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Abstract

The authors and Fischer recently proved that any hereditary property of two-dimensional
matrices (where the row and column order is not ignored) over a finite alphabet is testable
with a constant number of queries, by establishing the following (ordered) matrix removal
lemma: For any finite alphabet Σ, any hereditary property P of matrices over Σ, and any
ε > 0, there exists fP(ε) such that for any matrix M over Σ that is ε-far from satisfying
P, most of the fP(ε) × fP(ε) submatrices of M do not satisfy P. Here being ε-far from P
means that one needs to modify at least an ε-fraction of the entries of M to make it satisfy
P.

However, in the above general removal lemma, fP(ε) grows very fast as a function of ε−1,
even when P is characterized by a single forbidden submatrix. In this work we establish much
more efficient removal lemmas for several special cases of the above problem. In particular,
we show the following: For any fixed s× t binary matrix A and any ε > 0 there exists δ > 0
polynomial in ε, such that for any binary matrix M in which less than a δ-fraction of the
s × t submatrices are equal to A, there exists a set of less than an ε-fraction of the entries
of M that intersects every A-copy in M .

We generalize the work of Alon, Fischer and Newman [SICOMP’07] and make progress
towards proving one of their conjectures. The proofs combine their efficient conditional
regularity lemma for matrices with additional combinatorial and probabilistic ideas.

1 Introduction

Removal lemmas are structural combinatorial results that relate the density of “forbidden”
substructures in a given large structure S with the distance of S from not containing any of the
forbidden substructures, stating that if S contains a small number of forbidden substructures,
then one can make S free of such substructures by making only a small number of modifications
in it. Removal lemmas are closely related to many problems in Extremal Combinatorics, and
have direct implications in Property Testing and other areas of Mathematics and Computer
Science, such as Number Theory and Discrete Geometry.

The first known removal lemma has been the celebrated (non-induced) graph removal lemma,
established by Rusza and Szemerédi [24] (see also [3, 4]). This fundamental result in Graph
Theory states that for any fixed graph H on h vertices and any ε > 0 there exists δ > 0, such
that for any graph G on n vertices that contains at least εn2 copies of H that are pairwise edge-
disjoint, the total number of H-copies in G is at least δnh. Many extensions and strengthenings
of the graph removal lemma have been obtained, as is described in more detail in Section 2.

In this work, we consider removal lemmas for two-dimensional matrices (with row and
column order) over a finite alphabet. For simplicity, the results are generally stated for square
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matrices, but are easily generalizable to non-square matrices. Some of the results also hold
for matrices in more than two dimensions. The notation below is given for two-dimensional
matrices, but carries over naturally to other combinatorial structures, such as graphs and multi-
dimensional matrices.

An m×n matrix M over the alphabet Γ is viewed here as a function M : [m]× [n]→ Γ, and
the row and column order is dictated by the natural order on their indices. Any matrix that can
be obtained from a matrix M by deleting some of its rows and columns (while preserving the
row and column order) is considered a submatrix of M . We say that M is binary if the alphabet
is Γ = {0, 1} and ternary if Γ = {0, 1, 2}. A matrix property P over Γ is simply a collection
of matrices M : [m] × [n] → Γ. A matrix is ε-far from P if one needs to change at least an
ε-fraction of its entries to get a matrix that satisfies P. A property P is hereditary if it is closed
under taking submatrices, that is, if M ∈ P then any submatrix M ′ of M satisfies M ′ ∈ P.
For any family F of matrices over Γ, the property of F-freeness, denoted by PF , consists of all
matrices over Γ that do not contain a submatrix from F . Observe that P is hereditary if and
only if it is characterized by some family F of forbidden submatrices, i.e. P = PF .

While the investigation of graph removal lemmas has been quite extensive, as described
in Section 2 below, the first known removal lemma for ordered graph-like two-dimensional
structures, and specifically for (row and column ordered) matrices, was only obtained very
recently by the authors and Fischer [2].

Theorem 1.1 [2]. Fix a finite alphabet Γ. For any hereditary property P of matrices over Γ
and any ε > 0 there exists fP(ε) satisfying the following. If a matrix M is ε-far from P then at
least a 2/3-fraction of the fP(ε)× fP(ε) submatrices of M do not satisfy P.

However, even when P is characterized by a single forbidden submatrix, the upper bound
on fP(ε) guaranteed by the removal lemma in [2] is very large; in fact, it is at least as large as a
wowzer (tower of towers) type function of ε. On the other hand, a lower bound of Fischer and
Rozenberg [15] implies that one cannot hope for a polynomial dependence of fP(ε) in ε−1 in
general (for the non-binary case), even when P is characterized by a single forbidden submatrix.

Thus, it is natural to ask for which hereditary matrix properties P there exist removal
lemmas with more reasonable upper bounds on fP(ε), and specifically, to identify large families
of properties P for which fP(ε) is polynomial in ε−1. In this work we focus on this question,
mainly for matrices over a binary alphabet.

A natural motivation for the investigation of removal lemmas comes from property testing.
This active field of study in computer science, initiated by Rubinfeld and Sudan [23] (see [18]
for the graph case), is dedicated to finding fast algorithms to distinguish between objects that
satisfy a certain property and objects that are far from satisfying this property; these algorithms
are called testers. An ε-tester for a matrix property P is a (probabilistic) algorithm that is given
query access to the entries of the input matrix M , and is required to distinguish, with error
probability at most 1/3, between the case that M satisfies P and the case that M is ε-far from
P. If the tester always answers correctly when M satisfies P, we say that the tester has a
one-sided error. We say that P is testable if there is a one-sided error tester for P that makes
a constant number of queries (that depends only on P and ε but not on the size of the input).
Furthermore, P is easily testable if the number of queries is polynomial in ε−1. Clearly, any
hereditary property of matrices is testable by Theorem 1.1, while any property P for which
fP(ε) is shown to be polynomial in ε−1 is easily testable.

1.1 Background and main results

The results here are stated and proved for square n × n matrices, but can be generalized to
non-square matrices in a straightforward manner. Our first main result is an efficient weak
removal lemma for binary matrices.

2



Theorem 1.2. If an n × n binary matrix M contains εn2 pairwise-disjoint copies of an s ×
t binary matrix A, then the total number of A-copies in M is at least δns+t, where δ−1 is
polynomial in ε−1.

Here a set of pairwise-disjoint A-copies in M is a set of s× t submatrices of M , all equal to
A, such that any entry of M is contained in at most one of the submatrices.

Theorem 1.2 is an analogue for binary matrices of the non-induced graph removal lemma.
However, in the graph removal lemma, δ−1 is not polynomial in ε−1 in general, in contrast to
the situation in Theorem 1.2.

Alon, Fischer and Newman [5] proved an efficient induced removal lemma for a certain type of
finite families F of binary matrices. A family F of matrices, or equivalently, a hereditary matrix
property PF , is closed under row (column) permutations if for any A ∈ F , any matrix created
by permuting the rows (columns respectively) of A is in F . F is closed under permutations if
it is closed under row permutations and under column permutations.

Theorem 1.3 [5]. Let F be a finite family of binary matrices that is closed under permutations.
For any ε > 0 there exists δ > 0, where δ−1 is polynomial in ε−1, such that any n × n binary
matrix that is ε-far from F-freeness contains δns+t copies of some s× t matrix A ∈ F .

