Thanh Nguyen

Current institution:
Massachusetts Institute of Technology
Department of Nuclear Science and Engineering
Cambridge, MA

Office:
Building NW13-202
144 Albany Street
Cambridge, MA 02139, USA

google scholar: [x]
curriculum vitae: [x]
email: ngutt at mit dot edu

I am a sixth-year Ph.D. candidate at Massachusetts Institute of Technology, working with Mingda Li.

I am generally interested in the topic of topological and strongly-correlated materials and next-generation nano-scale devices using these materials. A profile by MIT News about myself and my early doctoral work can be found here. My previous undergraduate work was at McGill University in high-energy physics, working with Thomas Brunner under the nEXO Collaboration, who is searching for Majorana fermions through neutrinoless double-beta decay (0νββ) experiments in 136Xe. The group at McGill University also does work on multi-messenger astrophysics - see the work done by my friend and former labmate, Soud Al Kharusi.

Education
Publications
  1. Kajale, S. N., et al. Deterministic and non-volatile switching of all-van der Waals spin-orbit torque system above room temperature without external magnetic fields. (in press, Sci. Adv.) (2024).
  2. [*] Kajale, S. N., Nguyen, T., et al. Current-induced switching of a van der Waals ferromagnet at room temperature. Nat. Commun. 15, 1485 (2024).
  3. [*] Drucker, N. C., Nguyen, T., Han, F., Siriviboon, P., Luo, X., et al. Topology stabilized fluctuations in a magnetic nodal semimetal. Nat. Commun. 14, 5182 (2023). [MIT News]
  4. Mandal, M., Drucker, N. C., Siriviboon, P., et al. Topological superconductors from a materials perspective. Chem. Rev. 35, 6184 (2023).
  5. Chen, Z., Shen, X. et al. Panoramic Mapping of Phonon Transport from Ultrafast Electron Diffraction and Scientific Machine Learning. Adv. Mater. 35, 2206997 (2022).
  6. Andrejevic, N., Andrejevic, J. et al. Machine-Learning Spectral Indicators of Topology. Adv. Mater. 34, 2204113 (2022). [MIT News]
  7. Shin, J., Gamage, G. A., Ding, Z. et al. High ambipolar mobility in cubic boron arsenide. Science 377, 437–440 (2022). [MIT News]
  8. Wang, S. et al. Acid-in-Clay Electrolyte for Wide-Temperature-Range and Long-Cycle Proton Batteries. Adv. Mater. 34, 2202063 (2022).
  9. Andrejevic, N., Chen, Z. et al. Elucidating proximity magnetism through polarized neutron reflectometry and machine learning. Appl. Phys. Rev. 9, 011421 (2022). [Scilight]
  10. [*] Nguyen, T. & Li, M. Electronic properties of correlated kagomé metals AV3Sb5 (A = K, Rb, Cs): A perspective. J. Appl. Phys. 131, 060901 (2022).
  11. [*] Nguyen, T., Tsurimaki, Y., Pablo-Pedro, R., Bednik, G. et al. Topological signatures in nodal semimetals through neutron scattering. New J. Phys. 24, 013016 (2022).
  12. [*] Nguyen, T. et al. Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices. Nano Lett. 21, 7419-7435 (2021). [MIT News] [APS Science Highlight]
  13. Chen, Z., Andrejevic, N. et al. Machine learning on neutron and x-ray scattering and spectroscopies. Chem. Phys. Rev. 2, 031301 (2021). [Scilight]
  14. [*] Han, F., Andrejevic, N., Nguyen, T., Kozii, V. et al. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nat. Commun. 11, 6167 (2020). [MIT News]
  15. [*] Nguyen, T., Han, F., Andrejevic, N., Pablo-Pedro, R. et al. Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal. Phys. Rev. Lett. 124, 236401 (2020). [MIT News] [DOE BES Highlight]
Manuscripts
  1. Drucker, N. C. et al. Incipient nematicity from electron flat bands in a kagome metal. arXiv.2401.17141 [cond-mat.str-el] (2024).
  2. Zhou, Y. et al. Defects Vibrations Engineering for Enhancing Interfacial Thermal Transport. arXiv.2310.10945 [physics.app-ph] (2023).
  3. Okabe, R., Chotrattanapituk, A. et al. Virtual Node Graph Neural Network for Full Phonon Prediction. arXiv:2301.02197 [cond-mat.dis-nn] (2023).
  4. Andrejevic, N., Han, F. et al. Spectroscopic Signatures of Nonlocal Interfacial Coupling in Superconducting FeSe/SrTiO3 Heterostructures. arXiv:1908.05648 [cond-mat.mes-hall] (2019).
  5. nEXO Collaboration et al. nEXO Pre-Conceptual Design Report. arXiv:1805.11142 [nucl-ex, physics:physics] (2018).
Awards
Presentations
  1. (2023) MRS Fall Meeting in Boston, MA. Thermal Characterization of an Epitaxial Gallium Nitride Film via Spatial-Temporal-Resolved X-Ray Diffraction.
  2. (2022) MRS Spring Meeting in Honolulu, HI. Topological signatures in nodal semimetals through neutron scattering.
  3. (2022) APS March Meeting in Chicago, IL. Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices.
  4. (2021) APS March Meeting (virtual). Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal.
  5. (2020) APS User's Workshop: Multi-Modal X-Ray Techniques for Emergent Quantum Materials (virtual). New class of Kohn anomalies in Weyl semimetals.
  6. (2020) APS March Meeting in Denver, CO (cancelled). Interplay between topology and magnetic excitations in topological nodal semimetal CeAlGe.
  7. (2019) APS March Meeting in Boston, MA. Topologically-induced Kohn anomaly using Weyl semimetal TaP.
  8. (2017) Canadian Undergraduate Physics Conference (CUPC) in Ottawa, Canada. Development of an electroluminescent light source for the nEXO Collaboration.
Posters
  1. (2022) 12th International Conference on Inelastic X-ray Scattering in Oxford, United Kingdom. Topological Singularity Induced Chiral Kohn Anomaly in a Weyl Semimetal (won poster prize).
  2. (2022) QS3 Quantum Science Summer School in Santa Barbara, CA. Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices.
  3. (2022) Topological Electrons Interacting In-Person in Quy Nhon, Vietnam. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal.
  4. (2022) MRS Spring Meeting in Honolulu, HI. Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices.
  5. (2022) Topological Materials: From Weak to Strong Correlations in Dresden, Germany. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal.
  6. (2022) The Quantum Science and Engineering Research Conference, QuARC. Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices.
  7. (2021) Department of Energy Neutron Scattering Principal Investigators’ Meeting. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal.
  8. (2021) Materials Research Society Fall Meeting. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal (won Student Best Poster Award).
  9. (2017) Canadian Undergraduate Physics Conference (CUPC) at Carleton University. Development of an electroluminescent light source for the nEXO Collaboration.
Hobbies
For some strange reason, I like to keep track of the papers that I read -- therefore, I created an interactive network map of the authors from all of the papers I have encountered during my Ph.D so far (supposedly, for fun):

(find yourself! I am at -1.16, 2.30)


A random compilation of high impact literature (defined as >0.1 citations per day)
(obviously, there may be overlap between categories)
Reviews
  • Wilson, J. A., Salvo, F. J. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
  • Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).
  • Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).
  • Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).
  • van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002). [LP. Kouwenhoven]
  • Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2002). [SR. Phillpot]
  • Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).
  • Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).
  • Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).
  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
  • Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
  • Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron-Electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).
  • Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
  • Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).
  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).
  • Zapf, V., Jaime, M. & Batista, C. D. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563–614 (2014).
  • Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
  • Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).
  • Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). [L. Colombo]
  • Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014).
  • Nandkishore, R. & Huse, D. A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
  • Senthil, T. Symmetry-Protected Topological Phases of Quantum Matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).
  • Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).
  • Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo Insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).
  • Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The Quantum Anomalous Hall Effect: Theory and Experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).
  • Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
  • Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).
  • Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). [XD. Xu]
  • Weng, H., Dai, X. & Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys.: Condens. Matter 28, 303001 (2016).
  • Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
  • Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).
  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
  • Yan, B. & Felser, C. Topological Materials: Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).
  • Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
  • Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).
  • Deffner, S. & Campbell, S. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017).
  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
  • Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018). [Y. Oreg]
  • Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).
  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).
  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
  • Mühlbauer, S. et al. Magnetic small-angle neutron scattering. Rev. Mod. Phys. 91, 015004 (2019). [A. Michels]
  • Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). [L. Zdeborová]
  • Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
  • Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019). [KS. Lee/JH. Kim]
  • Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).
  • Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
  • Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).
  • Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).
  • Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).
  • Broholm, C., Cava, R. J., Kivelson, S. A., Nocera, D. G., Norman, M. R. & Senthil, T. Quantum spin liquids. Science 367, eaay0668 (2020).
  • Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).
  • Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
  • Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).
  • Cai, W., Ma, Y., Wang, W., Zou, C.-L. & Sun, L. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res. 1, 50–67 (2021).
  • Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022)
Commentary
  • Feynman, R. P. There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992).
  • Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
Quantum states of matter
Chiral spin states
  • Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).
Topological orders
  • Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-Protected Topological Orders in Interacting Bosonic Systems. Science 338, 1604–1606 (2012).
  • Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).
  • Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018). [R. Thomale]
Valence-bond states
  • Anderson, P. W. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153–160 (1972).
  • Anderson, P. W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 235, 1196–1198 (1987).
  • Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).
  • Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).
Anyons
  • Wilczek, F. Quantum Mechanics of Fractional-Spin Particles. Phys. Rev. Lett. 49, 957–959 (1982).
  • Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 6487 (2020). [G. Fève]
  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
Levitons
  • Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013). [DC. Glattli]
Band topology
  • Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).
  • Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).
  • Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals. Phys. Rev. X 4, 031035 (2014).
  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). [BA. Bernevig]
  • Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020). [D. Sanvitto/G. Malpuech]
Hubbard model
  • Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science 365, 1424–1428 (2019).
Phase transitions
  • Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined Quantum Critical Points. Science 303, 1490–1494 (2004).
Sachdev-Ye-Kitaev model
  • Gu, Y., Kitaev, A., Sachdev, S. & Tarnopolsky, G. Notes on the complex Sachdev-Ye-Kitaev model. J. High Energ. Phys. 2020, 157 (2020).
Hall effects
Quantum Hall effect
  • Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).
  • Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).
  • Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).
Fractional quantum Hall effect
  • Laughlin, R. B. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional Statistics and the Quantum Hall Effect. Phys. Rev. Lett. 53, 722–723 (1984).
  • Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).
Quantum anomalous Hall effect
  • Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
Quantum spin Hall effect
  • Kane, C. L. & Mele, E. J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005).
  • Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).
  • Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006).
Quantum nonlinear Hall effect
  • Sodemann, I. & Fu, L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 115, 216806 (2015).
Magnon Hall effect
  • Onose, Y. et al. Observation of the Magnon Hall Effect. Science 329, 297–299 (2010). [Y. Tokura]
Thermal Hall effect
  • Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the Thermal Hall Effect in Quantum Magnets. Phys. Rev. Lett. 104, 066403 (2010).
Topological databases
  • Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019). [HM. Wang/C. Fang]
  • Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). [BA. Bernevig/ZJ. Wang]
  • Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).
  • Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020). [BA. Bernevig]
  • Vergniory, M. G. et al. All topological bands of all nonmagnetic stoichiometric materials. Science 376, eabg9094 (2022). [N. Regnault]
Topological insulators (TI)
Theory
  • Fu, L., Kane, C. L. & Mele, E. J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 98, 106803 (2007).
  • Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
Bi2Se3
  • Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2009). [Y. Cui]
  • Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014). [DC. Ralph]
  • Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016). [NP. Armitage]
Bi2Te3
  • Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021). [J. Wilheim/K. Richter/R. Huber]
Cr-doped (Bi,Sb)2Te3
  • Yu, R. et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61–64 (2010). [X. Dai/Z. Fang]
  • Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167–170 (2013). [K. He/YY. Wang/QK. Xue]
  • Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014). [Y. Tokura]
  • Zhao, Y.-F. et al. Tuning the Chern number in quantum anomalous Hall insulators. Nature 588, 419–423 (2020). [CX. Liu/CZ. Chang]
HgTe quantum wells
  • König, M. et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 318, 766–770 (2007). [SC. Zhang]
  • Brüne, C. et al. Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011). [LW. Molenkamp]
  • Bocquillon, E. et al. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 12, 137–143 (2016). [LW. Molenkamp]
  • Wiedenmann, J. et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 7, 1–7 (2016). [LW. Molenkamp]
Bi bilayers
  • Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014). [A. Yazdani]
Topological crystalline insulators
Pb1-xSnxTe
  • Xu, S.-Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 3, 1192 (2012). [MZ. Hasan]
Dirac semimetals (DSM)
Cd3As2
  • Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016). [JG. Analytis]
  • Zhang, C. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565, 331–336 (2018). [FX. Xiu]
ZrTe5
  • Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537 (2019). [ZH. Qiao/LY. Zhang]
Na3Bi
  • Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2014). [MZ. Hasan]
  • Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015). [NP. Ong]
Weyl semimetals (WSM)
Theory
  • Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).
  • Vazifeh, M. M. & Franz, M. Electromagnetic Response of Weyl Semimetals. Phys. Rev. Lett. 111, 027201 (2013).
  • Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).
  • Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).
  • Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals. Nano Lett. 20, 1923–1927 (2020).
TaAs/TaP/NbAs/NbP
  • Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 5, 011029 (2015).
  • Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2016). [J. Orenstein]
TaAs
  • Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). [MZ. Hasan]
  • Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015). [T. Qian/M. Shi/H. Ding]
  • Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015). [H. Lin/MZ. Hasan]
  • Lv, B. et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 5, 031013 (2015). [T. Qian/H. Ding]
  • Huang, X. et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X 5, 031023 (2015). [GF. Chen]
  • Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016). [MZ. Hasan/S. Jia]
  • Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017). [P. Jarillo-Herrero/N. Gedik]
TaP
  • Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2015). [YL. Chen]
  • Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015). [MZ. Hasan]
  • Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016). [E. Hassinger/BH. Yan]
NbP
  • Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015). [BH. Yan]
  • Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2015). [YL. Chen]
  • Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017). [K. Nielsch]
(TaSe4)2I
  • Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315-319 (2019). [C. Felser]
  • Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021). [BA. Bernevig/XJ. Wang]
TaIrTe4
  • Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019). [JH. Chen/J. Feng/D. Sun]
Co3Sn2S2
  • Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). [C. Felser]
  • Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018). [HM. Wang/SC. Wang/HC. Lei]
  • Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019). [YL. Chen]
  • Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). [H. Beidenkopf]
  • Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019). [MZ. Hasan]
  • Guin, S. N. et al. Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019). [C. Felser]
Mn3X
  • Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017). [BH. Yan]
Mn3Ge
  • Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). [BH. Yan]
Mn3Sn
  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). [T. Higo]
  • Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017). [S. Nakatsuji]
  • Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). [BH. Yan]
  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
  • Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). [S. Fukami/H. Ohno]
YbMnBi2
  • Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10, 3424 (2019). [RJ. Cava]
SrSi2
  • Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. PNAS 113, 1180–1185 (2016). [H. Lin/MZ. Hasan]
GdPtBi
  • Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016). [JG. Checkelsky]
Nodal-line semimetals
Co2MnGa
  • Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018). [S. Nakatsuji]
  • Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019). [MZ. Hasan]
  • Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019) [J. Gooth/C. Felser]
Co2MnAl
  • Li, P. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020). [ZQ. Mao/BH. Yan]
Kagomé
CoSn
  • Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020). [ZP. Yin/HC. Lei/SC. Wang]
  • Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020). [R. Comin]
FeSn
  • Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163-169 (2019). [JG. Checkelsky/R. Comin]
Fe3Sn2
  • Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). [R. Comin/JG. Checkesky]
  • Yin, J.-X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). [MZ. Hasan]
TbMn6Sn6
  • Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). [S. Jia/MZ. Hasan]
YMn6Sn6
  • Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020). [II. Mazin]
AV3Sb5 (A = Cs, K, Rb)
  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019). [ES. Toberer]
  • Li, H. et al. Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A=Rb, Cs). Phys. Rev. X 11, 031050 (2021). [H. Miao]
  • Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge Density Waves and Electronic Properties of Superconducting Kagome Metals. Phys. Rev. Lett. 127, 046401 (2021).
