstanding colleagues.  Stars may also influence the hiring of other 

scientists, thanks to their ability to better screen young talents, and/or to their ties with the scientific 
                                                           
2 Long and McGinnis (1981) and Huckman and Pisano (2003) offer evidence of similar phenomena. 
3 It is important to note that science-based drug discovery is not the same thing as the adoption of “biotechnology”, or the use of 
large molecular weight molecules as drugs. In modern firms the line between “biotechnology” and “science driven drug 
discovery” has blurred as researchers increasingly rely on the tools of genetics and proteomics to find new drugs, but during the 
period covered by our data the distinction between them was quite clear. Gambardella (1995); Galambos and Sewell (1995); 
Henderson (1994); Cockburn, Henderson and Stern (1999a). 
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community (Cockburn et al., 1999b).  Ultimately, hiring such individuals may therefore affect the total 

research output of the firm, above and beyond the projects that they themselves pursue. 

We use a novel dataset composed of the “star,” or most productive, scientists who joined one of 

21 major pharmaceutical firms over the period 1980-1994. Several studies have noted that the distribution 

of scientific productivity is highly skewed, and that it is the highly productive scientists at the right tail of 

the distribution who are likely to be most effective in changing the firms that they join (Zucker, Darby 

and Torero (2002)). By following their publication records, we are able to see both when these top 

researchers joined one of the firms, and where they came from.  

We begin by exploring the correlation between hiring and the adoption of the techniques of 

science-driven drug discovery at the firm level, using both instrumental variables and two-step estimation 

in an attempt to control for possible endogeneity.  We then turn to an analysis at the level of the 

individual, and explore the degree to which the hiring of star scientists changed the behavior of scientists 

already employed by the firm.  We reason that if star scientists change the capabilities of a firm merely by 

increasing its stock of high quality human capital, then the publication rates of the existing scientific labor 

force will be unaffected by their presence.  Instead, we find that the individual productivity of existing 

scientists is positively affected by both the adoption of “science-driven” policies and by the presence of 

an internal community of star scientists.  We interpret this result as consistent with the hypothesis that star 

scientists change the capabilities of organizations by complementing or combining with the unique set of 

individuals and organizational policies in place at the firm, and suggest that it highlights the importance 

of exploring the nature of this interaction in more depth.   

The rest of the paper is organized as follows.  Section 2 describes our data, introduces our 

empirical strategy and outlines the implementation of the statistical analysis.  The results are presented 

and discussed in Section 3.  Section 4 concludes. 

 

2. Empirical analysis 

We base our analysis on a sample of 21 major pharmaceutical companies,5 observed over the 

period 1980-1994.  Though not a comprehensive sample, we believe these firms to be reasonably 

representative of the research-based “core” of the industry.  Between them they accounted for roughly 

50% of US pharmaceutical sales over the period.  We chose 1980-1994 as our sampling frame since this 

was the period during which the techniques of science-based drug discovery transformed the industry. 

Captopril, the first major drug commonly acknowledged to have been discovered using the new 

                                                                                                                                                                                           
4 As Zucker et al. (1998) point out, at least in the case of biotechnology, much of the relevant knowledge of new techniques was 
possessed by a surprisingly small number of skilled individuals. 
5 The 21 firms are Abbott, Beecham, Bristol-Myers, BMS, Ciba-Geigy, Eli Lilly, Fuijsawa, Glaxo, Hoechst, Hoffman La Roche, 
Merck, Pfizer, Sankyo, Searle, SKB, Smithkline, Squibb, Takeda, Upjohn, Burroughs Wellcome, and Yamanouchi.  
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techniques, was first marketed in 1981, and by 1994 the transformation of the industry was widely 

acknowledged to be complete (Henderson et al. (1999)).  

 

The data: Identifying star scientists 

We identified the “star” scientists employed by these firms through a two step procedure. Using 

publication data from the ISI Science Citation Index (SCI), we first identified every publishing scientist 

who could unambiguously be determined to have been affiliated with one of the firms in our sample 

between 1980-1994.  This is not straightforward: papers can be attributed to organizations because the 

SCI lists addresses for authors, however most papers have multiple authors, and the SCI does not directly 

link authors to addresses (or necessarily provide addresses for all of the authors.)  We therefore 

determined the affiliation of authors by searching the global set of publications for each firm for papers 

with only a single address.6  The authors on these publications could then be unambiguously assigned to a 

particular firm at a given point in time.  For each of the scientists thus identified, we then re-searched the 

SCI database for all the publications in which he or she was one of the authors.  This search resulted in 

the identification of 36,314 scientists and 191,288 papers.  We then defined “star” scientists as those 

whose three-year moving average of annual publications was greater than 5 for at least one year.  This 

procedure identified 936 stars.  Notice that we define stars according to any such episode of above-

average publishing.  While there may be a difference between those scientists who already have an 

outstanding publication record before joining a firm, and those who gain their star status once they are 

inside a firm, in the majority of cases, the scientists in our sample appear to have already shown their 

potential.7  We plan to explore this issue in more depth in future work.8

Figures (1), (2) and (3) show, respectively, the total number of star scientists employed by the 

firms in our data set over time, those hired in each period, and the average number of publications per 

head. About 320 star scientists were on our firms’ payrolls in 1980, while by 1992 there were more than 

800. The average firm hired about 3.7 top scientists each year, and these scientists were active in a firm 

for, on average, 8.4 years.  

