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1. INTRODUCTICN

In classical communication theory, the message to be transmitted is
modulated and the resulting signal propagates through a given channel to
preduce a received waveform. The function of the receiver is to recover
the signal from the received waveform, perhaps in an optimum manner,
optimum being defined by some performance criterion. The input to the
receiver may have scme additive noise added to the received waveform. It
is assumed that the receiver can be constructed independently of the model
of the received waveform and the additive noise. Moreover, it is assumed
that the optimum receiver can be physically realized.

In communication at optical frequencies neither of these two assump-

tions are valid. No matter what measurement we make of the received field,

the outcome is random whose statistics depend on the measurement being
made. This is a reflection of the laws of quantum physics. Furthermore,
there is no guarantee that the measurement characterizing the receiver
can be actually implemented.

In this paper, we announce some results on the M-any quantum detec-
tion problem. Full details will be published elsewhere [l1]. For related
work, see [2] and [3]. The proof in [2] appears to be incorrect and in
.[3], a complete duality theory is not presented.

It will be assumed that the reader is familiar with the notions of
convex analysis in irnfinite dimensional spaces as for example, presented
in [4].

In the classical formulation of detection thecry (Bayesian hypothesis
testing) it is desired to decide which of n possible hypotheses
Hl""'"n is true, based on observation of a random variable whose

probability distribution depends on the several hypotheses. The decisicn
entails certain costs that depend on which hypothesis is selected and
which hypothesis corresponds to the true state of the system. A decision
procedure or strategy prescribes which hypothesis is to be chosen for
each possible outcome of the observed data; in general, it may be
necessary to use a randomized strategy which specifies the probabilities
with which each hypothesis should be chosen as a function of the observed
data. The detection prcblem is to determine an optimal decision strategy.

In the quantum formulation of the detection problem, each hypothesis
Hj corresponds to a possible state pj of the quantum system under
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consideration. Unlike the classical situation, however, it is not pos-
sible to measure all relevant variables asscciated with the state of the
system and to specify meaningful probability distributions for the
resulting values. For the guantum detection problem it is necessary to
specify not only the procedure for processing the experimental data, but
also what data to measure in the first place. Hence the guantum detection
problem involves determining the entire measurement process, or, in
mathematical terms, determining the probability operator measure cOI-
respending to the measurement process (for a discussion see ({5]).

2. FORMULATICN OF THE QUANTUM DETECTION PROBLEM

let H be a separable complex Hilbert space corresponding to the
physical variables of the system under consideration. There are n hy-
potheses l,...,Hn about the state of the system, each corresponding to

a different density operator pj; every pj is a nonnegative definite

selfadjoint trace-class operator on H with trace 1 and is the analog
of the distribution functions in the classical problem. Let S denote
the set S = {1,...,n} . A general decision strategy is determined by a

e B Ls(H)+ (l): in this case the

probability operator measure (POM) m : 2
POM effecting the decision needs only n components ml,...,mn where

each m. is a positive selfadjcint bounded linear operator on H and
J
> m =1 . (1)
i

The measurement outcome is an integer i€S ; the conditional probability
that the hypothesis Hi is chosen when the state of the system is pj
is given by

pr{i]j} = tr(pjmi) 1,5 = Lyeeeim o (2)

We remark that it is crucial here to formulate the problem in terms of
general probability operator measures rather than resolutions of the
identity. TFor example, an instrument which simply chooses an arbitrary
hypothesis with probability 1/n without even interacting with the
system corresponds to a measurement process with the POM given by

. =I/n H
™3

these are certainly not projections.

We denote by Cij the cost associated with choosing hypothesis Hi
when H. is true. For a specified decision procedure effected by the POM
J

{ml,...,mn} , the risk function is the conditional expected cost given that

1 LS(H)+ denotes the space of bounded positive selfadjoint

operators on H .
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et

n
i) = o n.] .
(3) = erlo; 35 c;um)
i=1
, the Bayes

If now ;i specifies a prior probability for hypothesis Hj

cost is the posterior expected cost

' n n
R o= 2Ry, = te > f£.m, (3)
[} j=1 m 3 o1 ii

where fi is the selfadjoint trace-class operator

13
1= Yyeewin . (4)
£ = C..H: P ! .

The guantum detection problem is to find ml,...,mr

(3) subject to the constraint (1) and subject to the condition that the
operators m., be selfadjoint and nonnegative definite, mj 2 0.

so as to minimize

X3

-
3. THE QUANTUM DETECTION PRCBLEM AND ITS DUAL
lLet H be a complex Hilbert space. The real linear space of compact
self-adjoint operators KS(H) with the operator norm is a Banach space
whose dual is isometrically isomorphic to the real Banach space TS(H) of

self-adjoint trace-class operators with the trace norm, i.e.,
K. ()* = ls(H) under the duality

= ol - :
<A,B> = tr(AB) < ln;tr,a[ Act_(),  BeK_(n) .

iere, |B] = sup{|By| : ¢en,|9| < 1} = supltr(am)

and A - is the trace norm % [A] <+ where AcT_(#) and (A} are the

: AST_(1) ,lAltr: 1}

i

cigenvalues of A repeated according to multiplicity. The dual of Tg(1)
with the trace norm is isometrically isomorphic to the space of all linear
bounded self-adjoint operators, i.e. T_{(H)}* = LS(H) under the duality

<A,B> = tr(AB) AETS(H). BsLs(H).

