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Abstract | The wideband multipath fading chan-

nel has been considered from both an information-

theoretic and implementation-oriented standpoint.

Developments from the two perspectives have, how-

ever, been largely independent. We aim to �nd a

connection between the information-theoretic results

and actual coding and modulation schemes by pro-

ducing a strong coding theorem for the channel. We

calculate explicit upper bounds on the probability of

error for general multipath and Rayleigh fading, and

study their behavior numerically.

I. Introduction

It is known that spread-spectrum signals such as those
in direct-sequence CDMA systems are not optimal for very
large bandwidth multipath fading channels: M�edard and Gal-
lager [1] have shown that, under the assumption of indepen-
dence amongst fading processes at di�erent frequencies, the
mutual information of such a system approaches zero with
increasing bandwidth. In addition, Telatar and Tse [2] have
studied the wideband fading channel with a �nite number of
paths and have shown that the mutual information is inversely
proportional to the number of resolvable paths if white-like
input signals (such as those common in spread-spectrum sys-
tems) are used and signal energy is evenly divided among the
resolvable paths. Thus the mutual information approaches
zero as the number of resolvable paths becomes large. More-
over, if there is a very large number of underlying paths with
di�ering delays, then the number of resolvable paths will in-
crease as bandwidth increases.

The capacity of the in�nite-bandwidth multipath fading
channel, however, is non-zero and equal to the capacity of
the in�nite-bandwidth AWGN channel with the same con-
straint on the average received power. This result has been
presented by Kennedy [3] and by Gallager [4, x8.6] for the case
of Rayleigh fading, and most recently by Telatar and Tse [2]
for general multipath fading. It is further shown in [2] that the
capacity can be directly achieved using frequency-shift keying
and non-coherent detection by transmitting at a low duty cy-
cle. This capacity-achieving signaling scheme is \peaky" both
in time (as the duty cycle is low) and frequency (as frequency-
shift keying is used), in contrast to spread-spectrum schemes
that spread energy evenly over a wide band. Indeed, Hajek
and Subramanian [5] have demonstrated that there is a max-
imum possible mutual information associated with the \four-
thegy" (a metric related to the fourth order of the output sig-
nal magnitude) of a signal. Direct-sequence spread-spectrum

signals have a fourthegy-to-energy ratio that is inversely pro-
portional to the bandwidth, but this is not the case for signals
that are peaky in time and frequency.

In another approach, Telatar [6] derived the capacity of the
energy-limited Rayleigh fading channel by utilizing Gallager's
results for energy-limited channels [7]. Such channels, which
are characterized by a very small energy per degree of free-
dom, can be modeled as discrete-time and discrete-input. He
showed that, using random block codes and 0-1 signaling, the
capacity of the Rayleigh fading channel is the same as that of
the AWGN channel in the limit of large bandwidth and large
signal-to-noise ratio. The Rayleigh fading channel, however,
approaches this limit much more slowly than the Gaussian
channel.

The information-theoretic results for fading channels out-
lined above seem to suggest that good performance is possible
for very large bandwidth fading channels and moreover that,
in this regime, signaling that is peaky in both the time and
frequency domains is preferable to that which is continuous in
time or broadband.

Proposed implementations have taken the form of ultra-
wideband (UWB) radio | a spread-spectrum wireless system
that promises to be a viable technology for indoor or other
dense multipath environments. Most notably, impulse radio is
a time-hopping spread-spectrum multiple-access system that
employs pulse-position modulation (PPM) [8, 9, 10] or pulse-
amplitude modulation (PAM) [11] for data modulation. The
impulse radio system communicates by way of a time-hopping
baseband signal comprised of sub-nanosecond pulses, thereby
occupying a frequency band from near-DC to several giga-
hertz, albeit with a low power-spectral density. Therefore, in-
terference to other narrow-band systems should be minimal.
In addition, owing to the large bandwidth that it transmits
on, such a system should be capable of accommodating many
users and allow for �ne multipath resolution.