The main consequence of Theorem 1.3 is an efficient induced removal lemma for bipartite
graphs. Indeed, when representing a bipartite graph by its (bi-)adjacency matrix, a forbidden
subgraph H is represented by the family F of all matrices that correspond to bipartite graphs
isomorphic to H. Note that F is indeed closed under permutations in this case. Thus, any
hereditary bipartite graph property characterized by a finite set of forbidden induced subgraphs
is easily testable.

The problem of understanding whether the statement of Theorem 1.3 holds for any finite
family F of binary matrices, was raised in [5] and is still open. Only recently in [2] it was shown
that the statement holds if we ignore the polynomial dependence, as stated in Theorem 1.1.

Problem 1.4. Is it true that for any fixed finite family F of binary matrices and any ε > 0,
there exists δ > 0 with δ−1 polynomial in ε−1, such that any n×n binary matrix M that is ε-far
from F-freeness contains δns+t copies of some s× t matrix A ∈ F?

Theorem 1.2 implies that to settle Problem 1.4 it is enough to show the following. Fix a
finite family F of binary matrices. Then for any ε > 0 there exists τ > 0, with τ−1 polynomial
in ε−1, such that any n × n binary matrix that is ε-far from F-freeness contains τn2 pairwise
disjoint copies of matrices from F .

Our second main result makes progress towards solving Problem 1.4 by generalizing the
statement of Theorem 1.3 to any family F of binary matrices that is closed under row (or
column) permutations. From now on we only state the results for families that are closed under
row permutations, but analogous results hold for families closed under column permutations.

Theorem 1.5. Let F be a finite family of binary matrices that is closed under row permutations.
For any ε > 0 there exists δ > 0, where δ−1 is polynomial in ε−1, such that any n × n binary
matrix that is ε-far from F-freeness contains δns+t copies of some s× t matrix A ∈ F .

Corollary 1.6. Any hereditary property of binary matrices that is characterized by a finite
forbidden family closed under row permutations is easily testable.

Our proof of Theorem 1.5 is somewhat simpler than the original proof of Theorem 1.3. One
of the main tools in the proofs of Theorems 1.2 and 1.5 is an efficient conditional regularity
lemma for matrices developed in [5] (see also [20]). In the proof of Theorem 1.5 we only use a
simpler form of the lemma, which is also easier to prove. The statement of the lemma and the
proofs of Theorems 1.2, 1.5 appear in Section 4.
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Besides the above two main results, we also describe a simpler variant of the construction
of Fischer and Rozenberg [15], showing that for ternary matrices, the dependence between
the parameters is not polynomial in general. We further suggest a way to tackle the weak
removal lemma (i.e. the analogue of Theorem 1.2, without the polynomial dependence) in high
dimensional matrices over arbitrary alphabets, by reducing it to an equivalent problem that
looks more accessible. For more details, see Section 5.

2 Related work

Removal lemmas have been studied extensively in the context of graphs. The non-induced
graph removal lemma (which was stated in the beginning of Section 1) has been one of the
first applications of the celebrated Szemerédi graph regularity lemma [26]. The induced graph
removal lemma, established in [4] by proving a stronger version of the graph regularity lemma,
is a similar result considering induced subgraphs. It states that for any finite family F of graphs
and any ε > 0 there exists δ = δ(F , ε) > 0 with the following property. If an n-vertex graph G
is ε-far from F-freeness, then it contains at least δnv(F ) induced copies of some F ∈ F . Here
v(F ) denotes the number of vertices in F , and G is said to be (induced) F-free if no induced
subgraph of G is isomorphic to a graph from F .

The induced graph removal lemma was later extended to infinite families [9], stating the
following. For any finite or infinite family F of graphs and any ε > 0 there exists fF (ε) with
the following property. If an n-vertex graph G is ε-far from F-freeness, then with probability
at least 2/3, a random induced subgraph of G on fF (ε) vertices contains a graph from F . Note
that when F is finite, the statement of the infinite induced removal lemma is indeed equivalent
to that of the finite version of the induced removal lemma.

The graph removal lemma was also extended to hypergraphs [19, 22, 21, 27]. See [13] for
many more useful variants, quantitative strengthenings and extensions of the graph removal
lemma.

Very recently, the authors and Fischer [2] generalized the (finite and infinite) induced graph
removal lemma by obtaining an order-preserving version of it, and also showed that the same
type of proof can be used to obtain a removal lemma for two-dimensional matrices (with row
and column order) over a finite alphabet; this it Theorem 1.1 above.

However, even for the non-induced graph removal lemma where the forbidden subgraph
is a triangle, the best known general upper bound for δ−1 in terms of ε−1 is of tower-type
[16, 12]. On the other hand, the best known lower bound for the dependence is super-polynomial
but sub-exponential, and builds on a construction of Behrend [10]. See [1] for more details.
Understanding the “right” dependence of δ−1 in ε−1, even for the simple case where the forbidden
graph H is a triangle, is considered an important and difficult open problem.

In view of the above discussion, a lot of effort has been dedicated to the problem of charac-
terizing the hereditary graph properties P for which fP(ε) is polynomial in ε−1, i.e., the easily
testable graph properties. See the recent work of Gishboliner and Shapira [17]; for other pre-
vious works on this subject, see, e.g., [1, 8, 6]. Our work also falls under this category, but for
(ordered) matrices instead of graphs; it is the first work of this type for ordered two-dimensional
graph-like structures.

We finish by mentioning several other relevant removal lemma type results. Removal lemmas
for vectors (i.e. one dimensional matrices where the order is important) are generally easier to
obtain; in particular, a removal lemma for vectors over a fixed finite alphabet can be derived
from a removal lemma for regular languages proved in [7]. A removal lemma for partially ordered
sets with a grid-like structure, which can be seen as a generalization of the removal lemma for
vectors, can be deduced from a result of Fischer and Newman in [14], where they mention
that this problem for submatrices is more complicated and not understood. Recently, Ben-
Eliezer, Korman and Reichman [11] obtained a removal lemma for patterns in multi-dimensional
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matrices. A pattern must be taken from consecutive locations, whereas in our case the rows and
columns of a submatrix need not be consecutive. The case of patterns behaves very differently
than that of submatrices, and in particular, in the removal lemma for patterns the parameters
are linearly related (for any alphabet size) unlike the case of submatrices (in which, for alphabets
of 3 letters or more, the relation cannot be polynomial).

3 Notation

Here we give some more notation that will be useful throughout the rest of the paper. We give
the notation for rows but the notation for columns is equivalent. Let M : [m]× [n]→ Γ be an
m × n matrix. For two rows in M whose indices in I are r < r′, we say that row r is smaller
than row r′ and row r′ is larger than row r. The predecessor of row r in M is the largest row r̄
in M smaller than r. In this case we say that r is the successor of r̄.

