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Summary

Five relatively simple continuous non-
linear filtering problems are considered
and computational results are presented.
For each problem an upper performance
bound is computed by numerically evalu-
ating the conditional probability density
p(x/Z) via Bucy's representation theorem
at certain time instants for a number of
Monte Carlo simulations., Numerous approxi-
mate nonlinear filtering techniques were
investigated and for each of the five
problems the performance achieved with the
relinearized Kalman-Bucy (K-B) filter
approached most closely that of the upper
performance bound. Two additional problems
are considered for both of which the
relinearized K-B filter proves ineffective
and alternate filtering methods are given,

I. Introduction

Consider the continuous dynamic
process (the signal process) the behav-
ior of which can be adequately repre~
sented, or modelled, by the differential
ecquation

dx (1)

T =
where x 1is an n-dimensional state vector,
f(x,t) is an n-vector of state functions,
g(x,t) is an n x m matrix of disturbance
functions, and w(t) is an m~-dimensional
vector of uncorrelated white-noise proc-
esses having unity variances (i.e.,
E{w(t)w(s)}= I &§(t-s)). The initial state
vector, x(0), is a random variable which
is considered to be statistically inde-
pendent of the disturbance variables w(t),
and the probability density at time zero,
p(x(0)), is assumed known,

Suppose that certain process variable
measurements are made continuously in
time and that these measurements are in
some sense related to the state vector by
the observation eqguation

z(t) = h(x,t) + v(t)

where z(t) is a g~dimensional vector of
process measurement variables, h(x,t) is
a g~vector of observation functions, and
v(t) is a white-noise process vector
independent of w(t) and having a covari-

f(x,t) + g(x, t)w(t)

(2)
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ance matrix R(t) (i.e., E{v(t)w(s)} =0
and E{v(t)v(s)} R(t) &(t-s)). The
minimum~variance continuous nonlinear

filtering problem asks what, given the

measurements {z(s): 0<s<t} of the system
represented by relations (1) and (2) and
the conditions stated above, is the mini-
mum-variance estimate of the state vector
at time t and how does one realistically
generate this estimate continuously in
time? Physical examples of the nonlinear
filtering problem are gquite numerous and
to stimulate industrial interest in the
problem we mention one of them.

A demonstrative example of nonlinear
filtering and one having tremendous
commercial value is associated with the
basic oxygen furnace (BOF) steel-making
process, In the BOF process very close-
tolerance control of the steel temperature
and carbon concentration is desired near
the end of the melt since the properties
of the final steel product are largely
determined by these two variables, The
physics of the BOF process, however, makes
it extremely difficult to obtain real-
time, direct measurements of melt temper-
ature and carbon content, with only the
flue gases being accessible for continuous
analysis, A nonlinear filter could be
constructed for this problem and would
utilize a simplified mathematical model
of the steel melt dynamics and any avail-
able measurement data (e.g., flue gas
properties, bomb calorimeter or continuous
melt temperature estimates, oxygen lance
position, etc.) to generate statistically
optimal real-time estimates of steel melt
temperature and carbon content, The
economic benefits of such a device might
be quite significant as reduced batch-
times and increased steel qualities could
conceivably result from its application.

We have stated the basic problem and
attempted to provide some motivation for
considering its solution. Happily, the
general solution to the continuous mini-
mum-variance nonlinear filtering problem
is and has been well known for some

period of time1’2’3. Unhappily, however,
the solution is infinite dimensional in
nature and for any practical applications
appropriate approximations must be intro-

duced to obtain a finite-dimensional



filter. Fortunately, many approximate
methods of minimum-variance nonlinear fil-
tering have been proposed, each having its
own advantages and disadvantages, some of
which are not at all clear, Many questions
remain to be answered before the worths of
those approximate filtering techniques can
be accurately determined; most important,
for example, is the cuestion of how far
from optimal is the performance of a sub-
optimal nonlinear filter. We consider this
latter question in this paper and hope
that by way of examples, some insight can
be achieved regarding its answer.

In Section II of this paper we present
a very brief summary of the theory of
optimal continuous nonlinear filtering and
some of the better known methods of
approximate filtering. A technique is
discussed in Section III which was used
to establish upper performance bounds for
nonlinear filtering problems by numerical
evaluations of the Bucy representation
theorem. Five filtering problems are also
investigated in Section III and computa-
tional results from these investigations
are presented. Since the relinearized K-B
filter proves to be so misleadingly
effective for the five problems, in Section
IV two additional problems are considered
which demonstrate some of the potential
pitfalls of applying the relinearized K-B
filtering algorithm.