In order to explore the degree to which it is reasonable to assume that the first year in which a 

scientist publishes with a particular firm is the first year in which they are employed there, we attempted 

                                                           
6 The criterion is similar to that used in other studies (Zucker, Darby and Torero, 2002; Cockburn and Henderson (1998)).  A 
potential shortcoming of this method of identifying the institutional affiliations of individuals is that it eliminates those scientists 
who never published with a team composed only of researchers with the same affiliation. However, this problem is likely to be of 
limited importance here since we consider only scientists with high publication rates. 
7 Even “rookie” recruits have generally held positions as post-docs before joining a firm and arrive with a track record of 
publications. Our controls for endogeneity, which we discuss later, also indirectly account for this problem. 
8 We could use other measures of scientific productivity, such as weighting publications by the relevance of the journal or the 
number of citations received.  However these methods are not free of problems. For example, it is well known that citation is 
often highly ritualized, and many citations, per se, may mean a negative as well as a positive opinion about an article.  The use of 
impact factors has also been criticized since, among other reasons it is based on how many citations the average article in a 
journal receives in a relatively short period of time after publication. 
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to obtain information on the previous affiliation of each scientist. We tried to be as careful as possible in 

considering the last names of each scientist, his or her first and middle name initials, and discipline, 

location and coauthoring patterns, in order to maximize the probability of observing actual changes in 

affiliations for a given researcher.  Using this procedure we were able to obtain information on previous 

affiliations for about 420 of the 936 scientists in our data base.  These scientists were all publishing with a 

different address in the two years immediately before the year in which they started publishing within one 

of our firms, so we are reasonably confident that for those individuals for whom we cannot identify prior 

activity, we can take first publication date as the hiring date. 

Of those scientists for whom we can identify a previous affiliation before they were hired by one 

of our sample firms, about 91% held a position in a non-business organization such as a university, 

research institute, or hospital.  There is an increase in hiring from business organizations over time.  None 

of the scientists hired in 1981 came from a firm, whereas in 1992 approximately 17% had previously been 

employed in a for-profit organization.  This tracks the overall trend in the share of PhDs in life sciences 

working in business organizations:  according to the National Academy of Science (NAS, 1998), the 

percentage of Life Science PhDs employed in industry rose from 10% in 1973 to around 19% in 1995 9.  

Movements between firms within the sample are relatively rare.  84 scientists, or about 9% of the 

sample, held a job position in more than one of the sample firms for a total of 96 changes of employer (74 

scientists switch once, eight scientists switch twice, and two scientists switch three times).  Thus 

notwithstanding a fairly high overall level of hiring activity throughout the period, movements between 

major firms are a relatively marginal phenomenon.10  In what follows, we explore whether scientists 

coming from competitors appear to have a different impact on the firm than those coming from “other” 

organizations. 

Despite these small numbers, there does seem to be some evidence that firms differ in their 

relative position in the larger network within which human capital is exchanged.  Some firms hire many 

scientists but “send” only a few to their competitors.  Others send many scientists to their rivals. Some 

firms, like Merck, are active both as recruiters and as sources for long periods of time (Table 1).  

For the purposes of our statistical analysis we omit those scientists who were already employed 

by a firm in 1980, and those who start publishing in 1993 or 1994, in order to address the truncation 

problem of our data.  This reduces the relevant sample to 580 researchers. 

 

Empirical strategy 

                                                           
9 We have some detailed information (87 observations) on affiliations of these scientists after they exit from the set of firms in 
our sample. The majority of these scientists become affiliated with a non-business organization.  
10 This finding is consistent with results on coauthoring behavior of researchers affiliated to business organizations reported in 
Cockburn and Henderson (1998): while such practice is present and growing, it mainly concerns relations between firms and 
research oriented and/or publicly funded organizations like universities and hospitals; the share of papers coauthored by scientists 
of two or more different business firms is small.  
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We build our analysis of the effect of hiring talented scientists on the adoption of science-driven 

R&D at the firm level using a basic adoption equation: 

    yit  = α + βt + γhit + δxit + εit     (1) 

where yit is our measure of the degree of adoption of science-driven discovery for firm i in period t; t is a 

time trend; hit represent our hiring variables; xit includes control variables; εit is an error term and α, β, γ, 

and δ are parameters to be estimated.  An estimate of γ >0 would be consistent with the adoption of 

science-driven drug discovery being at least partially driven by the hiring of star scientists.  

This reduced-form specification immediately raises the problem of endogeneity discussed in the 

introduction.  To address this issue, as a first step we include a number of control variables in the 

regression, and lag the explanatory variables.  Since this may not fully control for either potential omitted 

variable problems or for possible selection bias, we take a number of additional steps.  

We first exploit the panel structure of the data. We can rewrite the error term in the basic 

empirical model (1) as follows: 

     εit  =  ui + ξit       (2) 

That is, we decompose εit into a time varying component (ξit) and into a time invariant, firm 

specific part (ui). If we assume that the unobserved characteristics that are correlated with the hiring 

variable are firm-specific and time-invariant then the term ui will account for them, and a fixed effect 

regression, taking deviations from the mean (at firm level) will correct the potential bias.  Second, we 

estimate (1) using instruments, and third we attempt to control for potential self-selection bias by using 

two stage estimation.  

Our disaggregated analysis of productivity at the level of the individual scientist is based on a 

production function for publishing activity: 

    PUBSijt = f(yit, hit, zijt; φ; ζijt)      (3) 

where j is an index for each single scientist, yjt is our measure of the firm’s adoption of science driven 

drug discovery, hit is a measure of the presence of other skilled scientists, zijt is a vector of controls, φ is a 

vector of parameters to be estimated and ζijt is an error term.  By carefully constructing our vector of 

control variables we attempt to control for the base rate propensity of each scientist to publish.  We then 

interpret significant coefficients on the degree to which the firm has adopted science driven drug 

discovery and on the number of other star scientists present in the firm as evidence that each star’s 

behavior both shapes and is shaped by his or her organizational context. 