Moreover the orderings are compatible in the following sense. If KS(H)+,
T (#),, and LS(H)+ denote the closed convex cones of nonnegative definite

cperators in KS(H), TS(H), and LS(H) respectively, then

K 0, ¥ =1, ana (r 0, K = L,

where the associated dual spaces are to be understood in the sense defined
akove.
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Let fj be given elements of TS(H) (as defined in (4)), 3=i,...n.
Define the functionals Fj: LS(H) + R by
Fj(A) = 6>O(A) + tr(fjA) AELS(H), J =dpeeeina (5)

where 5>°(-) denotes the indicator functicn for the set LS(H)+ of non-

negative definite operators, i.e. 6>°(A) is 0 if A > 0 ard +° otherwise.
Each Fj is proper convex and w*-lower semicontinuous on LS(H), since
Ls(H)+ is a w*-closed convex cone and A ¥ tr(fjA) is a continuous (in fact

w*-continuous) linear functional on LS(H). Define the function

G: LS(H) + R by

G(A) = 5{0}(1\), ACLS(H), (6)

that is G(A) dis O if A = 0 and G(A) is +° if A # 0; G is trivially con-
vex and lower semicontinuous. Let m = (ml,...,mn) denote an element of

LS(H)n, the Cartesian product of n copies of LS(H). Then the guantum de-

tection problem (3) may be written

n
< n
P = inf {j{i Fj(mj)+G(I-Lm): m= (ml,...,mnj £ LS(H) } (7)
where L: LS(H)n > LS(H) is the continuous linear operator

n
Lim) = le m, me LS(H)". (8)

Wwe consider a family of perturbed problems defined by

n
P(A) = inf{): F.(m.) + G{A-Lm) :mcl (u)"}, Acl_(H). (9)
e R s s

P(.) is a convex function Ls(H) -+ K and P = P(I). Note that we are

taking perturbations in the equality constraint, i.e. the problem P(A) re-
quires that every feasible m satisfy Lm = A. Wo remark that G(-) is
nowherce continuous, so that there is certainly no Kuhn-Tucker point m such
that G(*) is continuous at L.

In order to construct the dual problem corresponding to the family of
perturbed problems (9) we must calculate the conjugate functions of F. and
G. We would like to pose the dual problem in the space TS(H), so we con-

sider LS(H) = TS(H)' and compute the pre-conjugates of Fj,G. It can be
shown that the dual prcblem is

(*P) (1) = sup{tr(y): yeT (1), fj-y >0 § = Xjewesls (10)
It is not too difficult to show that the primal problem has a solution and
that there is no duality gap. The difficult part is to show that the dual
problem has solutions. It turns out that the level sets of the dual cost
functions are bounded in TS(H) but not weakly compact. This suggests that
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we imbed TS(H) in its bidual TS(H)*' = LS(H)' and extend the dual problem

to the larger space; it will then turn out that there are solutions in
TS{H). This approach works because TS(H) has a natural topological comple-

ment as a subset of LS(H)’.

Proposition 1. LS(H)’ =T _(8) Ql(JKS(H)) where J is the canonical imbed-
ding of Ks(ﬁ) in LS(H). In other words, every bounded linear functional y

on LS(H) may be uniquely represented in the form y =y

® y where
ac sg

Yo € TS(H) and ysg € KS(H) , and

y(a) = tr(yaCA) + ’sg(“ . A€ Ls(u)

Iyl = ly,clee + lygl-m

Before calculating the dual problem, it is necessary to determine what
the positive linear functions look like in terms of the decomposition pro-
vided by Proposition 1.

o s p " i +
Proposition 2.+ Let y € LS(H) . Theny € [°s(H)+] iff Yo € TS(H)+ ahs
ysg € [LS(H)+] .a

It can be shown that in this enlarged space the dual problem
*(p*) (1) = suply(I)-P*{y)] is given by
v

*(p*) (I) = sup{tr(yac)+ysg(1)=y € LS(H)': ¥ Ki0e ¥ 5 £,

sg 3

i = Lissesnte

Proposition 3. p(+) is continuous at I, and hence JP(I) # . In parti-
cular, *(P*){(I) = P{I) and the dual problem *(P*)(I) has solutions.®

It is now an ecasy matter to show that the dual problem actually has
solutions in T (H), that is solutions in Ls(H)* with O singular part.
This leads to the main theorem.

MAIN THEOREM, Let H be a complex Hilbert space and suppose
(fl,...,fn)ETs\H)n. Then the guantum detection problem has solutions.

. n
Moreover, the following statements are equivalent for m=(ml,...,mn)€Ls(H) :
1) m solves the guantum detection problem
n

2) 2: mj =1; m, > 0 for i=l,...,n;
3=1

n
2, £m. < £ for isl,..n
=793

n
3) 2: mj = I m >0 for i=l,...,n;
j=1
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mjfj f-fi for i=1,...,n.

i=1

Under any of the above conditions if follows that

n n
y= 2: f.m, = 2: m.£f. is self-adjoint and is the unique solution of the
s R B B = R

dual problem.

4. FINAL REMARKS

Quantum estimation theory is the continuous counterpart of the problem
treated here. The main difficulties here are in problem formulation and
having an adequate theory of integration with respect to operator-valued
measures. For details, see [1] and [6].
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