Let S be the submatrix of M on {r1, . . . , rs} × {c1, . . . , ct} where r1 < . . . < rs and c1 <
. . . < ct. For i = 1, . . . , s, the i-row-index of S in M is ri; For two submatrices S, S′ of the same
dimensions and with i-row-indices ri, r

′
i respectively we say that S is i-row-smaller than S′ if

ri < r′i and i-row-bigger if ri > r′i.
Let X = {x1, . . . , xs−1} ⊆ [m] with 0 < x1 < . . . < xs−1 < m and Y = {y1, . . . , yt−1} ⊆ [n]

with 0 < y1 < . . . < yt−1 < n be subsets of indices. The submatrix S is row-separated by X
if ri ≤ xi < ri+1 for any i = 1, . . . , s − 1, column-separated by Y if cj ≤ yj < cj+1 for any
j = 1, . . . , t − 1 and separated by X × Y if it is row separated by X and column separated by
Y . The elements of X,Y are called row separators, column separators respectively.

3.1 Folding and unfoldable matrices

A matrix is unfoldable if no two neighboring rows in it are equal and no two neighboring columns
in it are equal. The folding of a matrix A is the unique matrix Ã generated from A by deleting
any row of A that is equal to its predecessor, and then deleting any column of the resulting
matrix that is equal to its predecessor. Note that Ã is unfoldable.

Lemma 3.1. Fix an s × t matrix A and let Ã be its s′ × t′ folding. For any ε > 0 there exist
n0, δ > 0, where n0 and δ−1 are polynomial in ε−1, such that for any n ≥ n0, any n× n matrix
M that contains εns

′+t′ copies of Ã also contains δns+t copies of A.

Lemma 3.1 implies that generally, to prove removal lemma type results for finite families, it
is enough to only consider families of unfoldable matrices. The proof follows immediately from
the following lemma.

Lemma 3.2. Let A be an s × t fixed matrix and let A′ be an s′ × t matrix created from A
by deleting rows that are equal to their predecessors in A. Then for any ε > 0 there exist
n1 = n1(A, ε) > 0 and τ = τ(A, ε) > 0, where n1 and τ−1 are polynomial in ε−1, such that for
any n ≥ n1, any n × n matrix M that contains εns

′+t copies of A′ also contains τns+t copies
of A.

Proof of Lemma 3.2. Let T be the family of all n × t submatrices S of M containing at least
εns

′
/2 copies of A′. Any S ∈ T has

(
n
s′

)
≤ ns′ s′ × t submatrices, so the number of A′ copies in

submatrices from T is at most |T |ns′ . On the other hand, there are
(
n
t

)
≤ nt n× t submatrices

of M so the number of A′ copies in n× t submatrices not in T is less than εns
′+t/2. Hence the

total number of A′ copies in submatrices from T is at least εns
′+t/2, implying that |T | ≥ εnt/2.

Observe that any S ∈ T contains a collection A(S) of εn/2s′ pairwise disjoint copies of A′.
To show this, we follow a greedy approach, starting with a collection B of all A′-copies in S and
with empty A. As long as B is not empty, we arbitrarily choose a copy C ∈ B of A′, add C to
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A and delete all A′-copies intersecting C (including itself) from B. In each step, the number of
deleted copies is at most s′ns

′−1, so the number of steps is at least εns
′
/2s′ns

′−1 = εn/2s′.
Let δ = ε/5ss′ and take S ∈ T . Assuming that n is large enough, pick disjoint collections

A1, . . . ,As ⊆ A(S), each of size at least δn, so that all A′-copies in Ai are i-row-smaller than
all A′-copies in Ai+1 for any 1 ≤ i ≤ s − 1. Then there are δsns copies of A in S: Each s × t
submatrix of S whose i-th row is taken as the i-th row of a matrix from Ai is equal to A.
Therefore, the total number of A-copies in M is at least |T |δsns ≥ εδsns+t/2, as desired.

4 Proofs for the binary case

This section is dedicated to the proof of our main results in the binary domain: Theorem 1.2
and Theorem 1.5. As a general remark for the proofs in this section, We may and will assume
that a square matrix M is sufficiently large (given ε > 0), by which we mean that M is an n×n
matrix with n ≥ n0 for a suitable n0 > 0 that is polynomial in ε−1.

One of the main tools in the proofs of this section is a conditional regularity lemma for
matrices due to Alon, Fischer and Newman [5]. We describe a simpler version of the lemma
(this is Lemma 4.1 below) along with another useful result from their paper (Lemma 4.2 below).
Combining these results together yields the original version of the conditional regularity lemma
used in the original proof of Theorem 1.3 in [5]. It is worth to note that even though Theorem
1.5 generalizes Theorem 1.3, for its proof we only need the simpler Lemma 4.1 and not the
original regularity lemma, whose proof requires significantly more work. Lemma 4.2 is only
used in the proof of Theorem 1.2.

We start with some definitions. A (δ, r)-row-clustering of an n× n matrix M is a partition
of the set of rows of M into r + 1 clusters R0, . . . , Rr such that the error cluster R0 satisfies
|R0| ≤ δn and for any i = 1, . . . , r, every two rows in Ri differ in at most δn entries. That
is, for every e, e′ ∈ Ri, one can make row e equal to e′ by modifying at most δn entries. A
(δ, r)-column-clustering is defined analogously on the set of columns of M . The first conditional
regularity lemma states the following.

Lemma 4.1 [5]. Let k be a fixed positive integer and let δ > 0 be a small real. For every n× n
binary matrix M with n > (k/δ)O(k), either M admits (δ, r)-clusterings for both the rows and
the columns with r ≤ (k/δ)O(k), or for every k×k binary matrix A, at least a (δ/k)O(k2) fraction
of the k × k submatrices of M are copies of A.

Let R be a set of rows and let C be a set of columns in an n×n matrix M . The block R×C is
the submatrix of M on R×C. A block B is δ-homogeneous with value b if there exists b ∈ {0, 1}
such that at least a 1− δ fraction of the entries of B are equal to b. A (δ, r)-partition of M is
a couple (R, C) where R = {R1, . . . , Rr} is a partition of the set of rows and C = {C1, . . . , Cr}
is a partition of the set of columns of M , such that all but a δ-fraction of the entries of M lie
in blocks Ri × Cj that are δ-homogeneous. The second result that we need from [5], relating
clusterings and partitions of a matrix, is as follows.

Lemma 4.2 [5]. Let δ > 0. If a square binary matrix M has (δ2/16, r)-clusterings R, C of the
rows and the columns respectively then (R, C) is a (δ, r + 1)-partition of M .

For the proofs of the above lemmas see [5]. We continue to the proof of Theorem 1.2. The
following lemma is a crucial part of the proof.

Lemma 4.3. Fix an s×t matrix A. For any ε > 0 there exists τ > 0, where τ−1 is polynomial in
ε−1, such that any n× n matrix M containing εn2 pairwise-disjoint copies of A either contains
τns+t copies of any s × t matrix, or there exist subsets of indices X,Y of sizes s − 1, t − 1
respectively such that M contains τn2 pairwise disjoint copies of A that are separated by X×Y .
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Before providing the full proof of Lemma 4.3, we present a sketch of the proof. Clearly,
whenever we apply Lemma 4.1 throughout the proof, we may assume that the outcome is that
M has suitable row and column clusterings, as the other possible outcome of Lemma 4.1 finishes
the proof immediately. The main idea of the proof is to gradually find row separators, and then
column separators, while maintaining a large set of pairwise disjoint copies of A that conform
to these separators. This is done inductively (first for the rows, and then for the columns). The
inductive step is described in what follows.

