RECENT RESULTS IN NON-LINEAR FILTERING\(^{(1)}\)

Deborah F. Allinger
Mathematics Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

and

Sanjoy K. Mitter
Department of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Consider the following observation process

\[y_t = \int_0^t x_s \, ds + w_t \]

where \(w_t \) is standard Brownian motion and the signal process \(x_t \) satisfies

\[(H1) \quad \alpha > 0 \text{ st. } E \exp \left(\alpha \int_0^t s \, ds \right) < \alpha. \]

\[(H2) \quad x_t \text{ and } w_t \text{ are independent} \]

Let

\[v_t = y_t - \int_0^t E(x_s | F_s) \, ds \]

be the innovations process.

We announce in this paper that under hypotheses \((H1), (H2)\) the innovations conjecture of Frost-Kailath is true. This extends earlier results of J.M.C. Clarke. The proof uses ideas of Yamada and Watanabe on the existence of strong solutions of differential equations \((1)\).

References

\(^{(1)}\) This research has been supported by the Air Force Office of Scientific Research under Grant No. AFOSR-77-3281B