  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384-1388 (2021).
CsV3Sb5
  • Ortiz, B. R. et al. CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett. 125, 247002 (2020). [SD. Wilson]
  • Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216-221 (2021). [I. Zelkovic]
  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222-228 (2021). [ZQ. Wang/HJ. Gao]
  • Liang, Z. et al. Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021). [L. Shan/ZY. Wang/XH. Chen]
  • Chen, K. Y. et al. Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure. Phys. Rev. Lett. 126, 247001 (2021). [JP. Sun/HC. Lei/JP. Hu/JG. Cheng]
  • Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021). [XL. Chen/JH. Zhou/ZR. Yang]
  • Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021). [JJ. Ying/XH. Chen]
  • Chen, X. et al. Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure. Chin. Phys. Lett. 38, 057402 (2021). [XL. Chen]
  • Ni, S. et al. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021). [ZX. Zhao]
  • Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021). [Y. Song/HQ. Yuan]
  • Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022). [PJW. Moll]
KV3Sb5
  • Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020). [MN. Ali]
  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353-1357 (2021). [MZ. Hasan]
  • Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021). [Y. Song/HQ. Yuan]
  • Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021). [SD. Wilson]
  • Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter. 33, 235801 (2021).
  • Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265-270 (2022). [I. Zeljkovic]
RbV3Sb5
  • Yin, Q. et al. Superconductivity and Normal-State Properties of Kagome Metal RbV3Sb5 Single Crystals. Chin. Phys. Lett. 38, 037403 (2021). [HC. Lei]
Chiral
XSi (X = Co, Rh)
  • Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).
CoSi
  • Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019). [HC. Lei/YJ. Sun/T. Qian/H. Ding]
  • Takane, D. et al. Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi. Phys. Rev. Lett. 122, 076402 (2019). [T. Sato]
RhSi
  • Chang, G. et al. Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017). [H. Lin/MZ. Hasan]
  • Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020). [DH. Torchinsky/J. Orenstein]
Polar materials
BiTeI
  • Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011). [Y. Tokura]
Skyrmions
Gd3Ru4Al12
  • Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019). [Y. Tokura]
Gd2PdSi3
  • Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019). [Y. Tokura]
Synthetic
  • Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34-42 (2019). [V. Cros/A. Fert]
Quantum spin liquids
α-RuCl3
  • Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017). [SE. Nagler]
  • Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227-231 (2018). [Y. Matsuda]
  • Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018). [SE. Nagler]
  • Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021). [Y. Matsuda]
  • Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021). [NP. Ong]
  • Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023). [NP. Ong]
YbMgGaO4
  • Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016). [G. Chen/J. Zhao]
ZnCu3(OD)6Cl2 (herbertsmithite)
  • Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012). [YS. Lee]
Superconductors
UTe2
  • Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019). [NP. Butch]
  • Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250-1254 (2019). [NP. Butch]
  • Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020). [V. Madhavan]
CeRh2As2
  • Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012–1016 (2021). [E. Hassinger]
Cuprates
  • Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Physik B 64, 189–193 (1986).
  • Ozyuzer, L. et al. Emission of Coherent THz Radiation from Superconductors. Science 318, 1291–1293 (2007). [U. Welp]
  • da Silva Neto, E. H. et al. Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates. Science 343, 393–396 (2013). [A. Yazdani]
  • Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).
  • Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156-163 (2019). [XH. Chen/YB. Zhang]
Iron-based superconductors
  • Chu, J.-H. et al. In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor. Science 329, 824–826 (2010). [IR. Fisher]
  • Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).
FeSe
  • Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). [JCS. Davis]
FeSe/STO
  • Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515, 245–248 (2014). [ZX. Shen]
Nickelates
  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019). [HY. Hwang]
  • Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020). [WS. Lee]
  • Sakakibara, H. et al. Model Construction and a Possibility of Cupratelike Pairing in a New d9 Nickelate Superconductor (Nd, Sr)NiO2. Phys. Rev. Lett. 125, 077003 (2020). [K. Kuroki]
  • Wu, X. et al. Robust dx2-y2-wave superconductivity of infinite-layer nickelates. Phys. Rev. B 101, 060504 (2020). [S. Raghu/R. Thomale]
Sr2IrO4
  • Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2015).
Sr2RuO4
  • Ishida, K. et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396, 658–660 (1998). [Y. Maeno]
  • Pustogow, A. et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72-75 (2019). [SE. Brown]
  • Ghosh, S. et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 199–204 (2020). [BJ. Ramshaw]
  • Grinenko, V. et al. Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nat. Phys. 17, 748–754 (2021). [CW. Hicks/HH. Klauss]
CuxBi2Se3
  • Matano, K., Kriener, M., Segawa, K., Ando, Y. & Zheng, G. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys. 12, 852–854 (2016).
  • Yonezawa, S. et al. Thermodynamic evidence for nematic superconductivity in CuxBi2Se3. Nat. Phys. 13, 123–126 (2016). [Y. Maeno]
CuxTiSe2
  • Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006). [RJ. Cava]
Hydrides
  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
  • Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020). [JA. Flores-Livas]
Higgs modes
  • Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014). [R. Shimano]
Kondo insulators
SmB6
  • Kim, D. J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).
Mott insulators
1T-TaS2
  • Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008). [E. Tutiš]
  • Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. PNAS 114, 6996–7000 (2017).
  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021). [P. Liljeroth]
1T-TaSe2
  • Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020). [MF. Crommie]
Photons
  • Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019). [DI. Schuster]
Synthesis
  • Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020). [XD. Duan/XF. Duan]
Graphene
  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
  • Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318–318 (2006).
  • Cheianov, V. V., Fal’ko, V. & Altshuler, B. L. The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions. Science 315, 1252–1255 (2007).
  • Xiao, D., Yao, W. & Niu, Q. Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport. Phys. Rev. Lett. 99, 236809 (2007).
  • Novoselov, K. S. et al. Room-Temperature Quantum Hall Effect in Graphene. Science 315, 1379–1379 (2007). [P. Kim/AK. Geim]
  • Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 8, 902–907 (2008). [CN. Lau]
  • Ghosh, S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).
  • Seol, J. H. et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 328, 213–216 (2010). [L. Shi]
  • Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011). [AB. Kuzmenko]
  • Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). [LS. Levitov/AK. Geim]
  • Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016). [CR. Dean]
  • Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020). [R. Shahsavari/BI. Yakobson/JM. Tour]
  • Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020). [A. Yacoby/RL. Walsworth]
  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38-41 (2020). [A. Cavalleri]
  • Wang, L., Sofer, Z. & Pumera, M. Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect? ACS Nano 14, 21–25 (2020).
Bernal-stacked bilayer graphene
  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022). [P. Jarillo-Herrero/R. Ashoori]
Transition metal dichalcogenides (TMD)
XY2 (X = Mo, W; Y = S, Se)
  • Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014). [G. Eda]
XTe2 (X = Mo, W)
  • Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).
MoS2
  • Yan, R. et al. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 8, 986–993 (2013). [ARH. Walker/HG. Xing]
  • Zhang, X. et al. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces 7, 25923–25929 (2015). [JC. Hone]
  • Wang, H. et al. Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett. 12, 4674–4680 (2012). [T. Palacios]
  • Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
  • Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2014). [VM. Menon]
  • Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). [K. Banerjee]
  • Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015). [JT. Ye]
  • Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021). [P. Erhart/DG. Cahill/JW. Park]
MoSe2/hBN/MoSe2
  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021). [E. Demler/HK. Park]
WS2
  • Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019). [Y. Iwasa]
  • Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020). [SO. Valenzuela]
WSe2
  • Chiritescu, C. et al. Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals. Science 315, 351–353 (2007). [DG. Cahill/P. Zschack]
  • Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018). [Y. Wang/X. Zhang]
WTe2
  • Wang, Y. et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun. 7, 13142 (2016). [BG. Wang/XG. Wan/F. Miao]
  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337-342 (2018). [N. Gedik/P. Jarillo-Herrero]
  • Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76-79 (2018). [P. Jarillo-Herrero]
  • Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61-66 (2019). [AM. Lindenberg]
NiI2
  • Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022). [R. Comin]
Contacts for semiconductors
  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). [LJ. Li/J. Kong]
  • Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022). [M. Chhowalla]
Two-dimensional FM/AFM
CrX3 (X = Cl, Br, I)
  • Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019). [SW. Wu/CL. Gao]
CrCl3
  • Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255-1260 (2019). [P. Jarillo-Herrero]
CrI3
  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). [P. Jarillo-Herrero/XD. Xu]
  • Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). [P. Jarillo-Herrero]
  • Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018). [P. Jarillo-Herrero/XD. Xu]
  • Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018). [P. Jarillo-Herrero/XD. Xu]
  • Chen, L. et al. Topological Spin Excitations in Honeycomb Ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018). [PC. Dai]
  • Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298-1302 (2019). [XD. Xu]
  • Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303-1308 (2019). [KF. Mak/J. Shan]
  • Lee, I. et al. Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3. Phys. Rev. Lett. 124, 017201 (2020). [PC. Hammel]
  • Cenker, J. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. 17, 20–25 (2021). [D. Xiao/XD. Xu]
CrI3/WSe2
  • Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020). [XD. Xu]
Fe3GeTe2
  • Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018). [BJ. Yang/JS. Kim]
  • Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018). [L. Wang/CG. Lee]
  • Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019). [Z. Han/GY. Zhang/GQ. Yu/XF. Han]
Fe4GeTe2
  • Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020). [SY. Choi/JH. Shim/JS. Kim]
MnBi2Te4
  • Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). [EV. Chulkov]
  • Hao, Y.-J. et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019). [CY. Chen/QH. Liu/C. Liu]
  • Chen, Y. J. et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. X 9, 041040 (2019). [ZK. Liu/LX. Yang/YL. Chen]
  • Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895-900 (2020). [J. Wang/XH. Chen/YB. Zhang]
  • Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522-527 (2020). [Y. Xu/JS. Zhang/YY. Wang]
  • Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020). [A. Kaminski]
  • Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021). [N. Ni/SY. Xu]
MnBi4Te7
  • Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020). [QH. Liu/D. Dessau/N. Ni]
MnBi2nTe3n+1
  • Li, H. et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019). [WT. Zhang/HM. Weng/T. Qian/H. Ding]
  • Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020).
MnBi2-xSbxTe4
  • Yan, J.-Q. et al. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4. Phys. Rev. B 100, 104409 (2019). [BC. Sales]
EnSn2As2
  • Li, H. et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019). [WT. Zhang/HM. Weng/T. Qian/H. Ding]
III-V semiconductors
hBN
  • Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni(111). Nature 606, 88–93 (2022). [RS. Ruoff/M. Chhowalla/F. Ding/HS. Shin]
InP
  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). [JH. Kim]
GaN
  • Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices. Science 330, 655–657 (2010).
  • Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014). [DK. Sadana]
GaP
  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). [JH. Kim]
GaAs
  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). [JH. Kim]
Heterostructures/Superlattices
Theory
  • Esaki, L. & Tsu, R. Superlattice and Negative Differential Conductivity in Semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).
  • Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).
Heterostructures of (Bi,Sb)2Te3
  • Xiao, D. et al. Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures. Phys. Rev. Lett. 120, 056801 (2018). [N. Samarth/CZ. Chang]
EuS/Bi2Se3
  • Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016). [JS. Moodera]
EuS/graphene
  • Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016). [CT. Chen]
SrTiO3/PbTiO3
  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016). [R. Ramesh]
  • Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019). [S. Salahuddin]
Bi2Te3/MnBi2Te4
  • Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019). [O. Rader/G. Springholz]
GaAs/AlGaAs
  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
  • Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987). [JH. English]
  • de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997). [D. Mahalu]
  • Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205-210 (2018). [A. Stern]
Moiré heterostructures
Twisted bilayer graphene
  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [P. Jarillo-Herrero]
  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). [P. Jarillo-Herrero]
  • Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95-100 (2019). [A. Rubio/AN. Pasupathy]
  • Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101-105 (2019). [A. Yazdani]
  • Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019). [JH. Mao/EY. Andrei]
  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). [DK. Efetov]
  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). [D. Goldhaber-Gordon]
  • Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011-1016 (2019). [CR. Dean/AF. Young]
  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174-1180 (2019). [S. Nadj-Perge]
  • Park, M. J., Kim, Y., Cho, G. Y. & Lee, S. Higher-Order Topological Insulator in Twisted Bilayer Graphene. Phys. Rev. Lett. 123, 216803 (2019).
  • Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model. Phys. Rev. Research 1, 033126 (2019).
  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020). [A. Yazdani]
  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020). [P. Jarillo-Herrero/S. Ilani]
  • Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020). [S. Nadj-Perge]
  • Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020). [A. Yazdani]
  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900-903 (2020). [AF. Young]
  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020). [AF. Young]
  • Lisi, S. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 17, 189–193 (2020). [F. Baumberger]
  • Xie, M. & MacDonald, A. H. Nature of the Correlated Insulator States in Twisted Bilayer Graphene. Phys. Rev. Lett. 124, 097601 (2020).
  • Cao, Y. et al. Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. Phys. Rev. Lett. 124, 076801 (2020). [T. Senthil/P. Jarillo-Herrero]
  • Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).
  • Cea, T. & Guinea, F. Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene. Phys. Rev. B 102, 045107 (2020).
  • Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: An analytical approach. Phys. Rev. Research 2, 023237 (2020).
  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021). [A. Jorio]
  • Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021). [P. Jarillo-Herrero]
  • Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021). [DK. Efetov]
  • Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).
  • Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022). [DK. Efetov]
  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).
Twisted double bilayer graphene
  • Burg, G. W. et al. Correlated Insulating States in Twisted Double Bilayer Graphene. Phys. Rev. Lett. 123, 197702 (2019). [E. Tutuc]
  • Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215-220 (2020). [P. Jarillo-Herrero]
  • Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). [GY. Zhang]
ABC-trilayer graphene on h-BN
  • Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). [D. Goldhaber-Gordon/YB. Zhang/F. Wang]
  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020). [D. Goldhaber-Gordon/YB. Zhang/F. Wang]
Twisted trilayer graphene
  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).
  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022). [S. Nadj-Perge]
  • Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022). [JIA. Li]
MoTe2/WSe2
  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021). [J. Shan/KF. Mak]
WSe2/WSe2
  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022). [KF. Mak/J. Shan]
WSe2/WS2
  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). [J. Shan/KF. Mak]
  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). [F. Wang]
Excitons
  • Elliott, R. J. Intensity of Optical Absorption by Excitons. Phys. Rev. 108, 1384–1389 (1957).
  • Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
  • You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015). [TF. Heinz]
  • Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017). [P. Abbamonte]
  • Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017). [P. Kim/MD. Lukin/HK. Park]
  • Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). [P. Kim]
  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). [A. Imamoğlu]
  • Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020). [KM. Dani]
  • Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). [AN. Pasupathy/XY. Zhu]
  • He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020). [H. Dery/W. Yao/XD. Xu]
  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021). [KF. Mak/J. Shan]
Oxides/Perovskites
BaTiO3
  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
BiFeO3
  • Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). [P. Wang/YF. Nie/XQ. Pan]
CoFe2O4
  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
DyFeO3
  • Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005). [T. Rasing]
La0.7Ca0.3MnO3
  • Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020). [HY. Hwang]
Pb(Mg1/3Nb2/3)O3–PbTiO3
  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
SrTiO3
  • Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). [P. Wang/YF. Nie/XQ. Pan]
  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
Y3Fe5O12 (YIG)
  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
Hybrid perovskites
  • Wang, J. et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11, 582 (2020). [JS. Huang/YB. Yuan]
VO2
  • Lee, D. et al. Isostructural metal-insulator transition in VO2. Science 362, 1037–1040 (2018). [CB. Eom]
Others
Ni80Fe20
  • Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).
NbOCl2
  • Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023). [XF. Ren/CW. Qiu/SJ. Pennycook/ATS. Wee]
Carbon-based compounds
  • Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).
Graphite
  • Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett. 93, 185503 (2004).
  • Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019). [G. Chen/KA. Nelson]
Graphene nanoribbons
  • Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). [SG. Louie/MF. Crommie/FR. Fischer]
  • Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018). [R. Fasel]
Carbon nanotubes
  • Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999). [PL. McEuen]
  • Berber, S., Kwon, Y.-K. & Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).
  • Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
  • Shi, L. et al. Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. J. Heat Transfer 125, 881–888 (2003).
  • Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).
  • Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020). [S. Maruyama]
Charge density wave
  • Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159-163 (2020). [N. Gedik]
Other group-IV materials (Si, Ge)
  • Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020). [EPAM. Bakkers]
Majoranas
Semiconducting nanowires
  • Mourik, V. et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 336, 1003–1007 (2012). [LP. Kouwenhoven]
  • Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).
  • Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016). [CM. Marcus]
  • Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020). [RM. Lutchyn/CM. Marcus]
Quantum-dot-nanowire hybrid
  • Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016). [CM. Marcus]
Fe chain
  • Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014). [A. Yazdani]
  • Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017). [A. Yazdani]
FeTe0.55Se0.45
  • Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018). [H. Ding/HJ. Gao]
  • Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181-1187 (2019). [L. Fu/HJ. Gao/H. Ding]
  • Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020). [YY. Zhang/H. Ding/HJ. Gao]
Planar Josephson junctions
  • Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019). [CM. Marcus/F. Nichele]
  • Ren, H. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019). [A. Yacoby]
Quantum dots
Single quantum dots
  • Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998). [MA. Kastner]
  • Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A Tunable Kondo Effect in Quantum Dots. Science 281, 540–544 (1998).
Embedded in materials
  • Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 297, 2229–2232 (2002).
  • Faleev, S. V. & Léonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008).
  • Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015). [EH. Sargent]
  • Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017). [J. Shi]
Alloys
  • Han, L. et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608, 310–316 (2022). [ZM. Li/D. Raabe]
Ferroelectrics
  • Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). [AT. Boothroyd]
  • Ashida, Y. et al. Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Phys. Rev. X 10, 041027 (2020). [E. Demler]
  • Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat. Mater. 21, 903–909 (2022). [EY. Tsymbal/A. Gruverman/XS. Xu]
  • Miao, L.-P. et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater. 21, 1158–1164 (2022). [S. Dong/Y. Zhang]
Caloric materials
  • Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).
  • Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019). [X. Moya/S. Hirose/ND. Mathur]
  • Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020). [E. Defay]
  • Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020). [D. Schwartz]
Thermoelectrics
  • Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).
  • Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).
  • Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). [A. Majumdar/PD. Yang]
  • Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008). [JR. Heath]
  • Poudel, B. et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 320, 634–638 (2008). [G. Chen/ZF. Ren]
  • Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2013). [X. Crispin]
  • Zhao, L.-D. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141–144 (2015). [MG. Kanatzidis]
  • Hinterleitner, B. et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 576, 85-90 (2019). [E. Bauer]
  • Su, L. et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375, 1385–1389 (2022). [C. Chang/LD. Zhao]
Rectification
  • Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020). [T. Ono]
  • Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022). [MN. Ali]
  • Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022). [JIA. Li]
  • Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).
  • [SSP. Parkin]
  • Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022). [T. Ono]
  • Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).
Topological photonics
  • Onoda, M., Murakami, S. & Nagaosa, N. Hall Effect of Light. Phys. Rev. Lett. 93, 083901 (2004).
  • Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).
  • Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016). [AZ. Genack/AB. Khanikaev]
Hydrodynamics
WP2
  • Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018). [B. Gottsman]
Graphene
  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016). [P. Kim/KC. Fong]
Quasicrystals
  • Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological States and Adiabatic Pumping in Quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
Excitons
  • Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).
  • Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020). [TCH. Liew/QH. Xiong]
Superconducting qubits (+ resonators)
  • Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). [RJ. Schoelkopf]
  • Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
  • Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007). [RJ. Schoelkopf]
  • Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008). [A. Wallraff]
  • Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011). [WD. Oliver]
  • Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013). [RJ. Schoelkopf]
  • Vlastakis, B. et al. Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States. Science 342, 607–610 (2013). [RJ. Schoelkopf]
  • Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014). [JM. Martinis]
  • Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014). [MH. Devoret]
  • Ristè, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015). [L. DiCarlo]
  • Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018). [RJ. Schoelkopf]
  • Guillaud, J. & Mirrahimi, M. Repetition Cat Qubits for Fault-Tolerant Quantum Computation. Phys. Rev. X 9, 041053 (2019).
  • Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020). [MH. Devoret]
  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020). [MH. Devoret]
  • Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020). [Y. Nakamura]
  • Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509-513 (2020). [Z. Leghtas]
  • Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020). [SM. Girvin]
  • Hays, M. et al. Coherent manipulation of an Andreev spin qubit. Science 373, 430–433 (2021). [MH. Devoret]
  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021). [AA. Houck]
  • Stehlik, J. et al. Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits. Phys. Rev. Lett. 127, 080505 (2021). [OE. Dial]
  • Gyenis, A. et al. Experimental Realization of a Protected Superconducting Circuit Derived from the 0-π Qubit. PRX Quantum 2, 010339 (2021). [AA. Houck]
Diamond color centers
  • Childress, L. et al. Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond. Science 314, 281–285 (2006). [MD. Lukin]
  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). [R. Hanson]
  • Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).
  • Rose, B. C. et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 361, 60–63 (2018). [NP. de Leon]
  • Trusheim, M. E. et al. Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. Phys. Rev. Lett. 124, 023602 (2020). [M. Atatüre/D. Englund]
Silicon qubits
  • Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).
  • He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019). [MY. Simmons]
  • Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020). [AS. Dzurak]
  • Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020). [M. Veldhorst]
Neutral atoms
  • Jaksch, D. et al. Fast Quantum Gates for Neutral Atoms. Phys. Rev. Lett. 85, 2208–2211 (2000). [MD. Lukin]
  • Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012) [MD. Lukin/V. Vuletic]
  • Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014). [V. Vuletic/MD. Lukin]
  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).
  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019). [MD. Lukin]
  • Levine, H. et al. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. Phys. Rev. Lett. 123, 170503 (2019). [MD. Lukin]
  • Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020). [MD. Lukin]
  • Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857-861 (2020). [M. Endres]
Molecules
  • Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020). [DE. Freedman/DD. Awschalom]
Trapped ions
  • Cirac, J. I. & Zoller, P. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
  • Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a Fundamental Quantum Logic Gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
  • Leibfried, D. et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States. Science 304, 1476–1478 (2004). [DJ. Wineland]
  • Schmidt, P. O. et al. Spectroscopy Using Quantum Logic. Science 309, 749–752 (2005). [DJ. Wineland]
  • Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–466 (2008).
  • Monz, T. et al. 14-Qubit Entanglement: Creation and Coherence. Phys. Rev. Lett. 106, 130506 (2011). [R. Blatt]
  • Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016). [C. Monroe]
  • Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019). [JP. Home]
  • Figgatt, C. et al. Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368–372 (2019). [C. Monroe]
  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281-286 (2021). [C. Monroe]
  • Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720–724 (2022). [M. Knap/CF. Roos]
NMR
  • Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. PNAS 94, 1634–1639 (1997).
  • Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998).
  • Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental Implementation of Fast Quantum Searching. Phys. Rev. Lett. 80, 3408–3411 (1998).
Cold atoms / Ultracold gases
  • Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science 353, 1253–1256 (2016). [M. Greiner]
  • Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017). [W. Ketterle]
  • Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017). [M. Greiner]
  • Guardado-Sanchez, E. et al. Subdiffusion and Heat Transport in a Tilted Two-Dimensional Fermi-Hubbard System. Phys. Rev. X 10, 011042 (2020). [WS. Bakr]
Quantum dots
  • Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
  • Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).
  • Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
Photons for quantum information
  • Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett. 75, 4710–4713 (1995).
  • Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
  • Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007). [M. Brune/S. Haroche]
  • Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). [A. Zeilinger]
  • Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly Coupled Magnons and Cavity Microwave Photons. Phys. Rev. Lett. 113, 156401 (2014).
  • Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016). [D. Gershoni]
Optomechanical resonators
  • Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002 (2004).
  • Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006). [A. Heidmann]
  • Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2009). [KC. Schwab]
  • O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). [AN. Cleland]
  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011). [O. Painter]
  • Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling Mechanical Motion with Microwave Fields. Science 342, 710–713 (2013).
  • Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018). [AN. Cleland]
Time crystals
  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017). [C. Monroe]
  • Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017). [MD. Lukin]
Universal quantum computation
  • Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). [A. Barenco/CH. Bennett/R. Cleve/DP. DiVincenzo/N. Margolus/P. Shor/T. Sleator/JA. Smolin/H. Weinfurter]
  • DiVincenzo, D. P. The Physical Implementation of Quantum Computation. Fort. Phys. 48, 771–783 (2000).
  • Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).
  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (2009).
  • Barz, S. et al. Demonstration of Blind Quantum Computing. Science 335, 303–308 (2012). [P. Walther]
Quantum advantage (supremacy)
  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). [Google]
  • Wang, H. et al. Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 1014-Dimensional Hilbert Space. Phys. Rev. Lett. 123, 250503 (2019). [CY. Lu/JW. Pan]
Quantum algorithms
  • Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science 124–134 (1994).
  • Grover, L. K. A fast quantum mechanical algorithm for database search. Proceedings of the 28th annual ACM symposium on Theory of Computing - STOC ’96, 212–219 (1996).
  • Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103, 150502 (2009).
  • Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016). [R. Blatt]
  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019). [JM. Gambetta]
  • Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204 (2019).
  • Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332-336 (2021). [Google]
  • Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter Error with Commutator Scaling. Phys. Rev. X 11, 011020 (2021).
  • Huggins, W. J. et al. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Inf. 7, 23 (2021). [R. Babbush]
Quantum computational complexity
  • Yao, A. C.-C. Some complexity questions related to distributive computing. Proc. Annu. ACM Symp. Theory Comput. 209–213 (1979).
  • Buhrman, H., Cleve, R., Watrous, J. & de Wolf, R. Quantum Fingerprinting. Phys. Rev. Lett. 87, 167902 (2001).
  • Aaronson, S. & Arkhipov, A. The Computational Complexity of Linear Optics. Theory of Computing 9, 143–252 (2011).
Quantum error correction
  • Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).
  • Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energ. Phys. 2015, 163 (2015).
Quantum simulation
  • Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 91, 147902 (2003).
  • Vidal, G. Efficient Simulation of One-Dimensional Quantum Many-Body Systems. Phys. Rev. Lett. 93, 040502 (2004).
  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017). [M. Greiner/V. Vuletic/MD. Lukin]
  • Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. PNAS 114, 7555–7560 (2017).
  • Low, G. H. & Chuang, I. L. Optimal Hamiltonian Simulation by Quantum Signal Processing. Phys. Rev. Lett. 118, 010501 (2017).
  • Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019). [P. Zoller]
  • Wang, D., Higgott, O. & Brierley, S. Accelerated Variational Quantum Eigensolver. Phys. Rev. Lett. 122, 140504 (2019).
  • Google AI Quantum. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020). [Google]
  • Zhou, Y., Stoudenmire, E. M. & Waintal, X. What Limits the Simulation of Quantum Computers? Phys. Rev. X 10, 041038 (2020).
  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021). [MD. Lukin]
  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021). [A. Browaeys]
Quantum information
  • Yao, A. C. Protocols for secure computations. 23rd Annual Symposium on Foundations of Computer Science 160–164 (1982).
  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
  • Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).
  • Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09(2007)120 (2007).
  • Wolf, M. M., Verstraete, F., Hastings, M. B. & Cirac, J. I. Area Laws in Quantum Systems: Mutual Information and Correlations. Phys. Rev. Lett. 100, 070502 (2008).
  • Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014). [C. Monroe]
  • Koski, J. V., Kutvonen, A., Khaymovich, I. M., Ala-Nissila, T. & Pekola, J. P. On-Chip Maxwell’s Demon as an Information-Powered Refrigerator. Phys. Rev. Lett. 115, 260602 (2015).
  • Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019). [C. Monroe]
Bell inequalities
  • Einstein, A., Podolsky, B. & Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777–780 (1935).
  • Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).
  • Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969).
  • Aspect, A., Grangier, P. & Roger, G. Experimental Tests of Realistic Local Theories via Bell’s Theorem. Phys. Rev. Lett. 47, 460–463 (1981).
  • Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009). [JM. Martinis]
  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015). [R. Hanson]
  • Giustina, M. et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 115, 250401 (2015). [A. Zeilinger]
  • Shalm, L. K. et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 115, 250402 (2015). [SW. Nam]
  • Rosenfeld, W. et al. Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Phys. Rev. Lett. 119, 010402 (2017). [H. Weinfurter]
Quantum memory
  • Maurer, P. C. et al. Room-Temperature Quantum Bit Memory Exceeding One Second. Science 336, 1283–1286 (2012). [MD. Lukin]
  • Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016). [RJ. Schoelkopf]
Quantum network
  • Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012). [G. Rempe]
  • Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017). [R. Hanson]
  • Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018). [A. Wallraff]
  • Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019). [AN. Cleland]
Quantum communication
  • Beveratos, A. et al. Single Photon Quantum Cryptography. Phys. Rev. Lett. 89, 187901 (2002). [P. Grangier]
  • Lo, H.-K., Ma, X. & Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 94, 230504 (2005).
  • Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).
  • Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017). [CZ. Peng/JY. Wang/JW. Pan]
  • Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020). [Q. Zhang/XH. Bao/JW. Pan]
  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60-64 (2020). [MD. Lukin]
  • Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501-505 (2020). [CZ. Peng/AK. Ekert/JW. Pan]
  • Fang, X.-T. et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422–425 (2020). [XF. Ma/TY. Chen/JW. Pan]
  • Chen, J.-P. et al. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020). [ZB. Wang/Q. Zhang/JW. Pan]
Quantum teleportation
  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997). [A. Zeilinger]
  • Olmschenk, S. et al. Quantum Teleportation Between Distant Matter Qubits. Science 323, 486–489 (2009). [C. Monroe]
  • Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2019). [JW. Wang/MG. Thompson]
Quantum coherence
  • Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).
Entanglement
  • Briegel, H. J. & Raussendorf, R. Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 86, 910–913 (2001).
  • Arnesen, M. C., Bose, S. & Vedral, V. Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model. Phys. Rev. Lett. 87, 017901 (2001).
  • Osborne, T. J. & Nielsen, M. A. Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002).
  • Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).
  • Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014). [MK. Oberthaler]
  • Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019). [CF. Roos]
Quantum many-body scars
  • Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
  • Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B 98, 155134 (2018).
  • Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach. Phys. Rev. Lett. 122, 040603 (2019).
  • Choi, S. et al. Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars. Phys. Rev. Lett. 122, 220603 (2019). [DA. Abanin]
Quantum sensing (with NV)
  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). [MD. Lukin]
  • Jarmola, A., Acosta, V. M., Jensen, K., Chemerisov, S. & Budker, D. Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Lett. 108, 197601 (2012).