Nevertheless, the characteristics of the signaling scheme ap-
pear to be sub-optimal from the point of view of approaching
capacity. Indeed, signal energy is spread more or less evenly
over its frequency band rather than being peaky. On the
other hand, though we know that the information-theoretic
results hold under the assumption of very large (perhaps near-
in�nite) bandwidths, we have little indication of exactly how
large the bandwidth must be for the results to be applicable.

The question then naturally arises as to what signaling
schemes are good for the wideband multipath fading chan-
nel. That is, given our theoretical insights, can we �nd actual
coding and modulation schemes with good performance? One
way to �nd a connection between theoretical capacity results



and actual coding schemes is by strong coding theorems (see,
for example, [4, x5.6]); which not only delimit the capacity of
a channel, but also, by directly applying a particular coding
scheme and calculating explicit upper bounds on its proba-
bility of error, show how and how fast the capacity can be
approached. Traditional coding arguments for the strong cod-
ing theorem use random block coding to relate the length of
the code, a quantity associated with the coding delay, to the
probability of error. Channel capacity is reached by extending
the length of the code to in�nity. In the coding argument that
we present, each code word is represented by a sinusoid at a
particular frequency rather than a string of symbols, thus it
is not so much the coding delay that is pertinent, but rather
limitations on the available bandwidth and peak power. The
existing theoretical results for the multipath fading channel
are essentially only concerned with �nding the capacity, and
in that sense, are weak coding theorems.

In this paper, using the capacity-achieving scheme ex-
pounded in [2], we derive upper bounds on the probability
of error for the wideband multipath fading channel under the
assumption of independent fading over separate coherence-
time intervals for general multipath and Rayleigh fading. We
utilize these bounds to study the interplay amongst the error
probability, bandwidth, rate, and \peakiness" of the scheme.

II. Strong coding theorem for multipath fading

channels

In this section, we derive upper bounds on the error proba-
bility for the capacity-achieving scheme presented in [2], which
we summarize below. We adhere to similar notation.

Capacity-achieving scheme

We begin with a general multipath fading channel. Hence
the channel output y(t) to an input waveform x(t) is given by

y(t) =
LX
l=1

al(t)x(t� dl(t)) + z(t); (1)

where L is the number of paths, al(t) and dl(t) are the gain
and delay on the lth path at time t respectively, and z(t)
is white Gaussian noise with power spectral density N0=2.
Let Tc and Td be the coherence time and delay spread of the
fading channel respectively. We assume that the processes
fal(t)g and fdl(t)g are constant and i.i.d. over time intervals
of Tc (block-fading model in time), and that Td � Tc (an
underspread channel).

Suppose that the average power constraint is P , and let
� 2 (0; 1]. Suppose further that we have a code-book of sizeM .
The mth code word is represented at baseband as a complex
sinusoid of amplitude

p
P=� at frequency fm, that is

xm(t) =

(p
P=� exp(j2�fmt) 0 � t � Ts;

0 otherwise;
(2)

where Ts satis�es 2Td < Ts � Tc. The frequency fm is chosen
such that it is an integer multiple of 1=T 0

s, where T
0
s = Ts�2Td.

Let us consider the channel output over the interval
[Td; Ts � Td] (the time axis at the receiver is shifted by the
shortest path delay). During this interval, fal(t)g and fdl(t)g
are constant owing to the assumptions of the model, and we

denote their values by falg and fdlg respectively. Hence by
(1), the received signal when message m is sent is

y(t) =
LX
l=1

al
p
P=� exp(j2�fm(t� dl)) + z(t)

= G
p
P=� exp(j2�fm(t� dl)) + z(t)

(3)

where G =
PL

l=1
al exp(�j2�fmdl) is a complex-valued ran-

dom variable. We de�ne signal power in the conventional sense
as the received signal power, and thus normalize the channel
gain so that E[jGj2] = 1.

At the receiver, we form the correlator outputs

Rk =
1p
N0T 0

s

Z Ts�Td

Td

exp(�j2�fkt)y(t)dt (4)

for 1 � k �M . Therefore,

Rk = ÆkmG

r
PT 0

s

�N0

+Wk; (5)

where fWkg is a set of i.i.d. circularly-symmetric complex
Gaussian random variables, each satisfying E[jWkj2] = 1.

