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Abstract

We define a class of “algebraic” random matrix channels foictvtone can generically compute
the limiting Shannon transform using numerical technigaed often enumerate the low SNR series
expansion coefficients in closed form. We describe thiss¢lde coefficient enumeration techniques and

compare theory with simulations.
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The analytic computability of the Shannon
transform for a large class of random matrix

channels

I. THE SHANNON TRANSFORM

Consider a multiple input, multiple output (MIMO) commuaton system withV, receive antennas

and V; transmit antennas where thé. x 1 received vectoy is modelled as
y = Hx + z. Q)

In (1), H is an N, x N, sized random matrix whosg, j)-th entry is the complex valued propagation
coefficient between théth receive antenna andth transmit antenna. The transmitted signal is denoted
by the N; x 1 vectorx while the N,. x 1 vectorz is the additive noise at the receiver. We assume that
z iS zero mean, circularly symmetric complex Gaussian noisgle vdependent, equal variance real and
imaginary parts and that, without loss of generalifyxx'’] = T whereE[.] denotes the expectation of
the (random) quantity in the brackets. The transmitted vect®s subject to the power constraift so
that Tr E[xx'] < P.

When the MIMO channel matrix is a random matrixe., its elements are random variables, then it
is common to transmit complex valued circularly symmetignals x so thatE[xx'| = (P/N;)I. The
ergodic capacity of the MIMO system [1], assuming the remehas perfect knowledge of the realization
of H, is then given by

C(P) :=En |logdet(I+ ]]\ZHH') 2)

where’ denotes the conjugate transpose and the expectation isesgipect to the probability distribution
of the random channel matrid. Equation (2) can be rewritten in terms of the eigenvalugd oV, ) HH’
as

C(P) = N:V(P) ®3)

whereV(P) is the Shannon transform [2] of the matiikx/N;)HH' defined as

V() == Exflog(1 + v \)], 4)
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and the expectation is with respect to the probability tigtron of a randomly selected (with uniform
probability) eigenvalue of1/N,)HH'. From (3) and (4) it is evident that one can seek to analyticall
characterize the Shannon transform of those MIMO randomixneliannels for which the eigenvalues
of (1/N;)HH' can be analytically characterized. In general, exceptHerspecial cases wheW, = 1 or

N, =1, the “exact” analytical expressions for Shannon transfasomd in the literature [1], [3]-[5] are
really determinental formulae. In other words, the Shanmansform is expressed as a determinant of a
matrix for which there are closed form expressions for thividual elements. The reader is directed to
[6] for some representative formulae and a summary of rand@tmix channels for which exact closed
form expressions are available.

The existence of the determinental representation for ther@matransform is a fundamental truism
even in the simplest case when there is i.i.d. Rayleigh tadietween the transmitter and receiver
antenna elements [1]. A limitation of these results is that determinental end results makes it is hard
for practitioners to gain engineering insight on how theapasters such aSNR, N, and N, affect
the ergodic capacity (Shannon transform). More importariig range of random matrix channels for
which the eigenvalues ofl/N;)HH' can be characterized exactly féinite N,, V; is very restrictive

and invariably limited to matrices with (complex) Gausseriries.

A. The limiting Shannon transform

This has motivated the investigation into the propertiedeflimiting Shannon transforii(-y) instead

which is defined as

V(Y) = V() == NT’IJ%I?LOOV(V) for  N,/N;— ce (0,00). (5)

Let the empirical distribution function (e.d.f.) of an arbity N x N matrix A 5 with real eigenvalues

be defined as
_ Number of eigenvalues cAy < z

FA () o

(6)

If the (random) e.d.f ofW := (1/N;)HH’ converges, for every:;, almost surely (or in probability) as
Ny, N.(N;) — oo to a non-random distribution functiof" (z), then the limiting Shannon transform,

when the limit exists, can be written as

Viv () = / log(1 + 7 \)dE™ (A). )
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The limiting Shannon transform, for small values~gfcan be expressed as the series
0 (_1)k+1

o~ (DM Wk
Vw(’v)=/kzlkv WP () =30 MY ®)

where M}V := [ A*dFW ()) is the k-th moment of the limiting probability distribution funct £V

The main contribution of this correspondence, which relieshe results in [7], [8], is the identification
of a broad class of random matrix channels for which the imgitShannon transform in (7) can be
numerically computed and for which the coefficients of thdeseexpansion in (8) can be efficiently
enumerated, often in closed form. Examples found in thealitee [1], [9]-[12] which rely on results
from infinite/large random matrix theory are but special saskthis broader class of algebraic random
matrix channels, which we define next. We leave it to practéis to justify the physical relevance of

more complicated random matrix models built using the fraork presented.