  • Staudacher, T. et al. Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume. Science 339, 561–563 (2013). [F. Reinhard/J. Wrachtrup]
  • Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016). [HK. Park/MD. Lukin]
  • Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017). [A. Yacoby]
(Anderson) Localization
  • Anderson, P. W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492–1505 (1958).
  • Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 42, 673–676 (1979).
  • John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).
  • Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting Electrons in Disordered Wires: Anderson Localization and Low-T Transport. Phys. Rev. Lett. 95, 206603 (2005).
  • Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2009).
  • Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2019). [FW. Ye]
Many-body localization
  • Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).
  • Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).
  • Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).
  • Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded Growth of Entanglement in Models of Many-Body Localization. Phys. Rev. Lett. 109, 017202 (2012).
  • Serbyn, M., Papić, Z. & Abanin, D. A. Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems. Phys. Rev. Lett. 110, 260601 (2013).
  • Serbyn, M., Papić, Z. & Abanin, D. A. Local Conservation Laws and the Structure of the Many-Body Localized States. Phys. Rev. Lett. 111, 127201 (2013).
  • Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).
  • Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).
  • Kjäll, J. A., Bardarson, J. H. & Pollmann, F. Many-Body Localization in a Disordered Quantum Ising Chain. Phys. Rev. Lett. 113, 107204 (2014).
  • Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
  • Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015). [I. Bloch]
  • Choi, J. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016). [C. Gross]
  • Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016). [C. Monroe]
  • Bordia, P., Lüschen, H., Schneider, U., Knap, M. & Bloch, I. Periodically driving a many-body localized quantum system. Nat. Phys. 13, 460–464 (2017).
  • Lüschen, H. P. et al. Signatures of Many-Body Localization in a Controlled Open Quantum System. Phys. Rev. X 7, 011034 (2017). [U. Schneider]
  • Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring Localization in Nuclear Spin Chains. Phys. Rev. Lett. 120, 070501 (2018).
  • Rispoli, M. et al. Quantum critical behaviour at the many-body localization transition. Nature 573, 385-389 (2019). [M. Greiner]
  • Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019). [M. Greiner]
  • Khemani, V., Hermele, M. & Nandkishore, R. Localization from Hilbert space shattering: From theory to physical realizations. Phys. Rev. B 101, 174204 (2020).
Quantum statistical mechanics
  • Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).
Thermalization
  • Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).
  • Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Phys. Rev. Lett. 98, 050405 (2007).
  • Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).
  • Eckstein, M., Kollar, M. & Werner, P. Thermalization after an Interaction Quench in the Hubbard Model. Phys. Rev. Lett. 103, 056403 (2009).
  • Rigol, M. Breakdown of Thermalization in Finite One-Dimensional Systems. Phys. Rev. Lett. 103, 100403 (2009).
  • Shiraishi, N. & Mori, T. Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis. Phys. Rev. Lett. 119, 030601 (2017).
Nonequilibrium dynamics
  • Kollath, C., Läuchli, A. M. & Altman, E. Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Phys. Rev. Lett. 98, 180601 (2007).
Matrix product states
  • Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B. & Verstraete, F. Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94, 165116 (2016).
Neuromorphic computing
  • Chua, L. Memristor - The missing circuit element. IEEE Transactions on Circuit Theory 18, 507–519 (1971).
  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
  • Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2012).
HEMT
  • Meneghesso, G. et al. Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives. IEEE Trans. Device Mater. Reliab. 8, 332–343 (2008). [E. Zanoni]
  • Yan, Z., Liu, G., Khan, J. M. & Balandin, A. A. Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 3, 827 (2012).
FETs
  • Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018). [ZY. Zhang/LM. Peng]
  • Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020). [HL. Peng]
  • Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022). [S. Salahuddin]
  • Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). [LJ. Li/S. Li]
Spintronics
  • Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).
  • Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009). [DD. Awschalom]
  • Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010). [E. Saitoh]
  • Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
  • Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). [T. Jungwirth]
  • Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 7, 43705 (2017).
  • Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222-225 (2018). [M. Kläui]
  • Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). [MC. Beard/ZV. Vardeny]
  • Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020). [J. Shi]
  • Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020). [P. Gambardella/LJ. Heyderman]
  • Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020). [E. del Barco]
  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). [XF. Duan]
Single-photon detector
  • Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020). [KK. Berggren]
Non-Hermitian physics
  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and Topology in Non-Hermitian Physics. Phys. Rev. X 9, 041015 (2019).
  • Yokomizo, K. & Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 123, 066404 (2019).
  • Kawabata, K., Bessho, T. & Sato, M. Classification of Exceptional Points and Non-Hermitian Topological Semimetals. Phys. Rev. Lett. 123, 066405 (2019).
  • Hamazaki, R., Kawabata, K. & Ueda, M. Non-Hermitian Many-Body Localization. Phys. Rev. Lett. 123, 090603 (2019).
  • Song, F., Yao, S. & Wang, Z. Non-Hermitian Topological Invariants in Real Space. Phys. Rev. Lett. 123, 246801 (2019).
  • Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020). [Z. Wang/W. Yi/P. Xue]
Machine learning (materials)
  • Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). [SA. Friedler/J. Schrier/AJ. Norquist]
  • Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016).
  • Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016).
  • Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
  • Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).
  • van Nieuwenburg, E. P. L., Liu, Y.-H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).
  • Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).
  • Zhang, Y. & Kim, E.-A. Quantum Loop Topography for Machine Learning. Phys. Rev. Lett. 118, 216401 (2017).
  • Wetzel, S. J. Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders. Phys. Rev. E 96, 022140 (2017).
  • Zhang, P., Shen, H. & Zhai, H. Machine Learning Topological Invariants with Neural Networks. Phys. Rev. Lett. 120, 066401 (2018).
  • Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 120, 145301 (2018).
  • Stanev, V. et al. Machine learning modeling of superconducting critical temperature. npj Comput. Mater. 4, 29 (2018). [I. Takeuchi]
  • Rem, B. S. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 15, 917-920 (2019). [K. Sengstock/C. Weitenberg]
  • Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020). [P. Kohli]
  • Choo, K., Neupert, T. & Carleo, G. Two-dimensional frustrated J1-J2 model studied with neural network quantum states. Phys. Rev. B 100, 125124 (2019).
Machine learning (physical system)
  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017). [M. Soljačić]
  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). [A. Ozcan]
  • Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273-1278 (2019).
Machine learning
  • Udrescu, S.-M. & Tegmark, M. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).
  • Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020). [R. Wolf]
  • Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering Physical Concepts with Neural Networks. Phys. Rev. Lett. 124, 010508 (2020).
  • Broughton, M. et al. TensorFlow Quantum: A Software Framework for Quantum Machine Learning. arXiv:2003.02989 [cond-mat, physics:quant-ph] (2020). [M. Mohseni]
  • Li, Z. et al. Neural Operator: Graph Kernel Network for Partial Differential Equations. arXiv:2003.03485 [cs, math, stat] (2020). [A. Anandkumar]
  • Cranmer, M. et al. Lagrangian Neural Networks. arXiv:2003.04630 [physics, stat] (2020). [S. Ho]
  • Li, Z. et al. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv:2010.08895 [cs, math] (2020). [A. Anandkumar]
Phonon measurements
  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
Thermal conductivity
  • Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 113, 1046–1051 (1959).
  • Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1972).
  • Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990).
  • Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-State Thermal Rectifier. Science 314, 1121–1124 (2006).
  • Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5, 718-721 (2010).
  • Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).
  • Wang, Z., Alaniz, J. E., Jang, W., Garay, J. E. & Dames, C. Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths. Nano Lett. 11, 2206–2213 (2011).
  • Luckyanova, M. N. et al. Coherent Phonon Heat Conduction in Superlattices. Science 338, 936–939 (2012). [G. Chen]
  • Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).
  • Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). [HK. Park/MD. Lukin]
  • Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2013). [R. Ramesh/MA. Zurbuchen]
  • Johnson, J. A. et al. Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane. Phys. Rev. Lett. 110, 025901 (2013).
  • Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).
  • Ju, S. et al. Designing Nanostructures for Phonon Transport via Bayesian Optimization. Phys. Rev. X 7, 021024 (2017). [J. Shiomi]
  • Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020). [D. Broido/G. Chen]
Acoustics
  • Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science 343, 516–519 (2014).
  • Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
  • Ding, Y. et al. Experimental Demonstration of Acoustic Chern Insulators. Phys. Rev. Lett. 122, 014302 (2019). [B. Liang/XF. Zhu/XG. Wan/JC. Chun]
Interferometry
  • Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).
  • LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011). [LIGO Collaboration]
  • LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). [LIGO Collaboration]
  • Tse, M. et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett. 123, 231107 (2019). [LIGO Collaboration]
Dark-matter detection
  • Hochberg, Y. et al. Detecting Sub-GeV Dark Matter with Superconducting Nanowires. Phys. Rev. Lett. 123, 151802 (2019). [KK. Berggren]
Optics/Microscopy
  • Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
  • Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).
  • Pendry, J. B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
  • Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).
  • Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
  • Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-Field Microscopy Through a SiC Superlens. Science 313, 1595–1595 (2006).
  • Betzig, E. et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642–1645 (2006). [HF. Hess]
  • Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007). [F. Klausz/U. Heinzmann]
  • Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014). [E. Betzig]
  • Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015). [E. Goulielmakis]
  • Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016). [F. Kransz/P. Baum]
  • Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500 (2019). [JW. Miao]
Ultrafast phenomena
  • Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014). [BJ. Siwick]
  • Wall, S. et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 362, 572–576 (2018). [O. Delaire/M. Trigo]
Batteries
  • Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020). [J. Li]
  • Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022). [YH. Lin]
High pressure
  • Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).
Magnetism
  • Meiklejohn, W. H. & Bean, C. P. New Magnetic Anisotropy. Phys. Rev. 102, 1413–1414 (1956).
  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
  • Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022). [P. Baum]
Molecular magnetism
  • Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016). [P. Gambardella/H. Brune]
  • Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2019). [XL. Feng/R. Fasel]
Silicon photonics
  • Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).
  • Fang, Z. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022). [A. Majumdar]
Polymers
  • Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013). [A. Salleo]
Neutrinoless double beta decay
  • CUORE Collaboration. Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE. Phys. Rev. Lett. 124, 122501 (2020).
Industrial cables
  • Hartwig, Z. S. et al. VIPER: an industrially scalable high-current high-temperature superconductor cable. Supercond. Sci. Technol. 33, 11LT01 (2020). [ZS. Hartwig]
  • Molodyk, A. et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci. Rep. 11, 2084 (2021). [A. Vasiliev]
Miscellaneous
  • Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32, 110–113 (1928).
  • Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 34, 1793–1803 (1963).
  • Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. Infinite conformal symmetry in two-dimensional quantum field theory. Nuc. Phys. B 241, 333–380 (1984).
  • Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
  • Allen, P. B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460–1463 (1987).
  • Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998).
  • Kurs, A. et al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 317, 83–86 (2007). [M. Soljačić]
  • Tisdale, W. A. et al. Hot-Electron Transfer from Semiconductor Nanocrystals. Science 328, 1543–1547 (2010). [DJ. Norris/ES. Aydil/XY. Zhu]
  • Cavagna, A. et al. Scale-free correlations in starling flocks. PNAS 107, 11865–11870 (2010). [I. Giardina/G. Parisi]
  • Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). [JA. Rogers]
  • Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014). [KJ. Gaffney]
  • Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016). [DA. Reis]
  • Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2016). [A. Cavalleri]
  • Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017). [J. Wu/P. Yu]
  • Kim, K. H. et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358, 1589–1593 (2017). [A. Nilsson]
  • Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). [R. Naaman/Y. Paltiel]
  • Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019). [EA. Hessels]
  • Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020). [L. Yang]
Software
  • Azuah, R. T. et al. DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data. J. Res. Natl. Inst. 114, 341 (2009).
  1. (2023-01-04) Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023). [XF. Ren/CW. Qiu/SJ. Pennycook/ATS. Wee]
  2. (2022-11-17) Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023). [NP. Ong]
  3. (2022-10-12) Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022). [PJW. Moll]
  4. (2022-08-15) Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).
  5. [SSP. Parkin]
  6. (2022-08-15) Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022). [JIA. Li]
  7. (2022-08-10) Han, L. et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608, 310–316 (2022). [ZM. Li/D. Raabe]
  8. (2022-08-04) Miao, L.-P. et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater. 21, 1158–1164 (2022). [S. Dong/Y. Zhang]
  9. (2022-08-01) Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022). [M. Chhowalla]
  10. (2022-08-01) Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022). [KF. Mak/J. Shan]
  11. (2022-07-04) Fang, Z. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022). [A. Majumdar]
  12. (2022-06-30) Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).
  13. (2022-06-30) Narita, H. et al. Field-free superconducting diode effect in noncentrosymmetric superconductor/ferromagnet multilayers. Nat. Nanotechnol. 17, 823–828 (2022). [T. Ono]
  14. (2022-06-29) Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). [XF. Duan]
  15. (2022-06-27) Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat. Mater. 21, 903–909 (2022). [EY. Tsymbal/A. Gruverman/XS. Xu]
  16. (2022-06-15) Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022). [S. Nadj-Perge]
  17. (2022-06-08) Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).
  18. (2022-06-06) Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022). [YH. Lin]
  19. (2022-06-02) de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022). [P. Jarillo-Herrero/R. Ashoori]
  20. (2022-06-01) Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni(111). Nature 606, 88–93 (2022). [RS. Ruoff/M. Chhowalla/F. Ding/HS. Shin]
  21. (2022-05-20) Vergniory, M. G. et al. All topological bands of all nonmagnetic stoichiometric materials. Science 376, eabg9094 (2022). [N. Regnault]
  22. (2022-05-12) Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720–724 (2022). [M. Knap/CF. Roos]
  23. (2022-05-11) Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). [LJ. Li/S. Li]
  24. (2022-04-27) Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022). [MN. Ali]
  25. (2022-04-22) Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
  26. (2022-04-11) Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022). [DK. Efetov]
  27. (2022-04-06) Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022). [S. Salahuddin]
  28. (2022-03-30) Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022)
  29. (2022-03-24) Su, L. et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375, 1385–1389 (2022). [C. Chang/LD. Zhao]
  30. (2022-02-23) Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022). [R. Comin]
  31. (2022-02-02) Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022). [P. Baum]
  32. (2022-01-20) Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265-270 (2022). [I. Zeljkovic]
  33. (2021-12-22) Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021). [J. Shan/KF. Mak]
  34. (2021-11-24) Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021). [P. Liljeroth]
  35. (2021-10-27) Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021). [KF. Mak/J. Shan]
  36. (2021-10-04) Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281-286 (2021). [C. Monroe]
  37. (2021-09-29) Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222-228 (2021). [ZQ. Wang/HJ. Gao]
  38. (2021-09-29) Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216-221 (2021). [I. Zelkovic]
  39. (2021-09-29) Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021). [P. Erhart/DG. Cahill/JW. Park]
  40. (2021-09-03) Li, H. et al. Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A=Rb, Cs). Phys. Rev. X 11, 031050 (2021). [H. Miao]
  41. (2021-08-26) Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012–1016 (2021). [E. Hassinger]
  42. (2021-08-20) Stehlik, J. et al. Tunable Coupling Architecture for Fixed-Frequency Transmon Superconducting Qubits. Phys. Rev. Lett. 127, 080505 (2021). [OE. Dial]
  43. (2021-08-02) Liang, Z. et al. Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021). [L. Shan/ZY. Wang/XH. Chen]
  44. (2021-07-30) Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021). [Y. Matsuda]
  45. (2021-07-27) Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021). [Y. Song/HQ. Yuan]
  46. (2021-07-23) Hays, M. et al. Coherent manipulation of an Andreev spin qubit. Science 373, 430–433 (2021). [MH. Devoret]
  47. (2021-07-22) Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge Density Waves and Electronic Properties of Superconducting Kagome Metals. Phys. Rev. Lett. 127, 046401 (2021).