 

Statistical implementation: dependent and independent variables, controls, and functional forms 

Firm level analysis 

Our measure of the degree of adoption of science-driven drug discovery is PUBFRAC: the 

fraction of those individuals whose names appear on a patent application in a given year who also appear 
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as authors on papers published within two years of the patent application.  Details of the construction of 

this variable are given in Cockburn et al. (2000).  Briefly, it attempts to incorporate the degree to which, 

inside a firm, those researchers who are directly involved in the drug discovery process are also 

participating in scientific publication.  As it is measured as a share, in principle it captures the propensity 

of the firm’s researchers to engage in basic science, independent of the scale of the firm.11  PUBFRAC is 

correlated with a number of other measures of the degree to which a firm has adopted the tools of science-

based drug discovery, including the number of papers published by the firm and qualitative, interview-

based measures of the same concept (Cockburn et al. (2000)).  

Since hiring star scientists will, almost by definition, increase a firm’s measured level of 

PUBFRAC, we exclude their publication and patenting behavior from its construction.  Our regression 

thus explores the impact of the hiring of star scientists on the propensity of other scientists within the firm 

to publish and patent simultaneously.  Figure (4) illustrates trends in PUBFRAC over time, showing the 

gradual adoption of the techniques of science-driven drug discovery across the sample.  

Following the classic diffusion literature (see e.g. Griliches (1957)), we transform the dependent 

variable to yield a continuous variable on the whole ( )+∞∞− ,  interval with a sigmoid form imposed on 

the degree of adoption.  The simplest of these transformations is the so called log odds:  log[yit/(1 – yit)], 

where log(.) is the natural logarithm. 

We measure hiring behavior using several measures.  Our primary measure is NEWSTAR: the 

number of stars hired in a given year by a particular firm.  We include NEWSTAR both in levels and as a 

fraction of the firm’s number of employees, in an attempt to control for the possibility that the effect of 

new hires is proportional to the size of the existing firm. In order to explore the degree to which star 

scientists hired from competitors have a different effect from those hired from other employers, in some 

specifications we decompose the overall number of hired stars into those coming from one of the other 

firms of our sample (NEWSTAR_COMP) and those coming from “other” organizations 

(NEWSTAR_OTH).  Since newly hired stars might not have an immediate impact on organizational 

capabilities, in some specifications we include the 2-year cumulative sum of NEWSTAR.12

 Some simple mean comparisons (not reported here) show that those firms that hire more star 

scientists than the median level (i.e., more than 2) have a level of PUBFRAC 7.5 percentage points higher 

                                                           
11 Gittelman and Kogut (2003) elaborate a similar measure and interpret it as capturing the ability of a firm to translate research 
into invention and the extent to which the communities of researchers and inventors overlap.  
12 One could imagine using a longer time span to cumulate new hires, or a “stock” of stars as an independent variable. However 
these variables will inevitably be strongly correlated with other regressors, such as controls for a time trend and for size, and it 
would be more difficult to think of instrumental variables for such cumulative measures.  Moreover, our immediate focus is on 
the impact of “new blood” on the organization. 
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than the their competitors in the next period. This difference is statistically significant.13  This corresponds 

to roughly 7.5% more patent authors publishing than would have otherwise have published.  

We follow Cockburn et al. (2000) in our choice of control variables. In that study the adoption of 

science-driven drug discovery was found to be significantly correlated with each firm’s initial orientation 

to the practice. However the effect of initial conditions, expressed by the pre-sample value of PUBFRAC, 

fades over time: there is a significant negative coefficient on the interactive term (initial PUBFRAC * 

time), suggesting that laggards adopt more aggressively, so that there is convergence among firms in their 

rate of adoption.  A major insight from this analysis, therefore, is that it is important to control for a firm’s 

historical propensity towards science-oriented research of a firm when studying the contemporaneous 

determinants of the degree of adoption.  We also include a time trend, 14 and control for the size of the 

firm by including the (log of) total assets, since economies of scope or scale may enable larger firms to 

capture a larger share of the “spillovers” generated by their rivals and by the public sector (Nelson (1959) 

and Arrow (1962)).  We omit a number of other factors explored in the original study, since they appeared 

to have little significant effect on the rate of adoption.  Our model can be therefore restated as follows: 

   Yit = log [yit /(1–yit)] = α  + βt + θ(yi0*t) + ζyi0 + γhit + δxit + εit    (4) 

We allow for (unmodeled) correlation in the residuals at the firm level, by clustering them. 

 For the instrumental variable estimations, we explore the use of a number of different 

instruments.  Our initial thought was to use measures of the size of the market for academic scientists, 

reasoning that it would influence both the demand and supply of labor, but that it would not influence any 

particular firm’s orientation to science-based drug discovery.  We were able to find data on the median 

salary of life science PhDs in academia and on the average salary of full Professors in Medical Schools, 

but unfortunately these variables had limited explanatory and identification power, also because they only 

varied (rather slowly) over time and not cross-sectionally.  Moreover, we were unable to construct them 

for the non-US firms in our sample. We therefore use two alternative instruments: the short term financial 

position of the firm and a dummy variable for the “nationality” of the firm, as revealed by the location of 

its headquarters.  We believe that the short term financial position of a firm is likely to affect hiring 

decisions but is unlikely to directly shape a firm’s propensity to move to science based drug discovery.  

We proxy for short term financial position with each firm’s net income lagged by one year.15  We use 

dummy variables for the nationality of the firm to capture idiosyncratic characteristics specific to the 

institutional context of the firm’s head office, which might affect the hiring behavior. Since it is well 

known that, in small samples, the finite sample bias of the estimates increases with the number of 

                                                           
13 Significant differences are obtained also when we split the sample according to the mean level or the 75% percentile (5) of 
NEWSTAR. 
14 We have also tried to use time dummies instead of the time trend. All results described below are unchanged. 
15 All financial measures are expressed in constant dollars. These data, as well as data on employees, were obtained from 
Compustat files, the Global Access database and Kresge Fiches. 
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instruments (Hahn and Hausman (2002)), we use only net income as an instrument when NEWSTAR is 

included in absolute value, and use the country dummies when it is scaled by the number of employees, 

reasoning that financial performance may change both the number of scientists hired and the total number 

of employees hired.  Newstar takes non-negative integer values, with a non-negligible amount of zeroes. 