Assume we currently have j − 1 ≥ 0 row-separators, and a set A of many pairwise disjoint
A-copies that have their first j rows separated by these row-separators. We take a clustering of
the rows of M , and consider a cluster in which many rows are “good”, in the sense that they
contain the j-th row of many of the disjoint A-copies from A. We put our j-th separator as the
medial row among the good rows. Next, we consider a matching of pairs (r1, r2) of good rows,
where in each such pair r1 lies before the j-th separator and r2 lies after the j-th separator.
Observe that all good rows lie after the (j − 1)-th separator.

If we take all pairwise-disjoint A-copies from A whose j-th row is r2, and “shift” their j-th
row to be r1, then most of them will still be A-copies (as rows r1 and r2 are very similar,
since they are in the same row cluster). This process creates a set A′ of many pairwise disjoint
A-copies whose i-th row lies between separators i − 1 and i for any i ≤ j, and the (j + 1)-th
row lies after separator j. This finishes the inductive step.

We now continue to the full proof of Lemma 4.3.

Proof of Lemma 4.3. Let ε > 0 and let M be a large enough n× n binary matrix containing a
collection U0 of εn2 pairwise disjoint A-copies.

We prove the following claim by induction on i, for i = 0, 1, . . . , s − 1: there exist τi, δi
with τ−1i , δ−1i polynomial in ε−1 such that either M contains τin

s+t copies of any s× t matrix
or there exist 0 = x0 < x1 < . . . < xi and a set Ui of δin

2 pairwise disjoint A-copies in M
whose j-th row is bigger then xj−1 and no bigger than xj for any 1 ≤ j ≤ i, and the (i+ 1)-th
row is bigger than xi. The base case i = 0 is trivial with δ0 = ε. Suppose now that i ≥ 1
and that x0, . . . , xi−1, δi−1 and Ui−1 are already determined. Applying lemma 4.1 on M with
parameters k = max{s, t} and δi−1/4, either M contains τin

s+t copies of any s× t matrix with
τ−1i polynomial in ε−1 and we are done, or M has a (δi−1/4, ri)-row-clustering Ri of M for ri
polynomial in δ−1i−1 and so in ε−1. The number of rows of M that contain the i-th row of at least
δi−1n/2 of the A-copies in Ui−1 is at least δi−1n/2, since the number of A-copies in Ui−1 whose
i-th row is not taken from such a row of M is less that n · δi−1n/2 = δi−1n

2/2. Let Ri be a row
cluster that contains at least δi−1n/2ri such rows. Note that all of these rows are bigger than
xi−1. Take subclusters R1

i , R
2
i of Ri, each containing at least bδi−1n/4ric ≥ δi−1n/5ri such rows

(the inequality holds for n large enough) where each row in R1
i is smaller than each row in R2

i .
Take xi to be the row index of the biggest row in R1

i .
Take arbitrarily δi−1n/5ri couples of rows (r, r′) where r ∈ R2

i and r′ ∈ R1
i and every row

participates in at most one couple. Let (r, r′) be such a couple. There exist δi−1n/2 s × t
submatrices of M that are A-copies from Ui−1 and whose i-th row is r. Moreover, for any j < i
the j-th row of each of these submatrices lies between xj−1 (non-inclusive) and xj (inclusive).
Since r and r′ differ in at most δi−1n/4 entries, there are at least δi−1n/4 such submatrices T
that satisfy the following: If we modify T by taking its i-th row to be r′ instead of r, T remains
an A-copy. Moreover, after the modification, the i-th row of T is in R1

i and is therefore no bigger
than xi, whereas the (i+ 1)-th row of T is bigger than the i-th row of T before the modification
which is bigger than xi, as needed. For every couple (r, r′) we can produce δi−1n/4 pairwise
disjoint copies of A whose j-th row is between xj−1 and xj for any j ≥ i and the (i+ 1)-th row
is after xi. There are δi−1n/5ri such couples (r, r′), and in total we get a set Ui of δin

2 copies of
A with the desired structure for δi = δ2i−1/20ri where δ−1i is polynomial in δ−1i−1 and so in ε−1.
Note that the copies in Ui are pairwise disjoint. In the end of the process there is a set U = Us
of δsn

2 pairwise disjoint copies of A whose rows are separated by X = {x1, . . . , xs−1}. A feature
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that is useful in what follows is that each copy in U has exactly the same set of columns (as a
submatrix of M) as one of the original copies of U0.

Now we apply the same process as above but in columns instead of rows, starting with the
δsn

2 copies in U . In the end of the process, we obtain that for some τ̂t, δ̂t such that τ̂−1t and
δ̂−1t are polynomial in δ−1s and so in ε−1, either M contains τ̂tn

s+t copies of any s × t matrix,
or there exists a set Û of δ̂tn

2 pairwise disjoint copies of A whose columns are separated by a
set of indices Y of size t − 1. Moreover, by the above feature, each of the copies in Û has the
same set of rows as some copy of A from U , so each copy has its rows separated by X. Hence
X × Y separates all copies in Û . Taking τ = min{τ̂t, δ̂t} finishes the proof.

Next we show how Theorem 1.2 follows from Lemma 4.3. The idea of the proof is to show,
using Lemmas 4.2 and 4.3, that there is a partition of M with blocks Ri × Cj (for 1 ≤ i ≤ s,
1 ≤ j ≤ t) satisfying the following.

• All row clusters Ri and all column clusters Cj are large enough.

• All rows of Ri (Cj) lie before all rows (columns) of Ri+1 (Cj+1 respectively) for any i and
j.

• Ri × Cj is almost homogeneous, and its “popular” value is Aij .

Using these properties, it is easy to conclude that M contains many A-copies.
We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let A be an s × t binary matrix and let k = max{s, t}. Let ε > 0
and let M be a large enough n× n binary matrix that contains εn2 pairwise disjoint A-copies.
Lemma 4.3 implies that either M contains τns+t copies of A where τ−1 is polynomial in ε−1

(in this case we are done), or M contains at least τn2 pairwise disjoint copies of A separated
by X ×Y for suitable index subsets X,Y . By Lemma 4.1 we get that either M has (τ2/128, r)-
clusterings of the rows and the columns where r is polynomial in τ−1 and so in ε−1, or at least
a ζ = (τ2/128k)O(k2) fraction of the s × t submatrices are A; in the second case we are done.
Suppose then that M has (τ2/128, r)-clusterings R, C of the rows, columns respectively. The
next step is to create refinements of the clusterings. Write the elements of X as x1 < . . . < xs−1
and let x0 = 0, xs = n. Partition each R ∈ R into s parts where the i-th part for i = 1, . . . , s
consists of all rows in R with index at least xi−1 and less than xi. Each such part is also
a τ2/128-cluster. Now separate each C ∈ C into t parts in a similar fashion. This creates
(τ2/128, (r + 1)k)-clusterings R′, C′ of the rows and the columns respectively (where some of
the clusters might be empty). By Lemma 4.2, P = (R′, C′) is a (τ/4, r′)-partition of M where
r′ = (r+ 1)k + 1, and each block of the partition has all of its entries between two neighboring
row separators from X and between two neighboring column separators from Y .