The message is then repeated over N disjoint time intervals
to obtain time diversity. Hence for 1 � k �M and 1 � n � N ,
we have

Rk;n = ÆkmGn

r
PT 0

s

�N0

+Wk;n; (6)

where fGng is a sequence of i.i.d. complex random variables
and fWk;ng is a set of i.i.d. circularly-symmetric complex
Gaussian random variables of unit variance. We construct
the decision variables

Sk =
1

N

NX
n=1

jRk;nj2 (7)

and use a threshold decoding rule: Let

A = 1 + (1� �)
PT 0

s

�N0

(8)

(where � 2 (0; 1) is an arbitrary parameter) be the threshold.
If Sk exceeds A for one value of k only, then we estimate
m̂ = k; otherwise we declare an error.

We transmit using the above scheme for a fraction of time
� and then transmit nothing for the remainder of the time.
Hence the average power is P . Note that the scheme transmits
lnM nats in NTs=� seconds, so the rate R is given by

R =
�

NTs
lnM: (9)

Upper bound on the error probability

An error occurs if Sm < A or if Sk � A for some k 6= m.
Furthermore, by symmetry, the error probability is the same
regardless of which message was sent. So

pe � Pr

� M[
k=1
k 6=m

Sk � A

�
+ PrfSm < Ag

�MPrfSl � Ag+ PrfSm < Ag

(10)



where l 6= m. An upper bound to the �rst term is found in
[2]. The Cherno� bound is applied to obtain

MPrfSl � Ag � exp

�
� lnM

RTs

�
(1� �)PT 0

s

N0

�RTs

�� ln
�
1 +

(1� �)PT 0
s

�N0

���
, pe;1(M;R; �; �):

(11)

To upper bound the second term, we let �2 = var(jGnj2)
and observe that

Sm = E

"����G1

PT 0
s

�N0

+Wm;1

����
2
#
= A+ �

PT 0
s

�N0

(12)

and

var(Sm) =
1

N
var

 ����G1

PT 0
s

�N0

+Wm;1

����
2
!

=
1

N

"
P 2T 0

s
2
�2

�2N2

0

+
2PT 0

s

�N0

+ 1

#
:

(13)

Then using the Chebyshev inequality and recalling (9), we get

PrfSm < Ag � Pr

���Sm � Sm
�� > �

PT 0
s

�N0

�

� var(Sm)
�2N2

0

�2P 2T 0
s
2
:

=
RTs

�2 lnM

�
�2

�
+

2N0

PT 0
s

+
�N2

0

P 2T 0
s
2

�
:

(14)

A tighter bound can be obtained if we assume that the
fading is Rayleigh | namely that Gn are i.i.d. circularly-
symmetric complex Gaussian random variables | then it fol-
lows that jGn

p
PT 0

s=(�N0) + Wk;nj2 are i.i.d. exponentially
distributed random variables with mean PT 0

s=(�N0) + 1. Ap-
plying the Cherno� bound yields

PrfSm < Ag = PrfNSm < NAg

� exp

�
�N sup

r<0

frA

� ln(E[exp(rjZ1 +W1;1j2)])g
�

= exp

�
�N sup

r<0

frA

� ln(1� [1 + PT 0
s=(�N0)]r)g

�
= exp

�
�� lnM

RTs

� ��PT 0
s

�N0 + PT 0
s

� ln

�
1� �PT 0

s

�N0 + PT 0
s

���
, pe;2(M;R; �; �):

(15)

Note that this bound decays faster than (14) in M , but very
slowly nevertheless. In particular, observe that since ln(1 �
z) = �z + O(z2), if z = (�PT 0

s)=(�N0 + PT 0
s) � 1, then the

entire exponent will be very small, which is the case for �� 1
or � � PT 0

s=N0. It is also evident that the exponent will be
small if � is small.