  48. (2021-07-21) Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021). [N. Ni/SY. Xu]
  49. (2021-07-08) Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021). [JJ. Ying/XH. Chen]
  50. (2021-07-07) Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021). [A. Browaeys]
  51. (2021-07-07) Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021). [MD. Lukin]
  52. (2021-06-30) Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021). [E. Demler/HK. Park]
  53. (2021-06-23) Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021). [Y. Song/HQ. Yuan]
  54. (2021-06-17) Chen, K. Y. et al. Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure. Phys. Rev. Lett. 126, 247001 (2021). [JP. Sun/HC. Lei/JP. Hu/JG. Cheng]
  55. (2021-06-10) Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353-1357 (2021). [MZ. Hasan]
  56. (2021-06-09) Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021). [XL. Chen/JH. Zhou/ZR. Yang]
  57. (2021-05-19) Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021). [J. Wilheim/K. Richter/R. Huber]
  58. (2021-05-13) Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021). [NP. Ong]
  59. (2021-05-13) Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). [S. Fukami/H. Ohno]
  60. (2021-05-12) Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). [LJ. Li/J. Kong]
  61. (2021-05-05) Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).
  62. (2021-05-04) Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384-1388 (2021).
  63. (2021-04-21) Ni, S. et al. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021). [ZX. Zhao]
  64. (2021-04-20) Chen, X. et al. Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure. Chin. Phys. Lett. 38, 057402 (2021). [XL. Chen]
  65. (2021-04-16) Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021). [P. Jarillo-Herrero]
  66. (2021-03-19) Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021). [AA. Houck]
  67. (2021-03-05) Gyenis, A. et al. Experimental Realization of a Protected Superconducting Circuit Derived from the 0-π Qubit. PRX Quantum 2, 010339 (2021). [AA. Houck]
  68. (2021-03-04) Grinenko, V. et al. Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nat. Phys. 17, 748–754 (2021). [CW. Hicks/HH. Klauss]
  69. (2021-03-02) Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021). [SD. Wilson]
  70. (2021-03-01) Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021). [DK. Efetov]
  71. (2021-02-23) Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter. 33, 235801 (2021).
  72. (2021-02-23) Yin, Q. et al. Superconductivity and Normal-State Properties of Kagome Metal RbV3Sb5 Single Crystals. Chin. Phys. Lett. 38, 037403 (2021). [HC. Lei]
  73. (2021-02-17) Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021). [A. Jorio]
  74. (2021-02-05) Huggins, W. J. et al. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Inf. 7, 23 (2021). [R. Babbush]
  75. (2021-02-04) Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332-336 (2021). [Google]
  76. (2021-02-01) Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter Error with Commutator Scaling. Phys. Rev. X 11, 011020 (2021).
  77. (2021-02-01) Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).
  78. (2021-01-21)Molodyk, A. et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci. Rep. 11, 2084 (2021). [A. Vasiliev]
  79. (2021-01-04) Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021). [BA. Bernevig/XJ. Wang]
  80. (2021-01-01) Cai, W., Ma, Y., Wang, W., Zou, C.-L. & Sun, L. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res. 1, 50–67 (2021).
  81. (2020-12-22) Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).
  82. (2020-12-18) Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020). [II. Mazin]
  83. (2020-12-16) Zhao, Y.-F. et al. Tuning the Chern number in quantum anomalous Hall insulators. Nature 588, 419–423 (2020). [CX. Liu/CZ. Chang]
  84. (2020-12-14) Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020). [A. Yazdani]
  85. (2020-12-11) Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020). [DE. Freedman/DD. Awschalom]
  86. (2020-12-10) Ortiz, B. R. et al. CsV3Sb5: A Z2 Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett. 125, 247002 (2020). [SD. Wilson]
  87. (2020-12-04) Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020). [KM. Dani]
  88. (2020-11-23) Zhou, Y., Stoudenmire, E. M. & Waintal, X. What Limits the Simulation of Quantum Computers? Phys. Rev. X 10, 041038 (2020).
  89. (2020-11-06) Ashida, Y. et al. Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Phys. Rev. X 10, 041027 (2020). [E. Demler]
  90. (2020-10-28) Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020). [BA. Bernevig]
  91. (2020-10-17) Li, Z. et al. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv:2010.08895 [cs, math] (2020). [A. Anandkumar]
  92. (2020-10-07) Hartwig, Z. S. et al. VIPER: an industrially scalable high-current high-temperature superconductor cable. Supercond. Sci. Technol. 33, 11LT01 (2020). [ZS. Hartwig]
  93. (2020-10-02) Wang, Y. et al. A high-performance solid-state electrocaloric cooling system. Science 370, 129–133 (2020). [D. Schwartz]
  94. (2020-10-02) Torelló, A. et al. Giant temperature span in electrocaloric regenerator. Science 370, 125–129 (2020). [E. Defay]
  95. (2020-09-28) Lisi, S. et al. Observation of flat bands in twisted bilayer graphene. Nat. Phys. 17, 189–193 (2020). [F. Baumberger]
  96. (2020-09-21) Ghosh, S. et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 199–204 (2020). [BJ. Ramshaw]
  97. (2020-09-03) Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
  98. (2020-08-28) Google AI Quantum. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020). [Google]
  99. (2020-08-19) Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020). [MH. Devoret]
  100. (2020-08-19) Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020). [T. Ono]
  101. (2020-08-13) Sakakibara, H. et al. Model Construction and a Possibility of Cupratelike Pairing in a New d9 Nickelate Superconductor (Nd, Sr)NiO2. Phys. Rev. Lett. 125, 077003 (2020). [K. Kuroki]
  102. (2020-08-12) Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020). [MH. Devoret]
  103. (2020-08-10) Cenker, J. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. 17, 20–25 (2021). [D. Xiao/XD. Xu]
  104. (2020-08-10) Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020). [R. Comin]
  105. (2020-08-10) Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020). [ZP. Yin/HC. Lei/SC. Wang]
  106. (2020-08-01) Puri, S. et al. Bias-preserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020). [SM. Girvin]
  107. (2020-07-27) Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020). [HL. Peng]
  108. (2020-07-22) Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020). [A. Yacoby/RL. Walsworth]
  109. (2020-07-22) Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). [S. Jia/MZ. Hasan]
  110. (2020-07-15) Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020). [S. Nadj-Perge]
  111. (2020-07-13) Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020). [AN. Pasupathy/XY. Zhu]
  112. (2020-07-10) Li, P. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020). [ZQ. Mao/BH. Yan]
  113. (2020-07-06) Cea, T. & Guinea, F. Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene. Phys. Rev. B 102, 045107 (2020).
  114. (2020-07-01) Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020). [DH. Torchinsky/J. Orenstein]
  115. (2020-07-01) Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020). [MN. Ali]
  116. (2020-06-15) Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501-505 (2020). [CZ. Peng/AK. Ekert/JW. Pan]
  117. (2020-06-11) Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020). [A. Yazdani]
  118. (2020-06-11) Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020). [P. Jarillo-Herrero/S. Ilani]
  119. (2020-06-01) Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020). [AF. Young]
  120. (2020-05-27) Ledwith, P. J., Tarnopolsky, G., Khalaf, E. & Vishwanath, A. Fractional Chern insulator states in twisted bilayer graphene: An analytical approach. Phys. Rev. Research 2, 023237 (2020).
  121. (2020-05-25) Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857-861 (2020). [M. Endres]
  122. (2020-05-15) Khemani, V., Hermele, M. & Nandkishore, R. Localization from Hilbert space shattering: From theory to physical realizations. Phys. Rev. B 101, 174204 (2020).
  123. (2020-05-06) Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215-220 (2020). [P. Jarillo-Herrero]
  124. (2020-05-01) Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
  125. (2020-04-20) Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
  126. (2020-04-16) Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020). [A. Kaminski]
  127. (2020-04-15) Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020). [M. Veldhorst]
  128. (2020-04-15) Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020). [AS. Dzurak]
  129. (2020-04-13) Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020). [A. Imamoğlu]
  130. (2020-04-13) Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
  131. (2020-04-10) Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020). [E. del Barco]
  132. (2020-04-10) Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 6487 (2020). [G. Fève]
  133. (2020-04-08) Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020). [EPAM. Bakkers]
  134. (2020-04-06) Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020). [P. Kohli]
  135. (2020-04-03) Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020). [HY. Hwang]
  136. (2020-04-03) Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020).
  137. (2020-04-01) Udrescu, S.-M. & Tegmark, M. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).
  138. (2020-03-30) Bekenstein, R. et al. Quantum metasurfaces with atom arrays. Nat. Phys. 16, 676–681 (2020). [MD. Lukin]
  139. (2020-03-30) Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020). [GY. Zhang]
  140. (2020-03-27) Vaitiekėnas, S. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 367, eaav3392 (2020). [RM. Lutchyn/CM. Marcus]
  141. (2020-03-26) CUORE Collaboration. Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE. Phys. Rev. Lett. 124, 122501 (2020).
  142. (2020-03-25) Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020). [V. Madhavan]
  143. (2020-03-23) Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60-64 (2020). [MD. Lukin]
  144. (2020-03-18) Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). [J. Shan/KF. Mak]
  145. (2020-03-18) Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020). [F. Wang]
  146. (2020-03-16) Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509-513 (2020). [Z. Leghtas]
  147. (2020-03-16) Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020). [Z. Wang/W. Yi/P. Xue]
  148. (2020-03-11) Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020). [XD. Duan/XF. Duan]
  149. (2020-03-11) Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020). [P. Gambardella/LJ. Heyderman]
  150. (2020-03-10) Cranmer, M. et al. Lagrangian Neural Networks. arXiv:2003.04630 [physics, stat] (2020). [S. Ho]
  151. (2020-03-06) Li, Z. et al. Neural Operator: Graph Kernel Network for Partial Differential Equations. arXiv:2003.03485 [cs, math, stat] (2020). [A. Anandkumar]
  152. (2020-03-06) Broughton, M. et al. TensorFlow Quantum: A Software Framework for Quantum Machine Learning. arXiv:2003.02989 [cond-mat, physics:quant-ph] (2020). [M. Mohseni]
  153. (2020-03-04) Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020). [D. Goldhaber-Gordon/YB. Zhang/F. Wang]
  154. (2020-03-02) Xie, M. & MacDonald, A. H. Nature of the Correlated Insulator States in Twisted Bilayer Graphene. Phys. Rev. Lett. 124, 097601 (2020).
  155. (2020-03-02) Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247–256 (2020).
  156. (2020-03-02) Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photon. 14, 250–255 (2020). [KK. Berggren]
  157. (2020-03-02) Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).
  158. (2020-03-02) Fang, X.-T. et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422–425 (2020). [XF. Ma/TY. Chen/JW. Pan]
  159. (2020-02-25) Gu, Y., Kitaev, A., Sachdev, S. & Tarnopolsky, G. Notes on the complex Sachdev-Ye-Kitaev model. J. High Energ. Phys. 2020, 157 (2020).
  160. (2020-02-24) Wu, X. et al. Robust dx2-y2-wave superconductivity of infinite-layer nickelates. Phys. Rev. B 101, 060504 (2020). [S. Raghu/R. Thomale]
  161. (2020-02-24) Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).
  162. (2020-02-21) Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900-903 (2020). [AF. Young]
  163. (2020-02-21) Guardado-Sanchez, E. et al. Subdiffusion and Heat Transport in a Tilted Two-Dimensional Fermi-Hubbard System. Phys. Rev. X 10, 011042 (2020). [WS. Bakr]
  164. (2020-02-20) Chen, J.-P. et al. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020). [ZB. Wang/Q. Zhang/JW. Pan]
  165. (2020-02-19) Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-Field-Enabled Nonreciprocal Thermal Radiation in Weyl Semimetals. Nano Lett. 20, 1923–1927 (2020).
  166. (2020-02-19) Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020). [D. Sanvitto/G. Malpuech]
  167. (2020-02-18) Cao, Y. et al. Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. Phys. Rev. Lett. 124, 076801 (2020). [T. Senthil/P. Jarillo-Herrero]
  168. (2020-02-14) Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020). [Q. Zhang/XH. Bao/JW. Pan]
  169. (2020-02-10) Beer, K. et al. Training deep quantum neural networks. Nat. Commun. 11, 808 (2020). [R. Wolf]
  170. (2020-02-05) Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). [JH. Kim]
  171. (2020-02-05) Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020). [JA. Flores-Livas]
  172. (2020-02-04) Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020). [J. Li]
  173. (2020-01-31) Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020). [D. Broido/G. Chen]
  174. (2020-01-31) Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020). [S. Maruyama]
  175. (2020-01-30) He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020). [H. Dery/W. Yao/XD. Xu]
  176. (2020-01-29) Wang, J. et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 11, 582 (2020). [JS. Huang/YB. Yuan]
  177. (2020-01-27) Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020). [XD. Xu]
  178. (2020-01-27) Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020). [J. Shi]
  179. (2020-01-27) Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020). [R. Shahsavari/BI. Yakobson/JM. Tour]
  180. (2020-01-24) Lachance-Quirion, D. et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367, 425–428 (2020). [Y. Nakamura]
  181. (2020-01-23) Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895-900 (2020). [J. Wang/XH. Chen/YB. Zhang]
  182. (2020-01-20) Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020). [WS. Lee]
  183. (2020-01-17) Broholm, C., Cava, R. J., Kivelson, S. A., Nocera, D. G., Norman, M. R. & Senthil, T. Quantum spin liquids. Science 367, eaay0668 (2020).
  184. (2020-01-17) Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020). [SY. Choi/JH. Shim/JS. Kim]
  185. (2020-01-14) Trusheim, M. E. et al. Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. Phys. Rev. Lett. 124, 023602 (2020). [M. Atatüre/D. Englund]
  186. (2020-01-14) Wang, L., Sofer, Z. & Pumera, M. Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect? ACS Nano 14, 21–25 (2020).
  187. (2020-01-13) Wang, C. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020). [L. Yang]
  188. (2020-01-13) Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020). [TCH. Liew/QH. Xiong]
  189. (2020-01-10) Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020). [YY. Zhang/H. Ding/HJ. Gao]
  190. (2020-01-08) Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering Physical Concepts with Neural Networks. Phys. Rev. Lett. 124, 010508 (2020).
  191. (2020-01-07) Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020). [QH. Liu/D. Dessau/N. Ni]
  192. (2020-01-06) Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020). [MF. Crommie]
  193. (2020-01-06) Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020). [SO. Valenzuela]
  194. (2020-01-06) Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522-527 (2020). [Y. Xu/JS. Zhang/YY. Wang]
  195. (2020-01-02) Lee, I. et al. Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3. Phys. Rev. Lett. 124, 017201 (2020). [PC. Hammel]
  196. (2019-12-25) Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).
  197. (2019-12-24) Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019). [Y. Tokura]
  198. (2019-12-23) Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2019). [JW. Wang/MG. Thompson]
  199. (2019-12-18) Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019). [EV. Chulkov]
  200. (2019-12-18) Wang, H. et al. Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 1014-Dimensional Hilbert Space. Phys. Rev. Lett. 123, 250503 (2019). [CY. Lu/JW. Pan]
  201. (2019-12-18) Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2019). [FW. Ye]
  202. (2019-12-18) Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019). [O. Rader/G. Springholz]
  203. (2019-12-12) Guillaud, J. & Mirrahimi, M. Repetition Cat Qubits for Fault-Tolerant Quantum Computation. Phys. Rev. X 9, 041053 (2019).