II. Continuous Filtering: Basic Theory

Optimal Solution

No matter what particular criterion
for optimality is specified, the formal
solution to the optimal nonlinear
filtering problem requires that the
conditional probability density p(x(t)/2)
be evaluated, where

Z = {z(s): 0« sét} .

For example, the maximum-likelihood esti-
mate of the state vector, x(t), is that
vector X which maximizes the density
function p(x(t)=X/2). Similarly, the
minimum-variance estimate of x(t) is
given as the conditional mean

m= X p(x(t)=x/z)ax , (3)

and it is the minimum-variance optimality
criterion with which we are primarily
concerned in this paper.

‘

Bucy's representation theorem, proven
by a straightforward application of
Bayesian probability theory, states that
the conditional probability density
satisfies the expression

p(x(£)=X/2) = E {expd/x () =X} p (x (t)=X) i

E{exp@}

where
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t
d = j;hT(x(s),S)R_l(S)[Z(S) =
- % h(x(s),s)] ds , (5)

p(x(t)) is the a'priori probability
density of x(t),and the observations,
are held fixed during the averaging )
operations in Eq. (5). Since it is imprac-
tical to have to retain all the observation
data, a seqguential expression for p(x/2)
is desirable and towards this end it was

z(s),

first shown by Stratonovich1
Kushner2 that

agéyzl = 2[p(x/2)] + p(x/2)(z(t) -

(6)
- F TR (e) (h(x, t) -Flx, N

*
where 2f is the adjoint of the differen-
tial generator 2

= [ T § T o I
Xr-1 —Zi fi(x't)ax- + ziz[gg Jl] 3% .0X.
i ] b |
and the hatted term in Eq. (6) is defined

by
T x0 =fh(x,t)p(x/z)dx : (7)

The many and great difficulties asso-
ciated with the practical solution of
partial-differential-integral equations,
such as Eq. (6), make it necessary to
parameterize the conditional density
function, p(x/Z2), and to determine and
solve the differential equations satisfied
by the parameters. For the minimum-variance
filter problem, it is most advantageous to
select the central moments for these para-
meters, and from Eq. (6) one may show (see

and then by

Kushners) that the first- and second-order
central moment parameters for p(x/2) (i.e.,
the mean and covariance) satisfy the dif-
ferential equations

= F )+ (KRR - o
8
A I O IO
an

W15 = RLx;- m) (x4- m)T - (9)
- G- aDTRTER - 0 4

Tyl T"ﬁ’j\r
+ (z -MDR B - (x5 my) (xy= m

J
where if @(x) 1is any function of x,then

T = [opx/zrax, my =[x;px/2)ax,
and m; =f(Xi- mi)(Xj- mj)P(X/Z)dX "

Equations similar to (8) and (9) can be
derived for higher than second-order
central moment parameters of p(x/Z) (note
that the set of differential equations for
the moment parameters constitute, in effect,
a continuous minimum-variance nonlinear
filter).



Approximate Solutions

Unfortunately, in all but the linear
Gaussian case, most applications of EQ's.
(8) and (9) and their higher-order
counterparts result in an infinite set of
coupled integro-differential eguations
(note that dmij/dt is a function of miij
if h(x) = x,), making their solution by
an optimal ndnlinear filter a somewhat
"sticky" proposition. Clearly, to success-
fully apply the optimal filter theory to
physical problems some judicious engineer-
ing approximations must be made and the
effects of such approximations evaluated.

Of the many approximate methods of
optimal nonlinear filtering which have
appeared in the literature, the following
techniques are those which we feel to be
among the most common and potentially
useful.

Nominal Linearization. The process and
observation functions are linearized about
a nominally chosen state trajectory (e.g.,

h(x) = h(xnom) +Vh(xnom) (x - xnom)) and

the conditional density p(x/Z) is assumed
to be Gaussian.

Relinearization. The process and
observation functions are linearized about
the present best estimate—the conditional
mean—of the state vector(e.g., h(x) ¥
h(m) +Vh(m) (x - m)) and p(x/2) is
assumed Gaussian.

Second-Order Expansion? The process
and observation functions are expanded in
a Taylor series about the conditional mean
and all terms of higher than second order
are dropped from the series with p(x/2Z)
assumed to be Gaussian.

Wide-Sense K-B? By a suitable trans-
formation of state variables the nonlinear
filtering problem is converted to a linear
problem and the initial state density is
assumed Gaussian; e.g., if dx/dt = -x,

z = x + x3 + v, and p(x(O))=N(mo,Ug), then

letting y=% and y2=x3 yields the linear
equations

dyl/dt = =Yy, dyz/dt = —3y2, z2 =yt y,+t v
with the moments of p(y (O),y2(0)) deter-
mined from those of p(x{o)).