A standard 2sls estimation would imply a linear regression as first stage, which may not be appropriate 

given the count nature of our suspected endogenous variable. For this reason, in some exercises we 

substitute the first stage linear regression of newstar on all the predetermined variables with an 

“equivalent” Poisson regression, and use the predicted value of newstar as an instrument in (4).  

Finally, we try to control for the fact that firms may self-select into different hiring strategies 

using a two-step approach that models each firm’s decision to hire explicitly. Shaver (1998) and Hamilton 

and Nickerson (2003) have explored the application of self-selection models to strategy research in the 

case of dichotomous independent variables.  Since the hiring variable cannot easily be reduced to a 

dichotomous choice we follow Wooldridge (2001), and first consider hiring as a dichotomous choice 

(hiring vs. not hiring in a given period) and, in a probit regression, predict the probability of hiring at all 

as a function of the regressors in equation (4) and of our instruments. In a second step, we take only 

observations where NEWSTAR is not zero, and run a 2SLS regression on the basis of equation (4).  We 

test the significance of NEWSTAR on this selected sample, and check for the presence of a selection bias 

by looking at the significance of the coefficient on the correction term: the inverse Mills ratio calculated 

from the probit first step.16  

We also explore a more “direct” way to assess the presence of complementarities between hiring 

and other organizational features of a firm.  We interact our hiring variables with the lagged value of 

PUBFRAC in some exercises, and with the initial value in others.  The presence of complementarities 

should imply a positive coefficient on these variables. 

 

Individual level analysis of scientific productivity 

 Recall our basic equation: 

     PUBSijt = f(yijt, hijt zijt; φ, ζijt)      (3) 

To implement equation (3), we assume that, if a scientist publishes with one firm in year [t] and in year 

[t+n], then he or she was employed by the same firm for all n years, unless he or she publishes with 

another firm in the intervening period.  Scientists who cease publication and who never publish again are 

assumed to have left the firm the year after their last publication.  

We measure research productivity by publication counts. Since our dependent variable is discrete 

and values are non-negative and concentrated in relatively small numbers (between 0 and 10 in about 

                                                           
16 In this case, we use both the net income and the country dummies as instruments.  Using only one instrument for both the 
probit analysis and the IV regression would create multicollinearity problems.  See Wooldridge (2001). 
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90% of the cases), we use Poisson regressions.  We explore the robustness of our results to the Negative 

Binomial specifications to allow for over-dispersion, and to Random Effect (at the individual level) 

Poisson specifications (Hausman et al. (1984), Cameron and Trivedi (1998)).  As before, we measure the 

degree of a firm’s adoption of science-based drug discovery, as PUBFRAC.  We operationalize the 

presence of other star scientists as STARTOT, the total number of stars employed by the firm in that year.  

A central focus of our analysis is controlling for the “base rate” propensity of the scientist to 

publish.  Recall that we wish to argue that evidence that PUBFRAC or STARTOT are significantly 

correlated with publication behavior is consistent with the hypothesis that there is an interactive, 

potentially complementary relationship between star scientists and the firms that hire them. 

 We include a number of variables that might explain “base rate” propensity to publish. We 

include TENURE, the number of years the scientist has been with the firm, and TENURE^2. In an 

attempt to control for individual effects we include three “cohort” variables (see Levin and Stephan 

(1991)):  one (COHORT1) for those scientists who are publishing in 1973 (the earliest year for which 

publications are recorded), one (COHORT2) for those who first publish before the beginning of our 

period, i.e. from 1974 to 1980, and one for the youngest researchers ((COHORT3, the reference group).17  

We also include INPUB, the number of publications in the first year in which the scientist appears in the 

Science Citation Index, as an observable measure of the native ability of a scientist (see also Long and 

McGinnis (1981) for a similar choice), and the time elapsed from the first publication to the current 

period as a measure of overall experience, EXPER and its square EXPER^2 (Levin and Stephan, 1991). A 

time trend is added to account for the average increase of publication activities over time.  Since there is a 

drop in the average number of publications in 1989, we also include a dummy variable equal to 1 in 1989 

and zero otherwise (DUM89) in several specifications.  Finally, to control for the “Matthew effect” we 

include the number of publications in the preceding year (Merton (1968)).18  Firm dummies are included 

in all specifications.  We therefore have firm- and scientist- specific, unobservable and observable effects 

in addition to time varying covariates.19  

 

3. Results 

Table (2) presents variable descriptions and summary statistics.  Correlations at both the firm and 

individual scientist level are presented in Table (3).  The firm-level sample has 162 observations for 17 
                                                           
17 The age-vintage-time problem is discussed extensively in e.g. Berndt, Griliches, and Rappaport (1995). 
18 “For whosoever hath, to him shall be given, and he shall have more abundance.”  Matthew, 12:13. 
19 We are using two of the three methods to deal with dynamic panel data, as identified by Cameron and Trivedi (1998): (a) 
“ignore” the panel structure, and exploit the use of several observable characteristics; and (b) adopt a random effect specification, 
with appropriate assumptions about the conditional likelihood and the “starting” values of the dependent variable, with 
exploration of the use of the lagged value of publications (see also Wooldridge (2001)). Random-effect Poisson Models allow for 
heterogeneity in the variance and, in this respect, are similar to negative binomial specifications. FE regressions would not be 
consistent when not strictly exogenous regressors are added (such as the lagged publications). A third method would include 
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firms20, except for those cases when EMPL is included, in which case only 154 observations are 

available.21  The restricted sample for which NEWSTAR>0 contains 140 data points.  In the case of the 

scientist level data set, we were able to find complete information for only a sub-sample of scientists: the 

final sample includes 367 researchers for a total of 2693 observations.22

Table (4) shows the core results for our firm level analysis.  The estimated coefficient on 