Combining (10), (11), and (14) or (15) gives us a relation-
ship among the upper bound on the error probability, the size
of the code-book M (which is directly proportional to the

bandwidth W = M=T 0
s), the transmission rate R (which is

related to the SNR per bit Eb=N0 = (P=N0) � (ln 2=R)), the
duty factor �, and the parameter �. Moreover, as long as R
does not exceed �

1� 2
Td
Tc

�
P

N0

(16)

then by letting Ts = Tc and taking M ! 1, � ! 0, � ! 0
independently, the bounds (11), (14), and (15) all converge
to zero. Recall that the capacity of the in�nite-bandwidth
AWGN channel is given by

C =
P

N0

: (17)

We have not exactly shown that this capacity can be reached,
but since we have made the assumption that Td � Tc, we can
come very close to it.

Observe that (11), (14), and (15) all remain constant if
P=� and P=R are constant. Now P=R = Eb= ln 2, so the error
probability bound (10) will remain invariant for variations of
the average power P as long as the peak power P=� and the
energy per bit Eb are constant.

The parameter � may be freely chosen over its domain as it
is a characteristic of the decision rule with no implication on
physical quantities of interest. The parameters M , R, and the
error probability have clear physical interpretations, and the
duty factor � is often restricted by a limitation on the peak
power. Therefore, for a given M and R, we wish to �nd the
smallest possible bound by optimizing over � and � (within its
restricted domain).

Focusing on the tighter bound obtained under the addi-
tional Rayleigh fading assumption, we see that if we choose �
optimally, we have

pe � min
�>0

fpe;1(M;R; �; �) + pe;2(M;R; �; �)g: (18)

Note that, as functions of �, pe;1 is strictly increasing whilst
pe;2 is strictly decreasing. In addition, pe;1(M;R; �; �) =
pe;2(M;R; �; �) when

� = �0 ,
�N0 + PT 0

s

PT 0
s

�
1� RTsN0

PT 0
s

� �N0

PT 0
s

ln

�
1 +

PT 0
s

�N0

��
;

(19)

which is in the interval (0; 1) if

0 � R <
T 0
sP

TsN0

� �

Ts
ln

�
1 +

PT 0
s

�N0

�
: (20)

Therefore, given that (20) is satis�ed, we can upper bound
(18) by

pe � 2min
�>0

fmax(pe;1(M;R; �; �); pe;2(M;R; �; �))g
= 2pe;1(M;R; �; �0)

= 2 exp(� lnMEr(R; �));

(21)

where

Er(R; �) =
�

RTs

�
RTsN0

PT 0
s

+
�N0

PT 0
s

log

�
1 +

PT 0
s

�N0

�
� 1

� log

�
RTsN0

PT 0
s

+
�N0

PT 0
s

log

�
1 +

PT 0
s

�N0

���
: (22)

It now only remains to maximize the exponent (22) for a
given rate. For this, we resort to numerical analysis.
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Fig. 1: Error exponent Er(R; �) as a function of R for � = 10�2

(solid), � = 10�3 (dashed), and � = 10�4 (dotted).
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Fig. 2: Optimal duty factor � as a function of R.

III. Numerical analysis

We choose fading parameters that are typical for very-high
frequency transmission in an indoor environment: Let Td =
10�7 s and Tc = 2 � 10�3 s. Let Ts = Tc. Suppose the peak
power limitation is P=� � 250; and let P = N0 = 1, so C = 1.

We commence by looking at the behavior of the error ex-
ponent (22) for various values of the duty factor �, as shown
in Figure 1. Note the rapid decay of the exponent. We there-
fore expect that the minimum required bandwidth increases
very rapidly as the rate approaches capacity. It is also ev-
ident that smaller values of the duty factor are required to
achieve higher rates, though the optimal � for a given rate
is not immediately apparent. This optimization can be per-
formed numerically and the result is shown in Figure 2. As
expected, we see that the optimal duty factor gradually de-
creases to zero as capacity is approached. More surprising
however is the fact that, even for very low rates, it is neces-
sary that � ' 5 � 10�4 for a maximal error exponent, which
translates to a peak power that is approximately 2000 times
larger than the average. Thus, recalling that the peak power
limitation is P=� � 250, it follows that, for any rate, the duty
factor is optimized over its restricted domain for � = 4�10�3.