There are at most τn2/4 entries of M that lie in non-τ/4-homogeneous blocks of P and at
most τn2/4 entries of M that lie in τ/4-homogeneous blocks of P but do not agree with the
value of the block. Therefore, the number of entries as above is no more than τn2/2, and so
there exists a set of τn2/2 pairwise disjoint copies of A in M separated by X × Y in which all
the entries come from τ/4-homogeneous blocks and agree with the value of the block in which
they lie. Hence there exist sets of rows R1, . . . , Rs ∈ R′ and sets of columns C1, . . . , Ct ∈ C′ and
a collection A of τn2/2(r′)2k pairwise disjoint A-copies separated by X × Y such that for any
1 ≤ i ≤ s, 1 ≤ j ≤ t, the block Ri ×Cj is τ/4-homogeneous, has value A(i, j), lies between row
separators xi−1 and xi and between column separators yj−1 and yj , and contains the (i, j) entry
of any A-copy in A. This implies that |Ri|, |Cj | ≥ τn/2(r′)2k for any 1 ≤ i ≤ s and 1 ≤ j ≤ t,
So there are (τ/2(r′)2k)s+tns+t s× t submatrices of M whose (i, j) entry lies in Ri×Cj for any
i, j. Picking such a submatrix S at random, the probability that S(i, j) 6= A(i, j) for a specific
couple i, j is at most τ/4; thus S is equal to A with probability at least 1 − stτ/4 > 1/2 for
small enough τ . Hence the number of A-copies in M is at least(τ/2(r′)2k)s+tns+t/2.
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Next we give the proof of Theorem 1.5. For the proof, recall the definition of an unfoldable
matrix and a folding of a matrix from Section 3. A family of matrices is unfoldable if all matrices
in it are unfoldable. The folding of a finite family F of matrices is the set F̃ = {Ã : A ∈ F} of
the foldings of the matrices in F . Observe that F̃ is unfoldable for any family F . Note that if
F is closed under (row) permutations then F̃ is also closed under (row) permutations.

We start with a short sketch of the proof, before turning to the full proof: As before, we
may assume that our matrix M has a row clustering with suitable parameters. We may also
assume that the forbidden family is unfoldable. Consider a submatrix Q of M that contains
exactly one “representative” row from any large enough row cluster. The crucial idea is that
if Q does not contain many A-copies, then M is close to F-freeness. Indeed, one can modify
all rows in M to be equal to rows from Q without making many entry modifications, and after
this modification, it is possible to eliminate all F-copies in M (without creating new F-copies)
by only modifying those columns in M that participate in some F-copy in Q; if Q does not
contain many F-copies then the number of such columns is small. Since the above statement
is true for any possible choice of Q, we conclude that if M is ε-far from F-freeness then it must
contain many A-copies.

Proof of Theorem 1.5. It is enough to prove the statement of the theorem only for unfoldable
families that are closed under row permutations. Indeed, suppose that Theorem 1.5 is true for
all unfoldable families that are closed under row permutations. Let F be a family of binary
matrices that is closed under row permutations and let F̃ be its folding. Then for any ε > 0
there exists δ̃ > 0 such that any square binary matrix M which is ε-far from F̃-freeness contains
δ̃ns

′+t′ copies of some s′ × t′ matrix B ∈ F̃ , where δ̃−1 is polynomial in ε−1. Thus, provided
that M is large enough (i.e. that it is an n× n matrix where n ≥ n0 for a suitable choice of n0
polynomial in ε−1), we can apply Lemma 3.1 to get that M also contains δns+t copies of the
matrix A ∈ F whose folding is B, for a small enough δ > 0 where δ−1 is polynomial in ε−1.

Therefore, suppose that F is an unfoldable finite family of binary matrices that is closed
under row permutations. Let k be the maximal row or column dimension of a matrix from F .
Let ε > 0 and apply Lemma 4.1 with parameters k and ε/6. Let M be a large enough n × n
matrix with n > (k/ε)O(k), then either M contains δ2n

2k copies of any k× k matrix, where δ−12

is polynomial in ε−1, or M has an (ε/6, r)-clustering of the rows with r polynomial in ε−1. In
the first case we are done, so suppose that M has an (ε/6, r)-clustering R = {R0, . . . , Rr} of
the rows where R0 is the error cluster.

Suppose that M is ε-far from F-freeness. We say that a cluster R 6= R0 in R is large if
it contains at least εn/6r rows. Note that the total number of entries that do not lie in large
clusters is at most εn/6 + εn/6 = εn/3. Pick an arbitrary row r(R) from every large cluster
R ∈ R and denote by Q the submatrix of M created by these rows. Let A(Q) be a collection
of pairwise disjoint copies of matrices from F in Q that has the maximal possible number of
copies. Suppose to the contrary that |A| ≤ εn/3k and let C be the set of all columns of M
that intersect a copy from A, then C contains no more than εn/3 columns. We can modify M
to make it F-free as follows: First modify every row that lies in a large cluster R ∈ R to be
equal to r(R). Then pick some row r of Q and modify all rows that are not contained in large
clusters to be equal to r. Finally do the following: As long as C is not empty, pick a column
c ∈ C that has a neighbor (predecessor or successor) not in C and modify c to be equal to its
neighbor, and then remove c from C.

It is not hard to see that since F is unfoldable and closed under row permutations, after these
modifications M is F-free. Indeed, after the first and the second steps, all rows of M are equal
to rows from Q; the order of the rows does not matter since F is closed under row permutations.
Now each time that we modify a column c ∈ C in the third step, all copies of matrices from
F that intersect it are destroyed and no new copies are created. By the maximality of A, any
copy of a matrix from F in the original Q intersected some column from C, so we are done.
The number of entry modifications needed in the first, second, third step respectively is at most
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εn2/6, εn2/3, εn2/3 and thus by making only 5εn2/6 modifications of entries of M we can make
it F-free, contradicting the fact that M is ε-far from F-freeness.

Let Q be any matrix of representatives of the large row clusters as above. Then Q contains
a collection A of εn/3k pairwise disjoint copies of matrices from F . In particular, there exist a
certain s × n submatrix T of Q and an s × t matrix A(Q) ∈ F such that at least εn/3k|F|rs
of the copies in A are A-copies that lie in T . The following elementary removal lemma implies
that T contains many A-copies.

Observation 4.4. Fix an s× t matrix A. For any ε > 0 there exists δ > 0 such that if an s×n
matrix T contains εn pairwise-disjoint A-copies, then the total number of A-copies in T is at
least δnt, with δ−1 polynomial in ε−1.

Proof. Let ε > 0 and let T be a large enough s×n matrix containing εn pairwise disjoint copies
of A. We construct t disjoint subcollections A1, . . . ,At of A, each of size εn/2t ≤ bεn/tc, such
that for any i < j, all copies in Ai are i-column-smaller than all copies in Aj . This is done
by the following process for i = 1, . . . , t: take Ai to be the set of the εn/2t i-smallest copies in
A and delete these copies from A. Now observe that any s × t submatrix of T that takes its
i-th column (for i = 1, . . . , t) as the i-th column of some copy from Ai is equal to A. There
are (εn/2t)t such submatrices among all

(
n
t

)
≤ nt s × t submatrices of T , and so T contains

(ε/2t)tnt A-copies.