NEWSTAR is positive and significant in all but one case, and it reduces the impact of initial conditions 

by up to about 10% of the value of the associated parameter.  The implied increase in PUBFRAC from an 

increase in the yearly number of star hires by one standard deviation is estimated to be about .04, i.e. the 

ratio of inventors who also publish papers increases by 4. %points.23  This is a non-negligible amount, and 

one that is consistent with organizational changes involving those scientists already employed by the 

firm.24   

In models (5) and (6) we explore the degree to which star scientists hired from competitors have a 

significantly different effect from those hired from other sources.  The estimated coefficients are 

significant, and their magnitude seems to imply that hiring from direct competitors has a slightly larger 

effect, The difference between in the estimates of the two parameters is statistically significant above the 

90% level. Recall, however, that the number of scientists hired from competitors is relatively small.  

Table (5) presents our efforts to control for possible endogeneity.  Specifications (1) and (2) 

include firm fixed effects.  Hausman tests cannot reject the null hypothesis of equality between the 

random effects and fixed effects results at any statistically meaningful level of significance, and, not 

surprisingly our core result is largely unchanged.  This is consistent with our observable and time-

invariant firm effect, the initial condition on PUBFRAC (which we can include in the random effect 

regressions but not, of course, in the fixed effects exercises), capturing a good deal of the time-invariant 

firm heterogeneity, or at least the part of this heterogeneity that is relevant for our study.  

Models (3), (4) and (5) present our instrumented results.  Our core findings seem quite robust to 

the use of IV techniques, although we lose some precision in some of the specifications, and are very 

much aware that the problem of potential endogeneity is a difficult one that is not easily solved. Model 

(6) presents the two-step results.  NEWSTAR is still significant, and its estimated coefficient increases in 

                                                                                                                                                                                           
scientist fixed effects and perform a semi-differenced regression with generalized method-of-moments techniques.  We plan to 
explore this further route in future analysis. 
20 Abbott, Beecham, Bristol-Myers, BMS, Burroughs Wellcome. Ciba-Geigy, Eli Lilly, Glaxo, Hoechst, Hoffman La Roche, 
Merck, Pfizer, Searle, SKB, Smithkline, Squibb, Upjohn,  
21 Restricting the sample to 154 observations, in the cases in which we have 162, does not significantly change the results. 
22 We were often unable to determine the date and number of papers of first publication.  
23 A linear model for the log-odd transformation implies that 

β

β

X

X

e
epubfrac
+

=
1

. Therefore, the derivative of pubfrac with respect 

to newstar is given by: (1-pubfrac)*pubfrac*[estimated coefficient on newstar]. We set pubfrac at the mean, and multiplied this 
derivative by the standard deviation of newstar. The estimates are from table 4, model 2. The relatively small number of 
observations implies that these results should be treated with caution. 
24 Recall that PUBFRAC is calculated excluding the publication and patenting activity of the star scientists themselves.  
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magnitude.  The estimated coefficient on the inverse Mills Ratio is positive  and significant, showing 

some evidence of self-selection.  

Model (7) of Table (4) reports an exercise with an interaction term between the hiring variable 

and the lagged value of PUBFRAC included in the regression.  The high level of multicollinearity 

between NEWSTAR and the interaction between NEWSTAR and lagged PUBFRAC should make us 

cautious in the interpretation of the results, and we should expect some difficulty in obtaining precise 

estimates.  Nonetheless when the interactive variable is added, its associated coefficient is positive and 

significant, while NEWSTAR loses statistical significance.  When only the interactive variable is added, 

the associated coefficient is significant25 as well. These results are consistent with the hypothesis that the 

effect of newly hired scientists on the firm is conditioned by the organizational structures that are already 

in place. 

Given the limited size of our sample, these results must be treated with caution.  The fact that 

there is some robustness in results obtained even in such a small sample is encouraging, but without a 

fully specified structural model (which would include, for example, an explicit model of the labor 

market), we cannot address the issue of endogeneity definitively.  It is appropriate, therefore, to interpret 

the significant coefficients on our measures of external hiring as being consistent with the hypothesis that 

bringing new scientists into the firm plays an important role in assisting the firm to develop new 

organizational capabilities, rather than as a definitive structural test of the idea.  

Table (6) presents our results at the individual scientist level.  Our control variables are generally 

significant and show the expected signs, which is reassuring.  In particular, we can see in some cases the 

presence of a job-tenure effect as well as an overall experience or life cycle, with the latter showing an 

inverted U-shaped form.26  Moreover, the coefficient on the number of publications in the very first year 

of scientific activity has a positive and significant estimate, suggesting the appropriateness of controlling 

for unobserved ability.  