We now turn to investigating the interplay amongst the
physical parameters of interest. Figure 3 shows the band-
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Fig. 3: Bandwidth required as a function of the SNR per bit for

� = 4 � 10�3 and error probability bounds of 10�3 (solid), 10�4

(dashed), and 10�6 (dotted). The bandwidth W is in Hz.
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Fig. 4: Error probability upper bound as a function of the SNR

per bit for the general bound with a bandwidth of 10 GHz (solid),

and for the Rayleigh fading bound (21) with bandwidths of 1 GHz

(dashed), 10 GHz (dotted), and 100 GHz (dot-dashed). The duty

factor is � = 4� 10�3.

width required (in Hz) as a function of the SNR per bit for
error probability bounds of 10�3, 10�4 and 10�6 using (21).
Observe, that if we have a bandwidth of 10 GHz, then we need
to transmit at an SNR per bit of around 12{14 dB to achieve
error probabilities of such orders, and that the required band-
width increases very rapidly as the SNR per bit decreases. To
facilitate comparison, note that SNRs per bit increasing from
10 dB to 20 dB correspond to rates decreasing from approxi-
mately 0.069 nats/s to 0.0069 nats/s.

The relationship between bandwidth and SNR per bit can
instead be examined using the more general bound that does
not assume Rayleigh fading (obtained by combining (10), (11),
and (14) and numerically optimizing over �), but it is very
much looser. Figure 4 gives us a notion of exactly how much
looser it is. The plot shows, amongst other things, both error
probability bounds as a function of SNR per bit for a band-
width of 10 GHz. Notice how slowly the general bound decays
as a function of the SNR per bit. Thus we continue to focus
on using (21) for the bound. In this case, we see that the
error probability bound is quite large for Eb=N0 . 11 dB, but
that it decays rather quickly as Eb=N0 increases. The plot
also shows this bound for bandwidths of 1 GHz and 100 GHz
to illustrate how much it varies with bandwidth.

Finally, it is interesting to examine the variation of � as a
function of the SNR per bit (see Figure 5). This tells us how
peaky the signal needs to be to achieve a particular proba-
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Fig. 5: Duty factor � as a function of the SNR per bit for a band-
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bility of error for a given SNR per bit and bandwidth, and
therefore the peak power required. For example, for an SNR
per bit around 10 dB and a bandwidth of 10 GHz, we need
� � 10�3 to ensure an error probability less than 10�5, which
implies that for an average power constraint of 1 mW, the
instantaneous power needs to reach up to around 1 W.

IV. Conclusion

In this paper, we have calculated explicit upper bounds on
the probability of error of a capacity-achieving scheme for the
in�nite-bandwidth multipath fading channel. These bounds
can be made to decay to zero as the bandwidth goes to in�n-
ity for rates below the capacity, thus yielding a strong coding
theorem for the in�nite-bandwidth channel. We have calcu-
lated a loose, general bound and a tighter bound under the
additional assumption of Rayleigh fading. These bounds give
us a notion of how quickly the error probability decays to zero
as the bandwidth approaches in�nity and of the importance
of the various parameters relevant to determining this rate
of decay. We have investigated the interaction amongst the
probability of error upper bound, the bandwidth, the SNR
per bit, and the peakiness of the signaling scheme for some
speci�c numerical cases.

Since transmission takes place at a low duty cycle, the
capacity-achieving scheme can be straightforwardly extended
to multiple users who are multiplexed by time-division. If
these users are co-operating, then it is clear that b1=�c non-
interfering users can be supported for a given value of �. If
they are not co-operating, then we can incorporate a term due
to interference from other users into our existing expressions
for the upper bound on the probability of error. Studying the
behavior of the error probability bounds in the multiple ac-
cess scenario is a de�nite avenue for future investigations. It
may also be fruitful to explore a strong converse to the coding
theorem.
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