Observation 4.4 implies that for Q and A(Q) as above, Q contains γns+t A-copies where γ−1

is polynomial in (ε/3k|F|rs)−1 and so in ε−1. Finally we show that M contains δns+t copies of
some A ∈ F where δ−1 is polynomial in γ−1 and so in ε−1, finishing the proof of the Theorem.
For any large cluster R ∈ R let R′ be some subcluster that contains exactly bεn/6rc > 0 rows.
Let R′ = {R′ : R ∈ R is large} and note that an α-fraction of the k × k submatrices S of M
have all of their rows in subclusters from R′ with no subcluster containing more than one row
of S, where α−1 is polynomial in ε−1. Let S be a random k × k submatrix of M . Conditioning
on the event that S satisfies the above property, we can assume that S is chosen in the following
way: First a random Q is created by picking uniformly at random one representative from every
R′ ∈ R′, and then S is taken as a random k × k submatrix of Q. Let A = A(Q) be defined
as above. The probability that S contains a copy of A is at least γ. That is, a random k × k
submatrix S of M contains a copy of a matrix from F with probability at least αγ, so there
exists an s× t matrix A ∈ F that is contained in a randomly chosen such S with probability at
least αγ/|F|, so M contains αγ

(
n
s

)(
n
t

)
/|F|k2k copies of some A ∈ F : To see this, observe that

we can choose a random s× t submatrix S′ of M by first picking a random k × k submatrix S
and then picking an s × t random submatrix S′ of S. The event that S contains a copy of A
has probability at least αγ/|F|, and conditioned on this event, S′ is equal to A with probability
at least k−2k, as the number of s × t submatrices of S is at most sktk ≤ k2k. The proof is
concluded by taking a suitable δ = δ(ε) > 0 that satisfies δns+t ≤ αγ

(
n
s

)(
n
t

)
/|F|k2k for large

enough values of n. Note that indeed δ−1 is polynomial in ε−1.

5 Multi-dimensional matrices over arbitrary alphabets

As opposed to the polynomial dependence in the above results on binary matrices, Fischer and
Rozenberg [15] showed that in analogous results for ternary matrices, as well as binary three-
dimensional matrices, the dependence is super-polynomial in general. The proof builds on a
construction of Behrend [10]. For the ternary case, it gives the following.

Theorem 5.1 [15]. There exists a (finite) family F of 2×2 binary matrices that is closed under
permutations and satisfies the following. For any small enough ε > 0, there exists an arbitrarily
large n × n ternary matrix M that contains εn2 pairwise-disjoint copies of matrices from F ,
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yet the total number of submatrices from F in M is no more than ε−c log εn4 where c > 0 is an
absolute constant.

Theorem 5.1 implies that an analogue of Theorem 1.2 with polynomial dependence cannot
be obtained when the alphabet is bigger than binary, even when F is a small finite family that is
closed under permutations. In Subsection 5.1 we describe another construction that establishes
Theorem 5.1, which is slightly simpler than the original construction in [15].

In what follows, we focus on the problem of finding a “weak” removal lemma analogous to
Theorem 1.2 for matrices in more than two dimensions over an arbitrary alphabet. Here we do
not try to optimize the dependence between the parameters, but rather to show that such a
removal lemma exists. Note that in two dimensions this removal lemma follows from Theorem
1.1, but our results here suggest a direction to prove a weak high dimensional removal lemma
without trying to generalize the heavy machinery used in [2] to the high dimensional setting.
Our main result here states that this problem is equivalent in some sense to the problem of
showing that if a hypermatrix M contains many pairwise-disjoint copies of a hypermatrix A,
then it contains a “wide” copy of A; more details are given later. In what follows, we use
the term d-matrix to refer to a matrix in d dimensions. An (n, d)-matrix is a d-matrix whose
dimensions are n× · · · × n.

A weak removal lemma for families of d-matrices that are closed under permutations follows
easily from the hypergraph removal lemma [19, 22, 21, 27] using a suitable construction.

Proposition 5.2. Let Γ be an arbitrary alphabet and let F be a finite family of d-matrices over
Γ that is closed under permutations (in all d coordinates). For any ε > 0 there exists δ > 0 such
that the following holds. If an (n, d)-matrix M over Γ contains εnd pairwise disjoint copies of
d-matrices from F , then M contains δns1+···+sd copies of some s1 × . . .× sd matrix A ∈ F .

Note that Theorem 5.1 implies that the dependence of δ−1 on ε−1 in Proposition 5.2 cannot
be polynomial. The question whether the statement of Proposition 5.2 holds for any finite family
F is open for d-matrices with d > 2. Here we state the question in the following equivalent but
simpler form.

Problem 5.3. Let d > 2 be an integer. Is it true that for any alphabet Γ, s1 × . . .× sd matrix
A over Γ and ε > 0 there exists δ > 0, such that for any (n, d)-matrix M over Γ containing εnd

pairwise-disjoint copies of A, the total number of A-copies in M is at least δns1+···+sd?

Note that Theorem 1.2 settles the two-dimensional binary case of Problem 5.3 with δ−1

polynomial in ε−1, and Theorem 1.1 settles the two-dimensional case over any alphabet. On
the other hand, δ−1 cannot be polynomial in ε−1 if |Γ| > 2 or d > 2.

Our main theorem in this domain shows that Problem 5.3 is equivalent to another statement
that looks more accessible. We need the following definition to describe it. Let M : [n1]× . . .×
[nd] → Γ and let S be the submatrix of M on the indices {r11, . . . , r1s1} × . . . × {r

d
1 , . . . , r

d
sd
}

where rij < rij+1 for any 1 ≤ i ≤ d, 1 ≤ j ≤ si − 1. The (i, j)-width of S (for 1 ≤ i ≤ d and

1 ≤ j ≤ si − 1) is (rij+1 − rij)/ni.

Theorem 5.4. The following statements are equivalent for any d ≥ 2.

1. For any alphabet Γ, s1 × . . .× sd matrix A over Γ and ε > 0 there exists δ > 0 such that
for any (n, d)-matrix M that contains εnd pairwise disjoint copies of A, the total number
of A-copies in M is at least δns1+···+sd.

2. For any alphabet Γ, s1× . . .×sd matrix A over Γ and ε > 0 there exists δ > 0 such that for
any (n, d)-matrix M that contains εnd pairwise disjoint copies of A, and any 1 ≤ i ≤ d,
1 ≤ j ≤ si, there exists an A-copy in M whose (i, j)-width is at least δ.
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The proofs of the statements here are given, for simplicity, only for two dimensional ma-
trices, but they translate directly to higher dimensions. The only major difference in the high
dimensional case is the use of the hypergraph removal lemma instead of the graph removal
lemma.

We start with the (simple) proof of Proposition 5.2. The proof uses the non induced graph
removal lemma. Some definitions are required for the proof. An s× t reordering σ is a permu-
tation of [s]× [t] that is a Cartesian product of two permutations σ1 : [s]→ [s] and σ2 : [t]→ [t].
Given an s × t matrix A, the s × t matrix σ(A) is the result of the following procedure: First
reorder the rows of A according to the permutation σ1 and then reorder the columns of the
resulting matrix according to the permutation σ2.