Most interestingly, despite all these controls and the use of firm dummies, the coefficients of both 

PUBFRAC, our measure of organizational orientation, and STARTOT, the number of star scientists at the 

firm, are positive and significant.  These results suggest a significant effect of the firm’s broader 

organizational orientation and of the presence of other star scientists on the individual performance of 
                                                           
25 Similar results obtain when NEWstar is interacted with the initial value of pubfrac, though the multicollinearity is even greater 
and so we have more noise.  Also, results are similar if NEWSTAR is divided by EMPL. 
26 Since we use only publication data after a scientist joins one of the firms of our sample, we typically do not capture the first 
part of the experience cycle at the level of the single scientist, but we may capture it cross sectionally.  Moreover, in order to 
make the sample homogeneous and the results comparable among different specifications, we excluded the first year in which a 
scientist publishes in a firm  (this was necessary in the specification where the lagged publications are added.)  This reduces our 
ability to capture a job tenure effect, because our time series is not very long and even one year (and in particular the first one) of 
data may make a difference. The impact of this choice is less important for experience, which has a wider (and more distributed) 
range of values.  Results not reported here show that an inverted U relationship with tenure, is indeed much stronger and more 
robust when the first year of publication is added to the data, and that it “co-exists” with the experience cycle effect.  The results 
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those stars already employed by the firm.  We interpret them as consistent with the hypothesis that the 

performance of star scientists is conditioned by the nature of the firm that they join, suggesting that there 

may well be important complementarities between the hiring of “new blood” and the existing 

organizational competencies of the firm. 

 

 

 

4. Conclusions 

In this paper, we offered theoretical insights and empirical findings designed to clarify the degree 

to which hiring skilled workers can provide an organizational and strategic resource for the firm. We 

stressed the danger of interpreting simple correlations between hiring and improvement in firm 

performance as evidence that hiring builds organizational capabilities, and speculated that for hiring to 

build capability, new hires must be in some way complementary to the existing assets, routines or 

procedures of the firm.  

In statistical terms, we dealt with these issues by moving from the analysis of simple correlations 

to addressing the problems of unobserved heterogeneity, causality ,endogeneity, and self-selection. We 

also explored whether the performance of star workers is shaped by the organizational capabilities of the 

firm — particularly the presence of other stars — in order to understand how the individual capabilities of 

newly hired skilled workers are translated into durable organizational capabilities.  

Our results suggest that in the pharmaceutical industry of the eighties and early nineties there was 

a significant relation between the adoption of science-driven research and the hiring of new scientists, and 

that external hiring had a significant effect on internal organizational capabilities. Our findings also 

strongly imply that the evolution toward science-driven R&D was not solely driven by the output and 

work practices of “new blood.” Our study of the determinants of individual publication rates is consistent 

with the idea that there is a complex and intriguing interaction between individual and organizational 

capabilities – just the kind of interaction that would be required to translate the ability to hire in a freely 

available market into the building of a unique organizational capability.  

We see a number of potential extensions of our work. On the empirical and statistical front, a 

larger sample size and more powerful controls and instrumental variables could increase the robustness of 

our results and allow us to build further, more elaborate tests. For example we plan to explore the patterns 

of coauthoring and/or co-patenting between stars and non-stars; the time lag between the start of the 

patenting activity and the publication activity of each scientist inside a firm; and the participation of the 

same star in the work of different teams. 

                                                                                                                                                                                           
on all the other variables are almost unchanged when larger samples are used.  This joint finding is not broadly present in the 
existing literature, as far as we are aware. 
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Comparing the dynamics of the hiring policy of star scientists with the overall hiring strategies of 

firms may also be a source of insight. It would be interesting to know, for example, if less highly 

published scientists switch firms with a different frequency.  Additional information on the previous and 

subsequent occupations of the star scientists might enable us to determine the degree to which scientists 

with different backgrounds have different impacts on the firm they join, and more closely tracking the 

movements of stars in and out of our sample firms would allow us to explore whether the departure of top 

scientists weakens the scientific capabilities of an organization. The impact of stars may also vary within 

a given firm, in different research projects.   

In addition, it might be important to study the effect of a firm’s position in the network of skilled 

labor market on its ability to change.  

Most fundamentally, we believe that this paper highlights both the importance of new hires to the 

development of new organizational capability and the complexity of the process through which this 

occurs. The hiring of particularly productive scientists was almost certainly critically important to the 

development of new capabilities in pharmaceutical research – but these scientists were not a freely 

transferable resource that could be safely left in a laboratory to produce new drugs. They became, instead, 

an integral part of their new employer’s research effort, with impacts on research productivity extending 

beyond their own immediate areas of activity. Theoretical research in strategy has increasingly pointed 

towards the importance of complementarities between people, procedures and routines as a long term 

source of competitive advantage. This paper gives renewed impetus to this belief, and highlights the 

importance of viewing particular individuals as one element of the complex, interlocking system that is 

the successful firm. 
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Figures 
 

Figure (1): Total number of star scientists employed in firms, 1980-1992 
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Figure (2): Mean Newstar over time vs Pubfrac 
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Figure (3) Mean papers per year, and papers per year vs pubfrac 
 
 

 
 
 
Figure (4): PUBFRAC over time 
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Tables 
 

Table (1): Movements of scientists among the firms in the sample 
 
  from                                       
to 1 2 3 4 5 7 8 9 10 12 13 15 16 26 33 35 36 40 41 Total 

1       1 1   2         1   1 1         7 
2     1                               1 2 
3 1 1     2 1   1 1 3 1           1     12 
4     1   1   1               3         6 
5   1                         1         2 
7             1           1 1           3 
8     2                       2         4 

11 1 1 2   1         2 1             1   9 
12 2 1 1     1         1 1   1 1   1     10 
13 2 5 3 1       1 1 1   1   3 1   1     20 
15 1     1           1       1           4 
16                       2               2 
26     1         1     1                 3 
33     3   1                 1           5 
35                                   2   2 
36       1                     1         2 
41                               1       1 
42                                     2 2 

Total 7 9 14 4 6 2 4 3 2 7 4 5 1 8 10 1 3 3 3 96 
 
 
1=Abbott; 2= Burroughs Wellcome; 3= Merck; 4= Searle; 5= Hoffman La Roche;  7= Bristol-Myers; 8= Squibb; 
9= Smithkline; 10= Beecham; 11= BMS; 12= SKB; 13= Glaxo; 15= Lilly; 16= Pfizer; 26= Upjohn; 33= Ciba-
Geigy; 35= Sankyo; 36= Hoechst; 40= Fuijsawa;  41= Takeda; 42= Yamanouchi
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Table (2): Variable descriptions 
 