Assumed-Form Density? The differential
equations for the moments of p(x/Z) (e.g.,
Eqg's. (8) and (9)) are evaluated by
assuming some known form, finite parameter
density function for p(x/zZ). The number of
moments required equals the number of
parameters for the density chosen.

How does one decide which particular
approximate method of optimal filtering to
choose for a particular application? The
choice at this time is not at all clear
and many questions concerning these
approximation techniques remain unanswered.

For example; How far from optimal are the
performances of these suboptimal filtering
schemes? and How influential are the
higher than second-order central-moment
parameters with regards to filter perform-
ance? By computing so-called upper perform-
ance bounds for five relatively simple
nonlinear filtering problems, we hoped to
obtain at least partial answers to these
questions.

III. Upper Performance Bounds

From the previous section one may
conclude that there exist a number of
nonlinear filtering technigues from which
to choose from, the appropriate choice not
being particularly clear. Each technigue
differs in complexity and performance from
that of any other technique. As a result,
the need for trading off complexity and
performance is apparent in any nonlinear
filter design and for this purpose an
upper performance bound is most desirable;
for example, one would probably not
consider a more complex filter design if
the maximum possible increase in perform-
ance was only one percent.

The Bucy representation theorem (see
Eqg. (4), Sect.II) was used in this study to
obtain an upper bound on performance (the
minimum variance) for nonlinear filters.
An approximate numerical evaluation of
p(x/2) was obtained from EgQ's. (4) and (5)
as follows:

(i) At a point X in the state space at
time t let x(t)=X and integrate the
process equation (1) backward in time to
t =0,

(ii) Using the observations {z(s):0< s< ﬁ}
and the computed state trajectory from (i)
evaluate the functional @§(x) in Eq. (5) and
its exponential value.

(iii)Repeat steps (i) and (ii) a number
of times using different disturbance noise
sequences w(t) and compute the arithmetic
mean of exp $(x) (skip this step if w(t)=0).

(iv) Repeat (i), (ii), and (iii) at a
finite number of points X and determine
p(x/2) from Eq. (4). The mean value of the
resulting density function represents the
minimum-variance estimate of the state
vector at time t.

To compute the upper performance
bound for a problem, multiple Monte Carlo
simulations were conducted of that problem
and the statistics of the filtering errors
resulting from the minimum-variance esti-
mates computed as described above, were
determined. All integrals were evaluated
via rectangular integration and all
computations were done on a GE 4060
process control digital computer using
single precision (24-bit word length)
arithmetic. ’

Nonlinear filters were designed and
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evaluated for five example problems. The
five problems are defined as follows:

Problem 1,

_ 3
z = X+ X) +V

dxl/dt ==X 3
p(x, (0)) = N(1.0,1.0)

Problem 2.
dxl/dt = f(xl) R

- 0.25 x xla 0

1 '
; xlé 0

f(xl) = .
1

p(x;(0)) = N(0.0,1.0)
Problem 3.

dxl/dt = f(xl) Pz =X + v

2 + Xy xl -1 &
- = i
f(xl) = Xy ’ 1< X< 1
-2 + X l_.xl
0.25 , -2« x1(0)$2
p(x;(0)) =
0.0 , 2<x1(0)<—2
Problem 4.
dxl/dt = X)X,
dxz/dt =0 Pz =x +v

p(x; (0),x,(0)) = p(x,(0))p(x,(0))
p(x,(0)) = N(0,1) ; p(x,(0)) = N(-1,1/4)

Problem 5.
dxl/dt = X,
dxz/dt = Ky 2.5x2 Pz = XX, + v

p(x; (0),%,(0)) = p(x; (0))p(x,(0))
p(x;(0)) = N(1,1) ; p(x,(0)) = N(0,1)

For each of the above five problems a
particular filtering algorithm was eval-
uated by computing the averagi sgquared
estimation errors, - m; ) for a size-
able number (N) of Monée Carlo simulations.
Identical noise sequences were utilized for
each filter studied and time step sizes
(At) were made small enough to guarantee
convergence in statistics, Some results of
these studies are presented in the average
squared-error vs, time curves of Figures
(1) - (6), each of which includes the
upper performance bound for the problem of
interest, as determined via a numerical
evaluation of Bucy's representation for
pP(x/2).