Proof of Proposition 5.2. Let k(F) denote the largest row or column dimension of matrices from
F . Let ε > 0 and let M be an n× n matrix over Γ that contains εn2 pairwise-disjoint copies of
matrices from F . In particular, there is an s × t matrix A ∈ F such that M contains εn2/|F|
pairwise-disjoint copies of A.

We construct an (s + t)-partite graph G on (s + t)n vertices as follows: There are s row
parts R1, . . . , Rs and t column parts T1, . . . , Tt, each containing n vertices. The vertices of Ri
(Ci) are labeled ri1, . . . , r

i
n (ci1, . . . , c

i
n respectively). Two vertices rai and rbj (or cai and cbj) with

a 6= b are connected by an edge iff i 6= j. rai and cbj are connected iff M(i, j) = A(a, b).
We now show that there exists a bijection between copies of Ks+t in G and couples (S, σ)

where S is an s × t submatrix of M and σ is an s × t reordering such that σ(S) = A. Indeed,
take the following mapping: A couple (S, σ), where S is the submatrix of M on {a1, . . . , as} ×
{b1, . . . , bt} with a1 < . . . < as and b1 < . . . < bt and σ = σ1 × σ2, is mapped to the induced

subgraph of G on {rσ1(1)a1 , . . . , r
σ1(s)
as , c

σ2(1)
b1

, . . . , c
σ2(t)
bt
}.

It is not hard to see that (S, σ) is mapped to a copy of Ks+t if and only if σ(S) is equal to
A. On the other hand, every copy of Ks+t in G has exactly one vertex in each row part and in
each column part, and there exists a unique couple (S, σ) mapped to it.

There exist εn2/|F| pairwise-disjoint A-copies in M that are mapped (with the identity
reordering) to edge-disjoint copies of Ks+t in G. By the graph removal lemma, there exists
δ > 0 such that at least a δ-fraction of the subgraphs of G on s + t vertices are cliques.
Therefore, at least a δ-fraction of the possible couples (S, σ) (where S is an s× t submatrix of
M and σ is an s× t reordering) satisfy σ(S) = A, concluding the proof.

Next we give the proof of Theorem 5.4. We may and will assume throughout the proof
that M is an n × n matrix where n is large enough with respect to ε. The terms i-height and
j-width correspond to (1, i)-width and (2, j)-width, respectively, in the definition given before
the statement of Theorem 5.4.

Proof of Theorem 5.4. We start with deriving Statement 2 from Statement 1; this direction is
quite straightforward, while the other direction is more interesting. Fix an s× t matrix A. Let
ε > 0 and assume that Statement 1 holds. There exists δ = δ(ε), such that if M contains εn2

pairwise-disjoint A-copies then it contains δns+t copies of A. To prove Statement 2 we can pick
δ′ = δ′(ε) > 0 small enough such that for any large enough n× n matrix M , any 1 ≤ i ≤ s− 1
and any 1 ≤ j ≤ t− 1, the fraction of s× t submatrices with i-height (or j-width) smaller than
δ′ among all s×t submatrices is at most δ/2. Fix an 1 ≤ i ≤ s−1. This choice of δ′ implies that
any matrix M containing εn2 pairwise disjoint A-copies also contains an A-copy with i-height
at least δ′. Similarly, for any 1 ≤ j ≤ t− 1 there is an A-copy with j-width at least δ′.

Next we assume that Statement 2 holds and prove Statement 1. Fix an s× t matrix A over
an alphabet Γ, let ε > 0 and let M be a large enough n× n matrix containing a collection A0

of εn2 pairwise disjoint A-copies. We will show that there exist ε∗ > 0 that depends only on ε,
sets X,Y of row and column separators respectively of sizes s− 1 and t− 1 and a collection of
ε∗n2 disjoint A-copies separated by X×Y in M . Then we will combine a simpler variant of the
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construction used in the proof of Proposition 5.2 with the graph removal lemma to show that
M contains δns+t copies of A for a suitable δ(ε) > 0.

The number of A-copies in M does not depend on the alphabet, so we may consider A and
M as matrices over the alphabet Γ′ = Γ ∪ {α} for some α /∈ Γ, even though all symbols in A
and M are from Γ. Without loss of generality we assume that no two entries in A are equal.

Let X0 = φ, ε0 = ε and let M0 be the following n × n matrix over Γ′: All A-copies in A0

appear in the same locations in M0, and all other entries of M0 are equal to α. Clearly, any
A-copy in M0 also appears in M . Next, we construct iteratively for any i = 1, . . . , s − 1 an
n×n matrix Mi over Γ′ that contains a collection Ai of εin

2 pairwise disjoint copies of A where
εi > 0 depends only on εi−1, such that all A-copies in Mi also exist in Mi−1. We also maintain
a set Xi of row separators whose elements are x1 < . . . < xi, such that any entry of Mi between
xj−1 and xj for j = 1, . . . , i (where we define x0 = 0, xs = n) is either equal to one of the entries
of the j-th row of A or to α.

The construction of Mi given Mi−1 is done as follows. By Statement 2, there exists δi =
δi(εi−1) such that any matrix M ′ over Γ′ containing at least εi−1n

2/2 copies of A also contains
a copy of A with i-height at least δi. We start with a matrix M ′ equal to Mi−1 and an empty
Ai, and as long as M ′ contains a copy of A with i-height at least δi, we add it to Ai and modify
(in M ′) all entries of all A-copies from Ai−1 that intersect it to α. By the separation that Xi−1
induces on M ′, each such copy has its j-th row between xj−1 and xj for any 1 ≤ j ≤ i− 1.

This process might stop only when at least εi−1n
2/2 of the copies from Ai−1 in M ′ have

one of their entries modified. Since in each step at most st copies of A are deleted from M ′, in
the end Ai contains at least εi−1n

2/2st pairwise disjoint copies of A with i-height at least δi.
Pick uniformly at random a row index xi > xi−1. The probability that a certain copy of A in
Ai has its i-th row at or above xi and its (i + 1)-th row below xi is at least δi. Therefore, the
expected number of A-copies in Ai with this property is at least εin

2 with εi = δiεi−1/2st, so
there exists some xi such that at least εin

2 A-copies in Ai have their first i+ 1 rows separated
by Xi = Xi−1 ∪ {xi}; delete all other copies from Ai. We construct Mi as follows: All A-copies
from Ai appear in the same locations in Mi, and all other entries of Mi are equal to α.

After iteration s−1 we have a matrix Ms−1 with εs−1n
2 copies of A separated by X = Xs−1.

We apply the same process in columns instead of rows, starting with the matrix Ms−1. The
resulting matrix M∗ contains ε∗n2 pairwise disjoint copies of A separated by X × Y where Y
consists of the column separators y1 < . . . < yt−1, ε

∗ depends on ε, and M∗ only contains
A-copies that appeared in the original M .