  204. (2019-12-09) Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163-169 (2019). [JG. Checkelsky/R. Comin]
  205. (2019-12-09) Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2019). [XL. Feng/R. Fasel]
  206. (2019-12-09) Song, F., Yao, S. & Wang, Z. Non-Hermitian Topological Invariants in Real Space. Phys. Rev. Lett. 123, 246801 (2019).
  207. (2019-12-06) Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019). [MC. Beard/ZV. Vardeny]
  208. (2019-12-06) Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). [L. Zdeborová]
  209. (2019-12-05) Tse, M. et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett. 123, 231107 (2019). [LIGO Collaboration]
  210. (2019-11-25) Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model. Phys. Rev. Research 1, 033126 (2019).
  211. (2019-11-22) Park, M. J., Kim, Y., Cho, G. Y. & Lee, S. Higher-Order Topological Insulator in Twisted Bilayer Graphene. Phys. Rev. Lett. 123, 216803 (2019).
  212. (2019-11-22) Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019). [SW. Wu/CL. Gao]
  213. (2019-11-21) Li, H. et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 9, 041039 (2019). [WT. Zhang/HM. Weng/T. Qian/H. Ding]
  214. (2019-11-21) Chen, Y. J. et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. X 9, 041040 (2019). [ZK. Liu/LX. Yang/YL. Chen]
  215. (2019-11-21) Hao, Y.-J. et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019). [CY. Chen/QH. Liu/C. Liu]
  216. (2019-11-15) Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019). [P. Kim]
  217. (2019-11-13) Hinterleitner, B. et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 576, 85-90 (2019). [E. Bauer]
  218. (2019-11-11) Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159-163 (2020). [N. Gedik]
  219. (2019-11-07) Burg, G. W. et al. Correlated Insulating States in Twisted Double Bilayer Graphene. Phys. Rev. Lett. 123, 197702 (2019). [E. Tutuc]
  220. (2019-11-04) McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38-41 (2020). [A. Cavalleri]
  221. (2019-10-30) Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). [DK. Efetov]
  222. (2019-10-30) Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156-163 (2019). [XH. Chen/YB. Zhang]
  223. (2019-10-28) Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).
  224. (2019-10-28) Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303-1308 (2019). [KF. Mak/J. Shan]
  225. (2019-10-28) Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298-1302 (2019). [XD. Xu]
  226. (2019-10-23) Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). [Google]
  227. (2019-10-22) Levine, H. et al. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. Phys. Rev. Lett. 123, 170503 (2019). [MD. Lukin]
  228. (2019-10-21) Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and Topology in Non-Hermitian Physics. Phys. Rev. X 9, 041015 (2019).
  229. (2019-10-15) Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019). [KS. Lee/JH. Kim]
  230. (2019-10-10) Hochberg, Y. et al. Detecting Sub-GeV Dark Matter with Superconducting Nanowires. Phys. Rev. Lett. 123, 151802 (2019). [KK. Berggren]
  231. (2019-10-09) Nair, B. et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468–472 (2019). [X. Moya/S. Hirose/ND. Mathur]
  232. (2019-10-07) Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250-1254 (2019). [NP. Butch]
  233. (2019-10-07) Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315-319 (2019). [C. Felser]
  234. (2019-09-27) Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science 365, 1424–1428 (2019).
  235. (2019-09-27) Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).
  236. (2019-09-23) Pustogow, A. et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72-75 (2019). [SE. Brown]
  237. (2019-09-20) Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019). [MZ. Hasan]
  238. (2019-09-20) Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019). [YL. Chen]
  239. (2019-09-20) Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). [H. Beidenkopf]
  240. (2019-09-16) Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019). [ES. Toberer]
  241. (2019-09-16) Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255-1260 (2019). [P. Jarillo-Herrero]
  242. (2019-09-11) Choo, K., Neupert, T. & Carleo, G. Two-dimensional frustrated J1-J2 model studied with neural network quantum states. Phys. Rev. B 100, 125124 (2019).
  243. (2019-09-06) Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007–1012 (2019). [EA. Hessels]
  244. (2019-09-04) Yan, J.-Q. et al. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4. Phys. Rev. B 100, 104409 (2019). [BC. Sales]
  245. (2019-09-04) Rispoli, M. et al. Quantum critical behaviour at the many-body localization transition. Nature 573, 385-389 (2019). [M. Greiner]
  246. (2019-09-02) Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34-42 (2019). [V. Cros/A. Fert]
  247. (2019-08-30) Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019). [Y. Tokura]
  248. (2019-08-30) Hamazaki, R., Kawabata, K. & Ueda, M. Non-Hermitian Many-Body Localization. Phys. Rev. Lett. 123, 090603 (2019).
  249. (2019-08-28) Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019). [HY. Hwang]
  250. (2019-08-26) Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273-1278 (2019).
  251. (2019-08-23) Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019). [Z. Han/GY. Zhang/GQ. Yu/XF. Han]
  252. (2019-08-19) Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181-1187 (2019). [L. Fu/HJ. Gao/H. Ding]
  253. (2019-08-16) Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019). [NP. Butch]
  254. (2019-08-09) Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019). [MD. Lukin]
  255. (2019-08-09) Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019). [D. Goldhaber-Gordon]
  256. (2019-08-09) Kawabata, K., Bessho, T. & Sato, M. Classification of Exceptional Points and Non-Hermitian Topological Semimetals. Phys. Rev. Lett. 123, 066405 (2019).
  257. (2019-08-07) Yokomizo, K. & Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 123, 066404 (2019).
  258. (2019-08-05) Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011-1016 (2019). [CR. Dean/AF. Young]
  259. (2019-08-05) Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174-1180 (2019). [S. Nadj-Perge]
  260. (2019-07-31) Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 10, 3424 (2019). [RJ. Cava]
  261. (2019-07-31) Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101-105 (2019). [A. Yazdani]
  262. (2019-07-31) Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019). [JH. Mao/EY. Andrei]
  263. (2019-07-31) Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95-100 (2019). [A. Rubio/AN. Pasupathy]
  264. (2019-07-24) Figgatt, C. et al. Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368–372 (2019). [C. Monroe]
  265. (2019-07-17) Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019). [D. Goldhaber-Gordon/YB. Zhang/F. Wang]
  266. (2019-07-17) He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019). [MY. Simmons]
  267. (2019-07-01) Rem, B. S. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 15, 917-920 (2019). [K. Sengstock/C. Weitenberg]
  268. (2019-06-26) Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500 (2019). [JW. Miao]
  269. (2019-06-23) Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204 (2019).
  270. (2019-06-19) Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019). [Y. Iwasa]
  271. (2019-06-07) Choi, S. et al. Emergent SU(2) Dynamics and Perfect Quantum Many-Body Scars. Phys. Rev. Lett. 122, 220603 (2019). [DA. Abanin]
  272. (2019-06-05) Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019). [P. Wang/YF. Nie/XQ. Pan]
  273. (2019-05-22) Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
  274. (2019-05-15) Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019). [P. Zoller]
  275. (2019-05-08) Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537 (2019). [ZH. Qiao/LY. Zhang]
  276. (2019-05-01) Guin, S. N. et al. Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019). [C. Felser]
  277. (2019-04-26) Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019). [G. Chen/KA. Nelson]
  278. (2019-04-26) Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019). [AN. Cleland]
  279. (2019-04-24) Ren, H. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019). [A. Yacoby]
  280. (2019-04-24) Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019). [CM. Marcus/F. Nichele]
  281. (2019-04-19) Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019). [M. Greiner]
  282. (2019-04-19) Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019). [CF. Roos]
  283. (2019-04-12) Wang, D., Higgott, O. & Brierley, S. Accelerated Variational Quantum Eigensolver. Phys. Rev. Lett. 122, 140504 (2019).
  284. (2019-04-12) Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019) [J. Gooth/C. Felser]
  285. (2019-04-10) Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).
  286. (2019-03-20) Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).
  287. (2019-03-20) Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019). [HC. Lei/YJ. Sun/T. Qian/H. Ding]
  288. (2019-03-14) Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).
  289. (2019-03-13) Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019). [JM. Gambetta]
  290. (2019-03-07) Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019). [C. Monroe]
  291. (2019-03-04) Mühlbauer, S. et al. Magnetic small-angle neutron scattering. Rev. Mod. Phys. 91, 015004 (2019). [A. Michels]
  292. (2019-03-04) Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019). [JH. Chen/J. Feng/D. Sun]
  293. (2019-02-27) Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019). [JP. Home]
  294. (2019-02-27) Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).
  295. (2019-02-27) Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). [BA. Bernevig/ZJ. Wang]
  296. (2019-02-27) Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019). [HM. Wang/C. Fang]
  297. (2019-02-20) Takane, D. et al. Observation of Chiral Fermions with a Large Topological Charge and Associated Fermi-Arc Surface States in CoSi. Phys. Rev. Lett. 122, 076402 (2019). [T. Sato]
  298. (2019-02-19) Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).
  299. (2019-02-18) Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019). [MZ. Hasan]
  300. (2019-02-07) Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019). [DI. Schuster]
  301. (2019-01-29) Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic Orbits, Entanglement, and Quantum Many-Body Scars in Constrained Models: Matrix Product State Approach. Phys. Rev. Lett. 122, 040603 (2019).
  302. (2019-01-29) Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).
  303. (2019-01-18) Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
  304. (2019-01-14) Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019). [S. Salahuddin]
  305. (2019-01-09) Ding, Y. et al. Experimental Demonstration of Acoustic Chern Insulators. Phys. Rev. Lett. 122, 014302 (2019). [B. Liang/XF. Zhu/XG. Wan/JC. Chun]
  306. (2019-01-02) Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61-66 (2019). [AM. Lindenberg]
  307. (2018-12-17) Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337-342 (2018). [N. Gedik/P. Jarillo-Herrero]
  308. (2018-12-17) Zhang, C. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565, 331–336 (2018). [FX. Xiu]
  309. (2018-11-30) Lee, D. et al. Isostructural metal-insulator transition in VO2. Science 362, 1037–1040 (2018). [CB. Eom]
  310. (2018-11-21) Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018). [AN. Cleland]
  311. (2018-11-14) Chen, L. et al. Topological Spin Excitations in Honeycomb Ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018). [PC. Dai]
  312. (2018-11-02) Wall, S. et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 362, 572–576 (2018). [O. Delaire/M. Trigo]
  313. (2018-10-22) Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B 98, 155134 (2018).
  314. (2018-10-19) Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018). [H. Ding/HJ. Gao]
  315. (2018-10-05) Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018). [B. Gottsman]
  316. (2018-09-12) Yin, J.-X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). [MZ. Hasan]
  317. (2018-09-12) Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222-225 (2018). [M. Kläui]
  318. (2018-09-11) Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018). [HM. Wang/SC. Wang/HC. Lei]
  319. (2018-09-07) Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). [A. Ozcan]
  320. (2018-09-05) Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018). [RJ. Schoelkopf]
  321. (2018-09-04) Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018). [R. Thomale]
  322. (2018-08-08) Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018). [R. Fasel]
  323. (2018-08-08) Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018). [SG. Louie/MF. Crommie/FR. Fischer]
  324. (2018-07-31) Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).
  325. (2018-07-30) Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). [C. Felser]
  326. (2018-07-30) Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018). [S. Nakatsuji]
  327. (2018-07-16) Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018). [BJ. Yang/JS. Kim]
  328. (2018-07-06) Rose, B. C. et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 361, 60–63 (2018). [NP. de Leon]
  329. (2018-06-28) Stanev, V. et al. Machine learning modeling of superconducting critical temperature. npj Comput. Mater. 4, 29 (2018). [I. Takeuchi]
  330. (2018-06-22) Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018). [R. Naaman/Y. Paltiel]
  331. (2018-06-15) Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018). [P. Jarillo-Herrero]
  332. (2018-06-14) Qiu, C. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387–392 (2018). [ZY. Zhang/LM. Peng]
  333. (2018-06-13) Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018). [A. Wallraff]
  334. (2018-06-11) Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227-231 (2018). [Y. Matsuda]
  335. (2018-06-04) Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205-210 (2018). [A. Stern]
  336. (2018-05-14) Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
  337. (2018-05-01) Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018). [Y. Oreg]
  338. (2018-04-23) Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018). [P. Jarillo-Herrero/XD. Xu]
  339. (2018-04-19) Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018). [L. Wang/CG. Lee]
  340. (2018-04-06) Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 120, 145301 (2018).
  341. (2018-03-19) Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). [R. Comin/JG. Checkesky]
  342. (2018-03-05) Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). [P. Jarillo-Herrero]
  343. (2018-03-05) Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). [P. Jarillo-Herrero]
  344. (2018-02-20) Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018). [SE. Nagler]
  345. (2018-02-12) Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring Localization in Nuclear Spin Chains. Phys. Rev. Lett. 120, 070501 (2018).
  346. (2018-02-06) Zhang, P., Shen, H. & Zhai, H. Machine Learning Topological Invariants with Neural Networks. Phys. Rev. Lett. 120, 066401 (2018).
  347. (2018-02-02) Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018). [Y. Wang/X. Zhang]
  348. (2018-01-31) Xiao, D. et al. Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures. Phys. Rev. Lett. 120, 056801 (2018). [N. Samarth/CZ. Chang]
  349. (2018-01-22) Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
  350. (2018-01-08) Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).
  351. (2018-01-05) Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76-79 (2018). [P. Jarillo-Herrero]
  352. (2017-12-22) Kim, K. H. et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358, 1589–1593 (2017). [A. Nilsson]
  353. (2017-12-08) Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017). [P. Abbamonte]
  354. (2017-12-04) Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).
  355. (2017-12-04) Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018). [P. Jarillo-Herrero/XD. Xu]
  356. (2017-11-30) Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017). [M. Greiner/V. Vuletic/MD. Lukin]
  357. (2017-11-17) Chang, G. et al. Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017). [H. Lin/MZ. Hasan]
  358. (2017-11-10) Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017). [A. Yazdani]
  359. (2017-10-30) Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
  360. (2017-10-10) Deffner, S. & Campbell, S. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017).
  361. (2017-09-25) Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).
  362. (2017-09-25) Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017). [S. Nakatsuji]
  363. (2017-09-14) Zhao, W. et al. Superparamagnetic enhancement of thermoelectric performance. Nature 549, 247–251 (2017). [J. Shi]
  364. (2017-08-18) Wetzel, S. J. Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders. Phys. Rev. E 96, 022140 (2017).
  365. (2017-07-25) Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
  366. (2017-07-21) Shiraishi, N. & Mori, T. Systematic Construction of Counterexamples to the Eigenstate Thermalization Hypothesis. Phys. Rev. Lett. 119, 030601 (2017).
  367. (2017-07-19) Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). [BA. Bernevig]
  368. (2017-07-19) Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017). [K. Nielsch]
  369. (2017-07-14) Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017). [A. Yacoby]
  370. (2017-07-07) Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75–80 (2017). [JCS. Davis]
  371. (2017-07-07) Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).
  372. (2017-07-06) Rosenfeld, W. et al. Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. Phys. Rev. Lett. 119, 010402 (2017). [H. Weinfurter]
  373. (2017-07-03) Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. PNAS 114, 7555–7560 (2017).
  374. (2017-07-03) Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. PNAS 114, 6996–7000 (2017).
  375. (2017-06-26) Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017). [P. Kim/MD. Lukin/HK. Park]
  376. (2017-06-16) Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017). [CZ. Peng/JY. Wang/JW. Pan]
  377. (2017-06-13) Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
  378. (2017-06-12) Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017). [M. Soljačić]
  379. (2017-06-09) Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017). [SE. Nagler]
  380. (2017-06-08) Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). [P. Jarillo-Herrero/XD. Xu]
  381. (2017-06-02) Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017). [R. Hanson]
  382. (2017-06-01) Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017). [J. Wu/P. Yu]
  383. (2017-05-29) Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017). [P. Jarillo-Herrero/N. Gedik]
  384. (2017-05-25) Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017). [M. Greiner]
  385. (2017-05-22) Zhang, Y. & Kim, E.-A. Quantum Loop Topography for Machine Learning. Phys. Rev. Lett. 118, 216401 (2017).