II. THE CLASS OF ALGEBRAICMIMO CHANNELS

Definition 1 (Algebraic random matrix [7], [8]):Let F"V (x) denote the limiting eigenvalue distribu-
tion function of a sequence of random matridd5y. If a bivariate polynomial
D!n DZ . .
L, (m, z) = Z Z agim'z’,
i=0 j=0
with D, > 0, D, > 0 and real-valued coefficients; exists such that the Stieltjes transformiof (z)

defined as

1
i (2) :/x_ZdFW(x) for  zeCT\R, )
is algebraicj.e, it is a solution of the equatiof,,,(mw (z),z) = 0 thenW y is said to be an algebraic

random matrix. The density functiofyy = dF" is referred to as an algebraic density and we say that

fw € Pag andWy € My, the class of algebraic probability densities and randortnices respectively.

Definition 2 (Algebraic MIMO random matrix channeliet H be anN,. x N; sized random matrix
MIMO channel. IfWy, := (1/N;)HH' is an algebraic random matrix fa¥;, N,.(N;)oo and N,./N; —
c > 0 thenH is said to be an algebraic MIMO random matrix channel and wetisat H € H,,, the

class of algebraic MIMO channels.

In [7], [13], we describe the generators of the class of atgielbrandom matrices as well as procedures

for computing the bivariate polynomidl?, that encodes the limiting eigenvalue distribution. We focu
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on the sub-class of random matrix channels that are gedefrate Gaussian distributed entries in what

follows. We direct the reader to [7], [13] for additional exples.

Theorem 2.1 ( [7], [8]): Assume thalG is an N, x N; sized MIMO random matrix channel with i.i.d.
CN(0,1) distributed elements and tha& and B are appropriately sized non-negative definite algebraic
random matrices independent @f. Then for alls > 0, the MIMO random matrix channels
« Doubly correlated channel moddl = A'/2GB!/2
« Random Rician-like fading modeH = A2 + s G

are algebraic as well in the sense of Definition 2.

Theorem 2.1 provides the building block for analyzing thepemties of a much broader classes of
random matrices than what is found in the literature. Theaistapoint for applying Theorem 2.1 is the
bivariate polynomial representatiofig’, and LZ,. In [7], [13] we describe the mappink,,, LE, — LIV,
and implement it in the form of a MATLABbased random matrix cdd¢or which can be downloaded
from [14]. In particular, the commandsorrWish(LmzA,LmzB,c) and AgramWish(LmzA,c,s)
implement the mappind.,, LB, — LW for the random matrix transformations in Theorem 2.1.

To make the ideas presented more concrete we consider sompke sandom matrix channels and list
the corresponding bivariate polynomial encoding. For theanoelH = N;, W = (1/N;)HH' =1 so
that the Stieltjes transform df'"V (z) = [(1,00) (), defined as in (9), can be shown to satisfy the equation
LY.(m, z) = 0 where

Ly,(m,z) =m(l —z) — 1.

The Rayleigh fading channel considered in [1] is algebrai@pylying Theorem 2.1 wittA = Iy, and

B =1Iy,. It can be shown that

LW (m,z)=czm®> —(1—c—2)m+1 (10)

The doubly correlated Gaussian random matrix falls into #itirgy described in Theorem 2.1. The
situation where matriceA andB are the covariances of an AR(1) process with coefficieistconsidered

in [12] and is yet another example of an algebraic randomirmalannel. Here we have
Li(m,z) = LE(m,z) = (z* —222a+2)m?* + (222 —daz+2)m+ 2 — 2«
and
LY(m,z) = —23m402+(2 Z2e—22%ac— 4277 m3—|—(2 Pa—23—2-52¢2 - 622ac+ 6cz) m?

+(—6azc—|—4az—2—222—202+40)m—2ac—z+2a
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Consider the situation when the matricasand B have limiting eigenvalue distribution
FA(z) = FP(z) = 0.5} o) + 0.5] 2 ) (11)
so that their Stieltjes transform satisfies the equafigin(m, z) = 0 = LE,(m, z) where
Li(m,z) = LE (m, 2) = (=6z+22°+4)m+2z—3.

Then the random matrix channdl'/2GB'/2 is algebraic and we have

4
LY = ZZ m] 1 k=1 (12)

7j=1k=1
where:
—18¢c+ 18¢2 18¢—9 4 0
—108c2 +36c+T72¢® —112¢+ 18+ 130¢2 —18 4 54c 4
64c2+64c¢* —128¢®  72¢—324¢2 + 288 ¢3 224¢%2 —112¢ 36¢
TC = . (13)
0 64c2 —256¢® +192¢* 360¢® — 2162 112¢2
0 0 192¢* — 128 ¢ 144 ¢°
0 0 0 64 c*

We leave it to the reader to verify that the examples consitlér [9]-[11] are special cases of algebraic

random matrix channels as well.