Variable name Description OBS Mean Stdev Min Max 
Firm level  

     
PUBFRAC see text 162 0.64 0.16 0.12 0.95 
PUBFRAC0 Initial value of PUBFRAC 162 0.52 0.16 0.20 0.77 
TIME Year (yy)-80 162 7.17 3.38 2 13 
NEWSTAR_COMP Scientists hired from competitors at 

t-1 162 0.40 0.81 0 4 
NEWSTAR_OTH Scientists hired from other at t-1 162 3.34 3.77 0 20 
NEWSTAR Total # of Scientists hired at t-1 162 3.74 4.00 0 20 
NEWSTAR_2cum Total # of Scientists hired at t-1 and 

t-2 162 7.59 7.53 0 36 
LOGASS log(total assets) 162 8.21 0.78 6.25 9.73 
NEWSTAR/EMPL 105*Newstar(t-1)/employee at t-1 154 11.60 12.63 0 57.47 
NetIncome Net Income at t-2, 000 real $ 162 430.63 308.64 -108.58 1557.78 
 
Individual scientist 
level 

 

     
PUB # of publications for each scientist in 

t 2639 4.41 3.90 0 32 
COHORT1 1 if the year in which a scientist 

publishes his/her very first paper is 
<1974, 0 otherwise 2639 0.23 0.42 0 1 

COHORT2 1 if the year in which a scientist 
publishes his/her very first paper is 
between 1974 and 1981 2639 0.51 0.50 0 1 

TENURE (Current year(yy)+1) – hiring 
date(yy)  2639 6.56 3.92 1 22 

EXPER (Current year(yy)+1) – year in which 
a scientist publishes his/her very first 
paper(yy) 2639 12.91 4.61 1 23 

DUM89 1 IF year=1989, 0 otherwise 2639 0.10 0.30 0 1 
INPUB # of publications in very first year in 

SCI 2639 1.99 1.66 1 15 
STARTOT (log)(t-1) Total number of stars employed in 

the firm  2639 4.17 0.82 1.10 5.24 
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Table (3) 

Correlations: Firm/year level data 
 
  1 2 3 4 5 6 7 8 9 
1 PUBFRAC 1.00                 
2 PUBFRAC0 0.37 1.00               
3 TIME 0.36 -0.10 1.00             
4 LOGASS 0.13 -0.02 0.45 1.00           
5 NEWSTAR_COMP 0.28 -0.13 0.44 0.18 1.00         
6 NEWSTAR_OTH 0.30 0.34 0.02 0.10 0.18 1.00       
7 NEWSTAR 0.34 0.30 0.10 0.14 0.38 0.98 1.00     
8 NEWSTAR_2cum 0.36 0.32 0.17 0.15 0.35 0.89 0.91 1.00   
9 NetIncome 0.34 0.16 0.60 0.62 0.52 0.29 0.38 0.45 1.00 
 
N=162 
 

Correlations: scientist/year level data 
 
    1 2 3 4 5 6 7 8 9 10 

1 PUB 1.00                   
2 PUBFRAC 0.17 1.00                 
3 STARTOT (ln) 0.16 0.54 1.00               
4 Tenure 0.002 0.14 0.08 1.00             
5 EXPER 0.10 0.16 0.10 0.54 1.00           
6 TIME 0.26 0.40 0.32 0.37 0.43 1.00         
7 dum89 -0.11 0.01 0.007 -0.02 -0.02 -0.04 1.00       
8 INPUB 0.08 0.04 0.03 0.00 0.08 -0.01 0.00 1.00     
9 COHORT1 0.01 -0.04 -0.11 0.24 0.47 -0.14 -0.01 0.25 1.00   

10 COHORT2 -0.05 -0.07 -0.002 0.01 0.16 -0.07 0.02 -0.17 -0.56 1.00 
 
N=2693 
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Table (4): Firm level results.  
Dependent Variable: log[PUBFRAC/(1-PUBFRAC)]. Basic specifications 
 

  1 2 3 4 5 6 7 

PUBFRAC0 3.47 3.16 3.16 3.30 3.20 3.32 2.83 
  .50 .52 .53 .61 .48 .54 .58 

PUBFRAC0*t  -.22 -.22 -.22 -.22 -.21 -.20 -.21 
  .08 .07 .07 .09 .06 .07 .07 

NEWSTAR  .042     -.09 
   .013     .06 

NEWSTAR_2cum   .022     
    .007     

NEWSTAR/EMPL    .013    
     .004    

NEWSTAR_COMP     .16   
      .07   

NEWSTAR_OTH     .03   
      .012   

NEWSTAR*PUBFRAC(t-1)       .18 

       .08 

NEWSTAR_COMP/EMPL      .07 
 

       .02  

NEWSTAR_OTH/EMPL      .01  
       .004  

LOG(ASSETS) -.023 -.04 -.04 .04 -.04 .05 -.03 
  .09 .013 .09 .10 .09 .10 .08 

TIME .21 .21 .20 .20 .18 .17 .19 
  .04 .04 .04 .05 .03 .04 .04 

CONSTANT -1.68 -1.46 -1.47 -2.25 -1.46 -2.27 -1.27 
  .75 .77 .77 .84 .75 .82 .67 

Method OLS OLS OLS OLS OLS OLS OLS 

F 21.68 31.31 31.41 25.54 29.10 25.13 27.01 

R2 .31 .36 .36 .37 .37 .39 .38 

Obs 162 162 162 154+ 162 154+ 162 
         
        
        