Finally, construct an (s + t)-partite graph G on 2n vertices as follows: The row parts
are R1, . . . , Rs and the column parts are C1, . . . , Ct where Ri (Ci) contains vertices labeled
xi−1 + 1, . . . , xi (yi−1 + 1, . . . , yi respectively) with x0 = y0 = 0, xs = yt = n. Any two row
(column) vertices not in the same part are connected. Vertices a ∈ Ri, b ∈ Cj are connected
if and only if M∗(a, b) = A(i, j). Clearly there exists a bijection between A-copies in M∗ and
Ks+t copies in G that maps disjoint A-copies to edge disjoint Ks+t-copies in G, so it contains
ε∗n2 edge disjoint (s+ t)-cliques. By the graph removal lemma there exists δ = δ(ε∗) > 0 such
that a δ-fraction of the subgraphs of G on s+ t vertices are cliques. Hence at least a δ-fraction
of the s× t submatrices of M are equal to A.

5.1 Lower bound

In this subsection we give an alternative constructive proof of Theorem 5.1. Our main tool is
the following result in additive number theory from [1], based on a construction of Behrend [10].

Lemma 5.5 [1, 10]. For every positive integer m there exists a subset X ⊆ [m] = {1, . . . ,m}
with no non-trivial solution to the equation x1 + x2 + x3 = 3x4, where X is of size at least

|X| ≥ m

e20
√
logm

. (1)
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Proof of Theorem 5.1. Consider the family F = {A,B} where

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
,

and observe that F is closed under permutations. Let m be a positive integer divisible by 10 and
let X ⊆ [m/10] be a subset with no non-trivial solution to the equation x1 +x2 +x3 = 3x4 that
is of maximal size. We construct the following m×m ternary matrix M . For any 1 ≤ i ≤ m/5
and any x ∈ X we put a copy of A in M as follows:

M(i, i+ x) = M(m/2 + i+ 2x,m/2 + i+ 3x) = 1

M(i,m/2 + i+ 3x) = M(m/2 + i+ 2x, i+ x) = 0.

We set all other entries of M to 2. Let A be the collection of q = m|X|/5 ≥ m2/50e20
√
logm

pairwise disjoint copies of A in M that are created as above. Note that all A-copies in M
are separated by {n/2} × {n/2}, where there are two opposite quarters (with respect to the
separation) that do not contain the entry 0 and the two other opposite quarters do not contain
1. Hence, every A-copy must contain one entry from each quarter, and M does not contain
copies of B. The main observation is that all of the A-copies in M are actually copies from A,
so M contains exactly q A-copies.

To see this, suppose that the rows of an A-copy inM are i and j+n/2 for some 1 ≤ i, j ≤ n/2,
then there exist x1, x2, x3, x4 ∈ X such that the entries of the copy were taken from locations
(i, i + x1), (i,m/2 + i + 3x2), (m/2 + j, j − x3), (m/2 + j,m/2 + j + x4) in M and so we have
i+x1 = j−x3 and i+3x2 = j+x4. Reordering these two equations we get that 3x2 = x1+x3+x4,
implying that x1 = x2 = x3 = x4 and j = i+ 2x1, so the above A-copy is indeed in A.

Let n be an arbitrarily large positive integer divisible by m. Given M as above, we create
an n×n ‘blowup’ matrix N as follows: For any 1 ≤ i, j ≤ n, N(i, j) = M(bim/nc, bjm/nc). N
can also be seen as the result of replacing any entry e in M with an n/m×n/m matrix of entries
equal to e. The total number of A-copies in N is exactly (n/m)4q = n4|X|/5m3, whereas the
maximum number of pairwise disjoint A-copies in N is exactly (n/m)2q = n2|X|/5m. Assuming
that ε > 0 is small enough and picking m to be the smallest integer divisible by 10 and larger
than εc log ε for a suitable absolute constant c > 0 gives that |X|/5m > ε, but the number of
A-copies in N is at most n4|X|/5m3 ≤ n4/m2 < ε−c log εn4 as needed.

6 Concluding remarks

Generally, understanding property testing seems to be easier for objects that are highly sym-
metric. A good example of this phenomenon is the problem of testing properties of (ordered)
one-dimensional binary vectors. There are some results on this subject, but it is far from being
well understood. On the other hand, the binary vector properties P that are invariant under
permutations of the entries (these are the properties in which for any vector v that satisfies P ,
any permutation of the entries of v also satisfies P ) are merely those that depend only on the
length and the Hamming weight of a vector. This makes the task of testing these properties
trivial.

A central example of the symmetry phenomenon is the well investigated subject of property
testing in (unordered) graphs, that considers only properties of functions from

(
[n]
2

)
to {0, 1}

that are invariant under permutations of
(
[n]
2

)
induced by permutations on [n]. That is, if a

labeled graph G satisfies some graph property, then any relabeling of its vertices results in
a graph that also satisfies this property. Indeed, the proof of the only known general result
on testing properties of ordered graphs (here the functions are generally not invariant under
permutations), given in [2], is substantially more complicated than the proof of its unordered
analogue. See [25] for further discussion on the role of symmetries in property testing.
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In general, matrices (with row and column order) do not have any symmetries. Therefore,
the above reasoning suggests that proving results on the testability of matrix properties is likely
to be harder than proving similar results on properties of matrices where only the rows are
ordered (such properties are invariant under permutations of the columns), which might be
harder in turn than proving the same results for properties of matrices without row and column
orders, i.e. bipartite graphs, as these properties are invariant under permutations of both the
rows and the columns.

Theorem 1.2 is a weak removal lemma for binary matrices with row and column order, while
Theorem 1.3 is an induced removal lemma for binary matrices without row and column order,
and our generalization of it, Theorem 1.5, is an induced removal lemma for binary matrices
with a row order but without a column order. It will be very interesting to settle Problem 1.4,
that asks whether a polynomial induced removal lemma exists for binary matrices with row and
column orders.

It will be interesting to expand our knowledge of matrices in higher dimensions and of
ordered combinatorial objects in general. Proposition 5.2 is a non-induced removal lemma for
(multi-dimensional) matrices without row and column orders. It will be interesting to get results
of this type for less symmetric objects, ultimately for ordered multi-dimensional matrices. We
believe that providing a direct solution (that does not go through Theorem 1.1) for the following
seemingly innocent problem is of interest, and might help providing techniques to help settling
Problem 5.3 in general. In what follows, the height of a 2× 2 submatrix S in an n× n matrix
M is the difference between the indices of the rows of S in M , divided by n.

Problem 6.1. Let A =

(
0 1
2 3

)
and suppose that an n × n matrix contains εn2 pairwise

disjoint copies of A. Show (without relying on Theorem 1.1) that there exists δ = δ(ε) such that
M contains an A-copy with height at least δ.

The three dimensional analogue of this problem is obviously also of interest. Here Theorem
1.1 cannot be applied, so currently we do not know whether such a δ = δ(ε) that depends only
on ε exists. Solving the three-dimensional analogue will settle Problem 5.3 when the forbidden
hypermatrix has dimensions 2 × 2 × 2, and the techniques might lead to settling Problem 5.3
in its most general form.

As a final remark, in the results in which δ−1 is polynomial in ε−1 we have not tried to
obtain tight bounds on the dependence, and it may be interesting to do so.
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