A. Computation of the Shannon transform and its low SNR sexpansion

Once we havd.V’, we can obtain the limiting eigenvalue distribution by aslieroot-finding algorithm
as described in [7], [13], isolating the correct branch & Ih, solutions, taking its imaginary part and
scaling byl /7. This is motivated by the fact that the probability distrioat 7" can be recovered from

its Stieltjes transform by using the Stieltjes inversion fakan[15]

APV () — iglim Tm mgy ( + 7€), (14)

In the examples considered above, except for the simplest carresponding to i.i.d. Rayleigh fading,
Dy > 4 so that we have to resort to numerical technigues to otmtEiW(x) and compute the Shannon
transform using (7). The development of efficient numericalecthat extracts the correct branch of the
Stieltjes transform from th®,, solutions of the equatioi)” (m, z) = 0 so that (14) may be applied to

yield the limiting eigenalue distribution remains an opeohtem. Hence, the remarkable fact [7], [13]
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that for algebraic random matrix channels it will geneticéle possible to obtain the coefficients of the
low SNR series expansion in (8) in closed form assumes grgapartance as far as lending engineering
insight when dealing with complicated (algebraic) MIMO nhal models.

We note thatv}” the k-th coefficient of the Shannon transform series expansion )iris(given by
vV = (=1)*1M} /k. The algebraicity of the limiting eigenvalue distributiohoavs us to efficiently
enumerate the limiting moments in closed form. To do so, wedgfine the ordinary) moment generating
function ppw (2) :== 1+ >2°, M}V and note that it can be obtained from the Stieltjes transforn(z)

by applying the transformation

v (2) = S (1/2). (15)

Thus, given the bivariate polynomidl}’,(m, z) we can obtain the algebraic equatiﬁiﬁ(u, z) satisfied

by puw(z) by applying the transformation

Lyz(:uv z) = Lyg(—p2,1/2)

and clearing the denominator. TheAWLE based packaggfun [16] can be used to obtain the series
expansion foruyy (2) up to degreeexpansion _degree directly from the bivariate polynomial,,, by

using the commands:

> with(gfun):

> MomentSeries = algeqtoseries(Lmyuz,z,myu,expansion_d egree,’pos_slopes’);

For the i.i.d. Rayleigh fading channel whose limiting eig&ne distribution is encoded by the bivariate

polynomial (10), the corresponding moment generatingesds given by
pw =142+ 10 +e)22+ 143+ + (1 +6c+6c2+ )zt + 0P (16)

For the doubly correlated Rayleigh fading channel whosditign eigenvalue distribution is encoded by

the bivariate polynomial (12), the corresponding momemtegating series is given by

) L0, (15, 45 o, (675 243 5 243) 4
zZ) = —Z —C —_— z —C —C —_— z
Hw A 8 8 16 16 16
3555 , 1377 4 3555 1377
c c’ + c+
16 32 16 32

)f+0@ﬂ.un

[11. NUMERICAL SIMULATIONS

Figure 1 plots the mean empirical Shannon transfaifyy) for various values ofy (SNR) for the

i.i.d. (uncorrelated) Rayleigh fading channel and the dpgbrrelated Rayleigh fading channel with the
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Fig. 1: The mean Shannon transform versuaveraged over 20000 trials fa¥, = 50, Ny = 200.

(a) l.i.d. Rayleigh fading.

N, | N c ) v=1 Do vo = —(1+c)/2 U3 v3 = (1+3c+c?)/3

50 | 200 | 0.25 || 1.0000| 1.0000 || -0.6250 -0.6250 0.5989 0.6042

50 | 100 | 0.50 || 1.0001 | 1.0000 || -0.7502 -0.7500 0.9070 0.9167

50 | 50 1 1.0003 | 1.0000 || -1.0004 -1.0000 1.6430 1.6667

50 | 26 | 1.923| 0.9998| 1.0000 || -1.4609 -1.4615 3.4145 3.4892

(b) Doubly correlated Rayleigh fading where the matrigend B have limiting e.d.f given by (11).

N, | Ng c %1 vy =9/4 Vs ve=—(8c+ ) U3 vy = (82 c+ 28 2 4 213)
50 | 200 | 0.25 || 2.2500| 2.2500 -3.5153 -3.5156 8.6956 8.8945
50 | 100 | 0.5 | 2.2502| 2.2500 || -4.2189 -4.2188 12.9866 13.3594
50 | 50 1 2.2509| 2.2500 || -5.6276 -5.6250 23.2916 24.1875
50 | 26 | 1.923 | 2.2494| 2.2500 -8.2139 -8.2212 48.0846 50.8280

TABLE I. Comparison of theoretical, in (8) with estimates from numerical simulations

limiting eigenvalue distributions oA and B given by (11). The Table (b) compares the coefficients
of the series expansion obtained from the empirical dath thie theoretical predictions. The excellent
agreement confirms the utility of the closed form expansiams the well document fact [2]that the

N, N; — oo limiting answer is a good approximation of thhé., IV; finite result.
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