  386. (2017-05-17) Ju, S. et al. Designing Nanostructures for Phonon Transport via Bayesian Optimization. Phys. Rev. X 7, 021024 (2017). [J. Shiomi]
  387. (2017-04-20) Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). [JH. Kim]
  388. (2017-04-18) Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
  389. (2017-03-21) Lüschen, H. P. et al. Signatures of Many-Body Localization in a Controlled Open Quantum System. Phys. Rev. X 7, 011034 (2017). [U. Schneider]
  390. (2017-03-09) Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017). [MD. Lukin]
  391. (2017-03-09) Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017). [C. Monroe]
  392. (2017-03-06) Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 7, 43705 (2017).
  393. (2017-03-01) Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017). [W. Ketterle]
  394. (2017-02-15) Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017). [BH. Yan]
  395. (2017-02-13) van Nieuwenburg, E. P. L., Liu, Y.-H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).
  396. (2017-02-13) Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).
  397. (2017-02-10) Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
  398. (2017-01-30) Bordia, P., Lüschen, H., Schneider, U., Knap, M. & Bloch, I. Periodically driving a many-body localized quantum system. Nat. Phys. 13, 460–464 (2017).
  399. (2017-01-20) Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). [BH. Yan]
  400. (2017-01-11) Yan, B. & Felser, C. Topological Materials: Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).
  401. (2017-01-09) Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).
  402. (2017-01-05) Low, G. H. & Chuang, I. L. Optimal Hamiltonian Simulation by Quantum Signal Processing. Phys. Rev. Lett. 118, 010501 (2017).
  403. (2016-12-23) Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016). [CM. Marcus]
  404. (2016-12-05) Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2016). [J. Orenstein]
  405. (2016-12-05) Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016). [G. Chen/J. Zhao]
  406. (2016-12-02) Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016). [NP. Armitage]
  407. (2016-11-08) Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
  408. (2016-11-02) Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016).
  409. (2016-10-28) Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016). [D. Gershoni]
  410. (2016-10-25) Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).
  411. (2016-10-24) Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2016). [A. Cavalleri]
  412. (2016-10-11) Wang, Y. et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun. 7, 13142 (2016). [BG. Wang/XG. Wan/F. Miao]
  413. (2016-10-10) Yonezawa, S. et al. Thermodynamic evidence for nematic superconductivity in CuxBi2Se3. Nat. Phys. 13, 123–126 (2016). [Y. Maeno]
  414. (2016-10-10) Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B. & Verstraete, F. Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94, 165116 (2016).
  415. (2016-09-30) Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016). [CR. Dean]
  416. (2016-09-16) Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science 353, 1253–1256 (2016). [M. Greiner]
  417. (2016-08-29) Bocquillon, E. et al. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 12, 137–143 (2016). [LW. Molenkamp]
  418. (2016-08-26) Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016).
  419. (2016-08-23) Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). [XD. Xu]
  420. (2016-08-17) Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).
  421. (2016-08-03) Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016). [C. Monroe]
  422. (2016-07-18) Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016). [JG. Checkelsky]
  423. (2016-07-08) Reagor, M. et al. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016). [RJ. Schoelkopf]
  424. (2016-07-04) Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016). [JG. Analytis]
  425. (2016-06-29) Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).
  426. (2016-06-24) Choi, J. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016). [C. Gross]
  427. (2016-06-08) Weng, H., Dai, X. & Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys.: Condens. Matter 28, 303001 (2016).
  428. (2016-06-06) Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016). [C. Monroe]
  429. (2016-06-06) Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016). [DA. Reis]
  430. (2016-06-01) Konôpková, Z., McWilliams, R. S., Gómez-Pérez, N. & Goncharov, A. F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016).
  431. (2016-05-30) Matano, K., Kriener, M., Segawa, K., Ando, Y. & Zheng, G. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3. Nat. Phys. 12, 852–854 (2016).
  432. (2016-05-20) Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).
  433. (2016-05-17) Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016). [E. Hassinger/BH. Yan]
  434. (2016-05-09) Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016). [JS. Moodera]
  435. (2016-05-04) Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). [SA. Friedler/J. Schrier/AJ. Norquist]
  436. (2016-04-22) Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016). [F. Kransz/P. Baum]
  437. (2016-04-15) Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016). [P. Gambardella/H. Brune]
  438. (2016-03-28) Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 15, 711–716 (2016). [CT. Chen]
  439. (2016-03-09) Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016). [CM. Marcus]
  440. (2016-03-04) Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016). [R. Blatt]
  441. (2016-03-01) Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The Quantum Anomalous Hall Effect: Theory and Experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).
  442. (2016-02-25) Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016). [MZ. Hasan/S. Jia]
  443. (2016-02-22) Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016). [AZ. Genack/AB. Khanikaev]
  444. (2016-02-11) Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016). [P. Kim/KC. Fong]
  445. (2016-02-11) LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). [LIGO Collaboration]
  446. (2016-02-05) Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). [T. Jungwirth]
  447. (2016-02-04) Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016). [HK. Park/MD. Lukin]
  448. (2016-02-02) Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. PNAS 113, 1180–1185 (2016). [H. Lin/MZ. Hasan]
  449. (2016-01-27) Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016). [R. Ramesh]
  450. (2016-01-22) Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo Insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).
  451. (2016-01-21) Wiedenmann, J. et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 7, 1–7 (2016). [LW. Molenkamp]
  452. (2016-01-11) Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).
  453. (2015-12-30) Koski, J. V., Kutvonen, A., Khaymovich, I. M., Ala-Nissila, T. & Pekola, J. P. On-Chip Maxwell’s Demon as an Information-Powered Refrigerator. Phys. Rev. Lett. 115, 260602 (2015).
  454. (2015-12-16) Shalm, L. K. et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett. 115, 250402 (2015). [SW. Nam]
  455. (2015-12-16) Giustina, M. et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 115, 250401 (2015). [A. Zeilinger]
  456. (2015-12-11) Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015). [JT. Ye]
  457. (2015-11-26) Zhao, L.-D. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141–144 (2015). [MG. Kanatzidis]
  458. (2015-11-20) Sodemann, I. & Fu, L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 115, 216806 (2015).
  459. (2015-11-12) Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). [T. Higo]
  460. (2015-11-02) Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2015). [YL. Chen]
  461. (2015-11-01) Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015). [MZ. Hasan]
  462. (2015-10-30) Zhang, X. et al. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces 7, 25923–25929 (2015). [JC. Hone]
  463. (2015-10-23) Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015). [NP. Ong]
  464. (2015-10-21) Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015). [R. Hanson]
  465. (2015-10-12) Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2015).
  466. (2015-09-30) Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). [K. Banerjee]
  467. (2015-09-14) Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
  468. (2015-08-24) Huang, X. et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X 5, 031023 (2015). [GF. Chen]
  469. (2015-08-21) Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015). [I. Bloch]
  470. (2015-08-17) Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
  471. (2015-08-17) Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015). [T. Qian/M. Shi/H. Ding]
  472. (2015-08-07) Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). [MZ. Hasan]
  473. (2015-08-03) Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).
  474. (2015-07-31) Lv, B. et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 5, 031013 (2015). [T. Qian/H. Ding]
  475. (2015-07-15) Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015). [EH. Sargent]
  476. (2015-07-03) Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
  477. (2015-06-22) Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015). [BH. Yan]
  478. (2015-06-12) Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015). [H. Lin/MZ. Hasan]
  479. (2015-06-01) Hu, Y., Zeng, L., Minnich, A. J., Dresselhaus, M. S. & Chen, G. Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).
  480. (2015-05-27) Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015). [E. Goulielmakis]
  481. (2015-05-18) Shen, B., Wang, P., Polson, R. & Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photon. 9, 378–382 (2015).
  482. (2015-05-11) You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015). [TF. Heinz]
  483. (2015-04-29) Almheiri, A., Dong, X. & Harlow, D. Bulk locality and quantum error correction in AdS/CFT. J. High Energ. Phys. 2015, 163 (2015).
  484. (2015-04-29) Ristè, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015). [L. DiCarlo]
  485. (2015-04-15) Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).
  486. (2015-03-17) Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev. X 5, 011029 (2015).
  487. (2015-03-01) Nandkishore, R. & Huse, D. A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
  488. (2015-01-22) Senthil, T. Symmetry-Protected Topological Phases of Quantum Matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).
  489. (2014-12-23) Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2014). [VM. Menon]
  490. (2014-12-18) Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2014). [MZ. Hasan]
  491. (2014-11-13) Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).
  492. (2014-11-12) Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 515, 245–248 (2014). [ZX. Shen]
  493. (2014-10-24) Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014). [E. Betzig]
  494. (2014-10-24) Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). [LS. Levitov/AK. Geim]
  495. (2014-10-24) Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014). [BJ. Siwick]
  496. (2014-10-20) Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).
  497. (2014-10-15) Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).
  498. (2014-10-07) Zhang, X., Zou, C.-L., Jiang, L. & Tang, H. X. Strongly Coupled Magnons and Cavity Microwave Photons. Phys. Rev. Lett. 113, 156401 (2014).
  499. (2014-10-06) Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). [L. Colombo]
  500. (2014-10-02) Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014). [A. Yazdani]
  501. (2014-09-11) Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014). [DK. Sadana]
  502. (2014-09-04) Kjäll, J. A., Bardarson, J. H. & Pollmann, F. Many-Body Localization in a Disordered Quantum Ising Chain. Phys. Rev. Lett. 113, 107204 (2014).
  503. (2014-09-02) Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals. Phys. Rev. X 4, 031035 (2014).
  504. (2014-08-27) Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014). [Y. Tokura]
  505. (2014-08-24) Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014).
  506. (2014-08-24) Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). [A. Zeilinger]
  507. (2014-08-10) Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014). [A. Yazdani]
  508. (2014-07-29) Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 5, 4543 (2014). [G. Eda]
  509. (2014-07-28) Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
  510. (2014-07-25) Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014). [MK. Oberthaler]
  511. (2014-07-23) Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014). [DC. Ralph]
  512. (2014-07-10) Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014). [R. Shimano]
  513. (2014-07-09) Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014). [C. Monroe]
  514. (2014-06-27) Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
  515. (2014-05-15) Zapf, V., Jaime, M. & Batista, C. D. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563–614 (2014).
  516. (2014-05-07) Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014). [KJ. Gaffney]
  517. (2014-04-23) Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014). [JM. Martinis]
  518. (2014-04-22) Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014). [MH. Devoret]
  519. (2014-04-22) Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).
  520. (2014-04-18) Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).
  521. (2014-04-09) Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014). [V. Vuletic/MD. Lukin]
  522. (2014-03-23) Kim, D. J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).
  523. (2014-01-31) Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science 343, 516–519 (2014).
  524. (2014-01-31) Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
  525. (2013-12-30) Yan, R. et al. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 8, 986–993 (2013). [ARH. Walker/HG. Xing]
  526. (2013-12-19) da Silva Neto, E. H. et al. Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates. Science 343, 393–396 (2013). [A. Yazdani]
  527. (2013-12-08) Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2013). [X. Crispin]
  528. (2013-12-08) Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2013). [R. Ramesh/MA. Zurbuchen]
  529. (2013-11-08) Palomaki, T. A., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Entangling Mechanical Motion with Microwave Fields. Science 342, 710–713 (2013).
  530. (2013-11-01) Vlastakis, B. et al. Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States. Science 342, 607–610 (2013). [RJ. Schoelkopf]
  531. (2013-10-23) Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013). [DC. Glattli]
  532. (2013-09-22) Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). [AT. Boothroyd]
  533. (2013-09-17) Serbyn, M., Papić, Z. & Abanin, D. A. Local Conservation Laws and the Structure of the Many-Body Localized States. Phys. Rev. Lett. 111, 127201 (2013).
  534. (2013-09-13) Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).
  535. (2013-08-04) Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013). [A. Salleo]
  536. (2013-07-31) Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). [HK. Park/MD. Lukin]
  537. (2013-07-22) Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).
  538. (2013-07-09) Vazifeh, M. M. & Franz, M. Electromagnetic Response of Weyl Semimetals. Phys. Rev. Lett. 111, 027201 (2013).
  539. (2013-06-28) Serbyn, M., Papić, Z. & Abanin, D. A. Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems. Phys. Rev. Lett. 110, 260601 (2013).
  540. (2013-06-16) Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
  541. (2013-05-01) Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). [JA. Rogers]
  542. (2013-04-24) Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). [R. Hanson]
  543. (2013-04-12) Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167–170 (2013). [K. He/YY. Wang/QK. Xue]
  544. (2013-04-08) Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).
  545. (2013-04-01) Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).
  546. (2013-03-13) Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013). [RJ. Schoelkopf]
  547. (2013-03-05) Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
  548. (2013-02-01) Staudacher, T. et al. Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume. Science 339, 561–563 (2013). [F. Reinhard/J. Wrachtrup]
  549. (2013-01-31) Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).
  550. (2013-01-08) Johnson, J. A. et al. Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane. Phys. Rev. Lett. 110, 025901 (2013).
  551. (2012-12-21) Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-Protected Topological Orders in Interacting Bosonic Systems. Science 338, 1604–1606 (2012).
  552. (2012-12-19) Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012). [YS. Lee]
  553. (2012-12-16) Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2012).
  554. (2012-11-16) Luckyanova, M. N. et al. Coherent Phonon Heat Conduction in Superlattices. Science 338, 936–939 (2012). [G. Chen]
  555. (2012-11-13) Xu, S.-Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 3, 1192 (2012). [MZ. Hasan]
  556. (2012-09-23) Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).
  557. (2012-09-12) Wang, H. et al. Integrated Circuits Based on Bilayer MoS2 Transistors. Nano Lett. 12, 4674–4680 (2012). [T. Palacios]
  558. (2012-09-04) Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological States and Adiabatic Pumping in Quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
  559. (2012-07-25) Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012) [MD. Lukin/V. Vuletic]
  560. (2012-07-19) Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron-Electron Interactions in Graphene: Current Status and Perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).
  561. (2012-07-03) Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded Growth of Entanglement in Models of Many-Body Localization. Phys. Rev. Lett. 109, 017202 (2012).
  562. (2012-06-28) Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
  563. (2012-06-08) Maurer, P. C. et al. Room-Temperature Quantum Bit Memory Exceeding One Second. Science 336, 1283–1286 (2012). [MD. Lukin]
  564. (2012-05-25) Mourik, V. et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 336, 1003–1007 (2012). [LP. Kouwenhoven]
  565. (2012-05-11) Jarmola, A., Acosta, V. M., Jensen, K., Chemerisov, S. & Budker, D. Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Lett. 108, 197601 (2012).
  566. (2012-05-08) Yan, Z., Liu, G., Khan, J. M. & Balandin, A. A. Graphene quilts for thermal management of high-power GaN transistors. Nat. Commun. 3, 827 (2012).
  567. (2012-04-22) Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).
  568. (2012-04-11) Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012). [G. Rempe]
  569. (2012-01-20) Barz, S. et al. Demonstration of Blind Quantum Computing. Science 335, 303–308 (2012). [P. Walther]
  570. (2011-10-05) Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011). [O. Painter]
  571. (2011-09-11) LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011). [LIGO Collaboration]
  572. (2011-08-23) Esfarjani, K., Chen, G. & Stokes, H. T. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).
  573. (2011-06-19) Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011). [Y. Tokura]
  574. (2011-06-06) Aaronson, S. & Arkhipov, A. The Computational Complexity of Linear Optics. Theory of Computing 9, 143–252 (2011).
  575. (2011-05-09) Wang, Z., Alaniz, J. E., Jang, W., Garay, J. E. & Dames, C. Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths. Nano Lett. 11, 2206–2213 (2011).