Without delving into the particulars
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of each filter investigated (for a more
detailed account consult Reference 8 ),

we can make this general observation from
the experimental results presented in
Fig's. (1) - (6). For all five of the
problems investigated the relinearized K-B
filtering scheme proved to be the most
effective, yielding almost optimal per-
formance with a relatively simple compu-
tational algorithm, More complex filtering
methods were considered but in almost
every case resulted in a lesser perform-
ance figure than that of the less complex
relinearized technique.

After considering the results of these
five computational experiments, one might
be tempted to conclude that the relinear-
ized K-B filtering method is the only such
method which needs to be considered. This
temptation, though strong, should be
repressed for the following reasons:

(1) Generalizations should not be drawn
from only five simple example problems;
more such examples need to be studied.

(ii) The relinearized K-B filter requires
the existence of the partial derivatives
in the matrices of first partials, Ah(x)
and Vf(x). what does one do when they
don't exist? Consider, for example, the
problem of estimating on-line the time-
delay of a first-order dynamic system
from noisy measurements of that system's
step response, In particular, consider
the system defined by

Problem 6,

dxl/dt = - x, + u(t - xz) + w(t)

3 f
dxz/dt =0 ; z =Ky * v(t)

1, t20
u(t) =
0, t<o0

p(x (0),%,(0)) = p(x;(0))p(x,(0))
p(x,(0)) = N(0,1/16) ; p(x,(0))= N(1,3)

Since the step function u(t) is nondiffer-
entiable at t = 0, the relinearized K-B
filter algorithm can not be applied
directly to this problem, As one alter-
native, the time delay was approximated
by a first-order Pade approximation and
the relinearized filter constructed and
tested., The results were completely neg-
ative and no reduction in variance was
achieved for the time-delay estimate,

A remarkably effective filter was
finally constructed for Problem 6 by
approximating p(x/Z) by a uniform
density-function and utilizing the dif-
ferential equations for the first and
second central moments of p(x/Z). The

results are discussed in Reference 8 .



(iii) Finally, a rather simple nonlinear
filtering problem exists which can not be
effectively handled by applying the relin-
earized K-B filter, and this fact leads
one to question the general applicability
of this filtering technique. Consider the
problem defined by

Problem 7.
1/2
dxl/dt = X) + X w(t)

0 :

dxz/dt z=x) + v(t)

P (x (0),%,(0)) = p(x, (0))p(x,(0))
2 p

pP(x;(0)) = N(m,,, O54) ; i=1,2.

The relinearized K-B filter for this

problem can be easily shown to satisfy the
equations

dml/dt =-m + mllR-l(z - my)

dm,/dt = m R (z - m)) (10)
dm,,/dt = -milR-l- 2my, + m,

dm,,/dt = - “‘izR-l

dm, ,/dt = - mlzmllR-l— m 5 (11)

. - _2.'—
with mi(O)- m; g mii(O) —-Vio, is=s

mlz(o) =0,

Note from Eq. (10) that the estimated value
of X, (mz) can only change if the value of
m12 “is “nonzero. But since M12(0)= 0, we
see from Eq. (11) that dmjz/dt is initially
and always of zero value. As a result, this
filter provides no useful information
regarding the value of xy—a rather per-
plexing observation for such an apparently
simple nonlinear filtering problem.

1,2

An effective filtering algorithm for
Problem 7 was constructed from the differ-
ential equations for eight of the central
moments of p(x/zZ) (i.e., My, My, Myp, Myo,

myqqe mll2f m122) by assuming p(x/Z) to be

essentially Gaussian, See Reference 8 for
a complete discussion of this problem,

V. Conclusions

It would be very satisfying at this
point to be able to list a concrete set of
general guidelines and recommendations for
the designer to follow in constructing a
nonlinear filter for a particular appli-
cation, Realistically, however, this is
impossible due to the limited number and
simplified nature of the seven problems
considered in this study. Nevertheless,
these problems do stand for themselves and
to the less-than-casual observer should
provide a significant amount of "feeling"
for the characteristic behavior of contin-
uous optimal nonlinear filters, For more

detailed information concerning these
problems one should consult Reference 8 .

We would, none the less, hazard to make
the following general comments regarding
nonlinear filtering, For one, it appears
that the relinearized K-B filter is a
remarkably effective filtering technigue
for a large class of problems. Secondly,
we would point out that the mathematical
approximations to the optimal nonlinear
filtering problem, as considered in this
paper—as well as most of the pertinent
literature—are but one source of error in
nonlinear filtering., Sufficiently accurate
process models and statistical data are
also essential ingredients to an effective
filtering algorithm and the importance of
each should not be minimized by the
prospective filter designer.
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