Standard errors are in italics. Residuals clustered at the firm level. 
F-tests for Ho: all coefficient = 0 reject Ho at .00% level in all models. 
+ Reduced number of observations because data missing for EMPL in some cases 
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Table (5): Firm level results.  
Dependent Variable: log[PUBFRAC/(1-PUBFRAC)]. Further statistical tests 
 
 

  1 2 3 4 5 6  

PUBFRAC0   2.84 2.76 2.95 3.09  
    .82 .78 .87 1.17  

PUBFRAC0*t  -.20 -.16 -.22 -.22 -.22 -.29  
  .09 .11 .07 .07 .08 .10  

NEWSTAR .043  .085 .096  .14  
  .02  .06 .036  .06  

NEWSTAR/EMPL  .01   .025   
   .06   .017   

LOG(ASSETS) .06 .16 -.07 -.07 .07 -.08  
  .26 .28 .12 .11 .11 .10  

TIME .19 .16 .20 .20 .20 .20  
  .05 .06 .03 .03 .05 .04  

CONSTANT -.64 -1.36 -1.23 -1.17 -2.41 -1.51  
  2.00 2.17 1.11 1.03 .97 1.06  

Method 
PANEL-

FE (a) 
PANEL-
FE (b) 2SLS (c) 2SLS (d) 2SLS (e) 

Selection model. Probit 
in first step, 2SLS in 

second step (f)  
F 12.72 9.46 16.55 20.23 14.77 13.54  

Obs 162 154+ 162 162 154+ 140  
 
Standard errors in italics. Residuals are clustered at firm level in models 3, 4, 5, 6. F-tests for Ho: all coefficient = 0 reject Ho at 
.00% level in all models.  

 

+ Reduced number of observations due to the unavailability of some data on the number of employees. 
 

(a) Hausman Test for RE=FE: chi2=.60. F-test for all firm effects=0: F=2.72, prob>F = .0009  

(b)Hausman Test for RE=FE: chi2= .63 F-test for all firm effects=0: F=2.67, prob>F = .0011  
(c) NetIncome (t-2) as instrument for newstar. 1st stage regression: PUBFRAC(0)  and netIncome(t-2) have positive and significant 
estimated coefficients (resp. at 6% and .0% level); R^2= .22 , Fstat for all coeff.=0: F=9.15, prob >F = .0000. 

 

 

(d) Instrument for Newstar is the predicted number of hires from a Poisson regression of newstar on the regressors in (4) and 
NetIncome(t-2). In the Poisson Regression, PUBFRAC(0) and  netIncome(t-2) are positive and significant at .00% level, 
PUBFRAC(0)*t negative and significant at 1% level, LRchi(5)=150.46. In a correspondent neg. bin. regression: netIncome(t-2) 
significant at .00% level, PUBFRAC(0) significant at 2% level, LRchi(5)=40.80.  
Results do not significantly change if the predicted value of the Poisson regression is entered as a regressor (in place of newstar) in 
the second stage rather than used as instrument for newstar 

  

(e) Country dummies as instr. for newstar/empl, US as reference.  1st stage regr.: PUBFRAC(0)  has positive and 8% significant 
estimate. Germ. and Swiss dummies have significant (negative) estim. coefficients (resp at .0% and 1% level); R^2= .24, Fstat for all 
coeff.=0: F =6.56, prob>F = .000 

  

(f) Second step regr. on selected sample for which NEWSTAR>0. NetIncome(t-2) and country dummies as IV and as added regressors 
in probit. 

  

Inverse Mills Ratio defined from predicted values of first probit step is added to the 2sls regression, T-stat=2.05.   

1st step Probit regression (dep var=1 if newstar>0, 0 otherwise): Germ Dummy has negative and 10% sig. estimate. NetIncome(t-2) 
has positive and 10% sig. estimated coefficient. Chi2(8) for all coeff.=0: 18.06, prob>chi2=.02; pseudoR^2=.12, log likelihood= -56. 

  

1st stage of 2sls regression: R^2=.28, F test for all coeff. = 0: F = 5.98, prob>F = .000.   
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Table (6): Research productivity at the level of the individual scientist.   
Dependent Variable: PUBS 
 
 
 

  1 2 3 4 5 6 

PUBFRAC(t-1) 1.47 1.48 1.47 .47 .45 .26 
  .11 .11 .19 .13 .21 .13 

TENURE  .03 .03 -.008 -.01 -.03 
   .008 .015 .01 .01 .01 

TENURE^2  -.002 -.002 -.0009 -.0005 .0004 
   .0004 .0008 .0005 .0008 .0005 

LOG(startot)(t-1)    .57 .67 .58 
     .07 .11 .07 

EXPER    .027 .025 .03 
     .016 .019 .01 

EXPER^2    -.002 -.002 -.001 
     .0005 .0007 .0004 

TIME    .06 .06 .04 
     .012 .01 .01 

DUM89    -.37 -.40 -.40 
     .04 .06 .04 

COHORT1    .39 .43 .26 
     .13 .11 .10 

COHORT2    .16 .20 .10 
     .09 .07 .06 

INPUB    .024 .026 .017 
     .012 .01 .009 

PUB(t-1)      .05 
       .002 

Firm Dummies Yes Yes Yes Yes Yes Yes 
        

CONSTANT .45 .37 .36 -1.88 -2.20 -1.67 
  .08 .08 .15 .28 .39 .27 

Method Poisson Poisson Neg. Bin. 
(Alpha=.5) 

Poisson - RE Neg. Bin. 
(Alpha=.45) 

Poisson – RE 

Chi 504.19 536.13 161.54 564.58 379.24 1047.05 
Pseudo R2^ .031 .033 .012  .028  

Obs 2639 2639 2639 2639 2639 2693 

LogLikelihood -7888 -7872 -6651 -7014 -6542 -6836 

Standard errors in italics.  
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