  576. (2011-05-08) Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011). [WD. Oliver]
  577. (2011-03-31) Monz, T. et al. 14-Qubit Entanglement: Creation and Coherence. Phys. Rev. Lett. 106, 130506 (2011). [R. Blatt]
  578. (2011-03-22) Brüne, C. et al. Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011). [LW. Molenkamp]
  579. (2010-11-09) Pal, A. & Huse, D. A. Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010).
  580. (2010-11-07)Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011). [AB. Kuzmenko]
  581. (2010-10-29) Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices. Science 330, 655–657 (2010).
  582. (2010-08-28) Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
  583. (2010-08-13) Chu, J.-H. et al. In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor. Science 329, 824–826 (2010). [IR. Fisher]
  584. (2010-07-25) Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5, 718-721 (2010).
  585. (2010-07-16) Onose, Y. et al. Observation of the Magnon Hall Effect. Science 329, 297–299 (2010). [Y. Tokura]
  586. (2010-07-02) Yu, R. et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61–64 (2010). [X. Dai/Z. Fang]
  587. (2010-06-18) Tisdale, W. A. et al. Hot-Electron Transfer from Semiconductor Nanocrystals. Science 328, 1543–1547 (2010). [DJ. Norris/ES. Aydil/XY. Zhu]
  588. (2010-06-14) Cavagna, A. et al. Scale-free correlations in starling flocks. PNAS 107, 11865–11870 (2010). [I. Giardina/G. Parisi]
  589. (2010-04-29) Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
  590. (2010-04-09) Seol, J. H. et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 328, 213–216 (2010). [L. Shi]
  591. (2010-03-21) Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).
  592. (2010-03-17) O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010). [AN. Cleland]
  593. (2010-03-11) Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).
  594. (2010-03-11) Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010). [E. Saitoh]
  595. (2010-02-26) Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).
  596. (2010-02-10) Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the Thermal Hall Effect in Quantum Magnets. Phys. Rev. Lett. 104, 066403 (2010).
  597. (2009-12-13) Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2009). [Y. Cui]
  598. (2009-12-09) Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2009). [KC. Schwab]
  599. (2009-12-01) Azuah, R. T. et al. DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data. J. Res. Natl. Inst. 114, 341 (2009).
  600. (2009-10-25) Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (2009).
  601. (2009-10-19) Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2009).
  602. (2009-10-15) Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).
  603. (2009-10-07) Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103, 150502 (2009).
  604. (2009-09-24) Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009). [JM. Martinis]
  605. (2009-09-02) Rigol, M. Breakdown of Thermalization in Finite One-Dimensional Systems. Phys. Rev. Lett. 103, 100403 (2009).
  606. (2009-07-31) Eckstein, M., Kollar, M. & Werner, P. Thermalization after an Interaction Quench in the Hubbard Model. Phys. Rev. Lett. 103, 056403 (2009).
  607. (2009-04-02) Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009). [DD. Awschalom]
  608. (2009-01-23) Olmschenk, S. et al. Quantum Teleportation Between Distant Matter Qubits. Science 323, 486–489 (2009). [C. Monroe]
  609. (2008-11-23) Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).
  610. (2008-11-13) Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).
  611. (2008-11-09) Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008). [E. Tutiš]
  612. (2008-10-02) Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). [MD. Lukin]
  613. (2008-07-01) Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008). [A. Wallraff]
  614. (2008-06-12) Faleev, S. V. & Léonard, F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008).
  615. (2008-06-10) Meneghesso, G. et al. Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives. IEEE Trans. Device Mater. Reliab. 8, 332–343 (2008). [E. Zanoni]
  616. (2008-05-02) Poudel, B. et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 320, 634–638 (2008). [G. Chen/ZF. Ren]
  617. (2008-05-01) Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
  618. (2008-04-27) Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–466 (2008).
  619. (2008-04-17) Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).
  620. (2008-04-16) Ghosh, S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).
  621. (2008-03-27) Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).
  622. (2008-02-20) Wolf, M. M., Verstraete, F., Hastings, M. B. & Cirac, J. I. Area Laws in Quantum Systems: Mutual Information and Correlations. Phys. Rev. Lett. 100, 070502 (2008).
  623. (2008-02-20) Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 8, 902–907 (2008). [CN. Lau]
  624. (2008-01-10) Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008). [JR. Heath]
  625. (2008-01-10) Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). [A. Majumdar/PD. Yang]
  626. (2007-12-07) Xiao, D., Yao, W. & Niu, Q. Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport. Phys. Rev. Lett. 99, 236809 (2007).
  627. (2007-11-23) Ozyuzer, L. et al. Emission of Coherent THz Radiation from Superconductors. Science 318, 1291–1293 (2007). [U. Welp]
  628. (2007-11-02) König, M. et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 318, 766–770 (2007). [SC. Zhang]
  629. (2007-10-25) Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007). [F. Klausz/U. Heinzmann]
  630. (2007-09-26) Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09(2007)120 (2007).
  631. (2007-07-06) Kurs, A. et al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 317, 83–86 (2007). [M. Soljačić]
  632. (2007-07-02) Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
  633. (2007-07-01) Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).
  634. (2007-05-27) Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).
  635. (2007-04-30) Kollath, C., Läuchli, A. M. & Altman, E. Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Phys. Rev. Lett. 98, 180601 (2007).
  636. (2007-04-23) Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).
  637. (2007-03-15) Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007). [M. Brune/S. Haroche]
  638. (2007-03-09) Novoselov, K. S. et al. Room-Temperature Quantum Hall Effect in Graphene. Science 315, 1379–1379 (2007). [P. Kim/AK. Geim]
  639. (2007-03-07) Fu, L., Kane, C. L. & Mele, E. J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 98, 106803 (2007).
  640. (2007-03-02) Cheianov, V. V., Fal’ko, V. & Altshuler, B. L. The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions. Science 315, 1252–1255 (2007).
  641. (2007-02-01) Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007). [RJ. Schoelkopf]
  642. (2007-02-01) Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Phys. Rev. Lett. 98, 050405 (2007).
  643. (2007-01-19) Chiritescu, C. et al. Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals. Science 315, 351–353 (2007). [DG. Cahill/P. Zschack]
  644. (2006-12-13) Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318–318 (2006).
  645. (2006-11-17) Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-State Thermal Rectifier. Science 314, 1121–1124 (2006).
  646. (2006-11-02) Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006). [A. Heidmann]
  647. (2006-10-13) Childress, L. et al. Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond. Science 314, 281–285 (2006). [MD. Lukin]
  648. (2006-09-15) Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-Field Microscopy Through a SiC Superlens. Science 313, 1595–1595 (2006).
  649. (2006-09-15) Betzig, E. et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642–1645 (2006). [HF. Hess]
  650. (2006-08-10) Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006).
  651. (2006-07-23) Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006). [RJ. Cava]
  652. (2006-05-12) Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).
  653. (2006-03-03) Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).
  654. (2006-01-23) Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).
  655. (2006-01-01) Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
  656. (2005-11-23) Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).
  657. (2005-11-10) Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
  658. (2005-11-08) Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting Electrons in Disordered Wires: Anderson Localization and Low-T Transport. Phys. Rev. Lett. 95, 206603 (2005).
  659. (2005-09-28) Kane, C. L. & Mele, E. J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005).
  660. (2005-07-29) Schmidt, P. O. et al. Spectroscopy Using Quantum Logic. Science 309, 749–752 (2005). [DJ. Wineland]
  661. (2005-06-16) Lo, H.-K., Ma, X. & Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 94, 230504 (2005).
  662. (2005-05-31) Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).
  663. (2005-05-25) Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005). [T. Rasing]
  664. (2005-02-22) Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).
  665. (2004-12-23) Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002 (2004).
  666. (2004-11-30) Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).
  667. (2004-10-28) Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett. 93, 185503 (2004).
  668. (2004-09-09) Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). [RJ. Schoelkopf]
  669. (2004-08-18) Onoda, M., Murakami, S. & Nagaosa, N. Hall Effect of Light. Phys. Rev. Lett. 93, 083901 (2004).
  670. (2004-07-19) Vidal, G. Efficient Simulation of One-Dimensional Quantum Many-Body Systems. Phys. Rev. Lett. 93, 040502 (2004).
  671. (2004-06-29) Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).
  672. (2004-06-04) Leibfried, D. et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States. Science 304, 1476–1478 (2004). [DJ. Wineland]
  673. (2004-03-05) Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined Quantum Critical Points. Science 303, 1490–1494 (2004).
  674. (2003-10-01) Vidal, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett. 91, 147902 (2003).
  675. (2003-09-23) Shi, L. et al. Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. J. Heat Transfer 125, 881–888 (2003).
  676. (2003-08-14) Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).
  677. (2002-12-27) Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2002). [SR. Phillpot]
  678. (2002-12-17) van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002). [LP. Kouwenhoven]
  679. (2002-10-10) Beveratos, A. et al. Single Photon Quantum Cryptography. Phys. Rev. Lett. 89, 187901 (2002). [P. Grangier]
  680. (2002-09-27) Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science 297, 2229–2232 (2002).
  681. (2002-09-23) Osborne, T. J. & Nielsen, M. A. Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002).
  682. (2002-08-01) Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002).
  683. (2001-11-22) Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
  684. (2001-10-31) Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
  685. (2001-10-11) Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).
  686. (2001-09-26) Buhrman, H., Cleve, R., Watrous, J. & de Wolf, R. Quantum Fingerprinting. Phys. Rev. Lett. 87, 167902 (2001).
  687. (2001-06-14) Arnesen, M. C., Bose, S. & Vedral, V. Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model. Phys. Rev. Lett. 87, 017901 (2001).
  688. (2001-01-29) Briegel, H. J. & Raussendorf, R. Persistent Entanglement in Arrays of Interacting Particles. Phys. Rev. Lett. 86, 910–913 (2001).
  689. (2001-01-04) Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
  690. (2000-10-30) Pendry, J. B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
  691. (2000-10-25) DiVincenzo, D. P. The Physical Implementation of Quantum Computation. Fort. Phys. 48, 771–783 (2000).
  692. (2000-09-04) Jaksch, D. et al. Fast Quantum Gates for Neutral Atoms. Phys. Rev. Lett. 85, 2208–2211 (2000). [MD. Lukin]
  693. (2000-05-15) Berber, S., Kwon, Y.-K. & Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000).
  694. (1999-06-15) Sundaram, G. & Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999).
  695. (1999-02-08) Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999). [PL. McEuen]
  696. (1998-12-17) Ishida, K. et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396, 658–660 (1998). [Y. Maeno]
  697. (1998-10-01) Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).
  698. (1998-09-01) Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Phys. D: Nonlinear Phenom. 120, 188–195 (1998).
  699. (1998-07-24) Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A Tunable Kondo Effect in Quantum Dots. Science 281, 540–544 (1998).
  700. (1998-06-15) Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).
  701. (1998-05-14) Chuang, I. L., Vandersypen, L. M. K., Zhou, X., Leung, D. W. & Lloyd, S. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998).
  702. (1998-05-14) Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).
  703. (1998-05-04) Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
  704. (1998-04-13) Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental Implementation of Fast Quantum Searching. Phys. Rev. Lett. 80, 3408–3411 (1998).
  705. (1998-01-08) Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998). [MA. Kastner]
  706. (1997-12-01) Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997). [A. Zeilinger]
  707. (1997-09-11) de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997). [D. Mahalu]
  708. (1997-03-04) Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. PNAS 94, 1634–1639 (1997).
  709. (1997-01-01) Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).
  710. (1996-12-01) Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).
  711. (1996-07-01) Grover, L. K. A fast quantum mechanical algorithm for database search. Proceedings of the 28th annual ACM symposium on Theory of Computing - STOC ’96, 212–219 (1996).
  712. (1996-02-01) Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).
  713. (1995-12-18) Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett. 75, 4710–4713 (1995).
  714. (1995-12-18) Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a Fundamental Quantum Logic Gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
  715. (1995-11-01) Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). [A. Barenco/CH. Bennett/R. Cleve/DP. DiVincenzo/N. Margolus/P. Shor/T. Sleator/JA. Smolin/H. Weinfurter]
  716. (1995-05-15) Cirac, J. I. & Zoller, P. Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
  717. (1994-11-20) Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science 124–134 (1994).
  718. (1994-08-01) Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).
  719. (1994-06-01) Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994).
  720. (1993-06-01) Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
  721. (1993-05-15) Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).
  722. (1992-08-15) Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).
  723. (1992-03-01) Feynman, R. P. There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992).
  724. (1991-02-01) Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991).
  725. (1990-02-01) Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990).
  726. (1989-07-10) Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–202 (1989).
  727. (1989-06-01) Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413–11423 (1989).
  728. (1988-10-31) Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
  729. (1987-11-02) Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).
  730. (1987-11-02) Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
  731. (1987-10-12) Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987). [JH. English]
  732. (1987-09-28) Allen, P. B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460–1463 (1987).
  733. (1987-08-17) Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).
  734. (1987-06-08) John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).
  735. (1987-05-18) Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).
  736. (1987-03-06) Anderson, P. W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 235, 1196–1198 (1987).
  737. (1986-09-15) Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
  738. (1986-06-01) Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Physik B 64, 189–193 (1986).
  739. (1985-04-01) Lee, P. A. & Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).
  740. (1984-08-13) Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional Statistics and the Quantum Hall Effect. Phys. Rev. Lett. 53, 722–723 (1984).
  741. (1984-07-23) Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. Infinite conformal symmetry in two-dimensional quantum field theory. Nuc. Phys. B 241, 333–380 (1984).
  742. (1983-11-03) Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).
  743. (1983-05-02) Laughlin, R. B. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
  744. (1982-11-03) Yao, A. C. Protocols for secure computations. 23rd Annual Symposium on Foundations of Computer Science 160–164 (1982).
  745. (1982-10-04) Wilczek, F. Quantum Mechanics of Fractional-Spin Particles. Phys. Rev. Lett. 49, 957–959 (1982).
  746. (1982-05-31) Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
  747. (1982-02-15) Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).
  748. (1981-08-17) Aspect, A., Grangier, P. & Roger, G. Experimental Tests of Realistic Local Theories via Bell’s Theorem. Phys. Rev. Lett. 47, 460–463 (1981).
  749. (1981-05-15) Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).
  750. (1981-04-15) Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).
  751. (1979-04-30) Yao, A. C.-C. Some complexity questions related to distributive computing. Proc. Annu. ACM Symp. Theory Comput. 209–213 (1979).
  752. (1979-03-05) Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 42, 673–676 (1979).
  753. (1975-03-01) Wilson, J. A., Salvo, F. J. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
  754. (1972-12-05) Anderson, P. W. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153–160 (1972).
  755. (1972-05-30) Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1972).
  756. (1971-09-01) Chua, L. Memristor - The missing circuit element. IEEE Transactions on Circuit Theory 18, 507–519 (1971).
  757. (1970-01-01) Esaki, L. & Tsu, R. Superlattice and Negative Differential Conductivity in Semiconductors. IBM J. Res. Dev. 14, 61–65 (1970).
  758. (1969-10-13) Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23, 880–884 (1969).
  759. (1964-11-01) Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).
  760. (1963-06-01) Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 34, 1793–1803 (1963).
  761. (1959-02-15) Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 113, 1046–1051 (1959).
  762. (1958-03-01) Anderson, P. W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492–1505 (1958).
  763. (1957-12-15) Elliott, R. J. Intensity of Optical Absorption by Excitons. Phys. Rev. 108, 1384–1389 (1957).
  764. (1956-06-01) Meiklejohn, W. H. & Bean, C. P. New Magnetic Anisotropy. Phys. Rev. 102, 1413–1414 (1956).
  765. (1935-03-25) Einstein, A., Podolsky, B. & Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 47, 777–780 (1935).
  766. (1928-07-01) Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32, 110–113 (1928).