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Abstract — Communication on a network can be
described by codes specifying the behavior of the
network nodes, i.e the relationships between the
signals on each node’s incoming and outgoing links.
Link failure recovery may require some of these
relationships to change. The network management
information needed to effect the appropriate changes
in network behavior for recovery can be quantified
by the number of different codes needed. In this
paper, we focus on linear codes for delay-free acyclic
networks, with a single receiver node and one or
more source nodes. We consider two formulations
for quantifying network management. The first is a
centralized formulation where network behavior is
described by an overall code determining the behav-
ior of every node, and the management requirement
is taken as the log of the number of such codes that
the network may switch among. For this formulation,
we give tight upper and lower bounds on network
management for receiver-based and network-wide
recovery from all single link failures, assuming they
are recoverable. The second is a node-based formu-
lation where the management requirement is taken
as the sum over all nodes of the log of the number
‘We show that

the minimum node-based management requirement

of different behaviors for each node.

for terminal link failures and the no-failure scenario
is achieved with receiver-based schemes.

I. INTRODUCTION

Information on networks is traditionally transmitted by
routing and replication. Recent work on network capacity,
considering multicast connections, has shown that achieving
multicast capacity on certain network topologies requires
coding, i.e. combination of different signals [1]. A set of
source-receiver connections is feasible if and only if the
connection rate satisfies the max-flow min-cut bound [1],
and, if so, can be achieved using linear coding [2] (i.e. where
outputs from a node are linear combinations of the inputs
to that node). Reference [3] gives an algebraic framework
for checking the feasibility of a set of network connections
in polynomial time. This algebraic approach allows the
derivation of the results in [1] and [2], and provides powerful
tools for considering multicast and non-multicast network
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connections.

It is not yet clear to what extent codes are useful from a
capacity point of view. Apart from the example in [2] and
related constructions, our searches over several thousand
randomly generated graphs have not yielded other examples
in which coding is necessary to achieve multicast capacity [6].

However, coding can be very useful for robust recovery
from link failures. Traditionally, link failure recovery is
achieved by re-routing, which can be considered a special case
of coding. A surprising result is that with coding, a linear
multicast network has, for all recoverable failures, a solution
in which only the receiver nodes need to be informed of the
failure pattern [3]. Thus, there exists a coding strategy which
is static for all non-receiver nodes. However, the use of such
a static approach may entail some additional complexity.
For example, the network in Figure 1, with one source node
multicasting two processes to two receivers, is recoverable for
all single link failures in an F, field with network-wide codes
but not with receiver-based codes. Bounds on the required
size of the code alphabet are given in [3].
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Figure 1: An example network in which recovery is
achievable in an Fy field with network-wide codes but
not with receiver-based codes.

Network coding naturally leads to consideration of net-
work management. Indeed, network management, in the
form of network state information, is needed to modify the
behavior of the receiver nodes, or any other nodes involved,
to achieve recovery under different failure scenarios. Apart
from Gallager’s 1976 paper [4] on the protocol information
needed to keep track of source and receiver addresses and of
the starting and stopping of messages, not much theoreti-
cal work has been done in the area of network management [5].



We describe network behavior by a code specifying the
relationships between the signals on the input and output
links of each node, which may have to change in order to
recover from different link failures. The network management
information needed to effect the appropriate changes in
network behavior for recovery can be quantified by the
number of different codes needed.

In this paper we consider delay-free acyclic networks, with
a single receiver node and one or more source nodes. This
includes the point-to-point and incast cases. We also focus
on linear codes. If non-linear processing is permitted, the
network management requirements may be different in some
cases [6].

We consider two formulations for quantifying network
management. The first is a centralized formulation where
network behavior is described by an overall code determining
the behavior of every node, and the management require-
ment is taken as the log of the number of such codes that
the network may switch among. We give, in Section C,
tight upper and lower bounds on network management for
receiver-based and network-wide recovery from all single link
failures, assuming they are recoverable.

An alternative formulation for quantifying network man-
agement, discussed in Section D, takes into account the
number of nodes which change behavior, and the number
of different behaviors for each node. Taking the node-based
management requirement to be the sum over all nodes
of the log of the number of different behaviors for each
node, we show that the minimum node-based management
requirement for terminal link failures and the no-failure
scenario is achieved with receiver-based schemes.

II. LINEAR CODING MODEL

A Problem formulation

As in [3], we represent a network by a directed graph
G = (V,E) where V is the vertex set and E C V x V the
edge set. There are one or more source nodes, at which
one or more discrete independent random processes X; are
observable. Processes originating at different source nodes
are assumed to be independent. In this paper we consider
the single-receiver case, and call the receiver node 8. The
network connection problem is to transmit all the source
processes to the receiver through the network.

An edge e is an incident outgoing link of node v if
v = tail(e), and an incident incoming link of v if v = head(e).
We call an incident incoming link of the receiver a terminal
link, and denote the set of terminal links by 7. Links which
are not terminal links are called interior links. Edges e; and
es are incident if head(e;) = tail(ez) or head(e2) = tail(e1).
A path is a sequence of distinct nodes that are connected
by links. If there is a directed path from a link or node
to another, the former is said to be upstream of the latter,
and the latter downstream of the former. Edge e carries the
random process Y (e). Output processes at the receiver node
are denoted Z;.

We choose the time unit such that the capacity of each
link is 1 bit per unit time, and the random processes X; have
a constant entropy rate of one bit per unit time. Edges with
larger capacities are modeled as parallel edges, and sources
of larger entropy rate are modeled as multiple sources at the
same node.

The processes X;, Y(e), Z; are binary sequences. We
assume that information is transmitted as vectors of bits
which are of equal length m, and can be represented as
elements in the finite field Fon. The length of the vectors
is equal in all transmissions and all links are assumed to be
synchronized with respect to the symbol timing.

B Transfer matrices

A linear code for a given acyclic network can be specified by
transfer matrices with network-constrained zero positions, de-
fined as follows [3], where the matrix coeflicients are elements
in Fom:

1. rxv matrix A specifies how the source processes X;, i =
1,...,r are represented on the source nodes’ incident
outgoing links, where r is the total number of source
processes and v the number of network links. The signal
on source link j is

Y(i)= D, AGHX

1€ AL )

where X;, ¢ € Agajl(j) are processes generated at node

tail(j) and transmitted on j.

2. v x v matrix F' specifies how signals are transmitted
between incident links. F'(4, j) is nonzero only if head(7)
= tail(j), so the signal on link j is

>

i : head(i)=tail(j)

Y(j) = F(i,5)Y (i)

3. v x v matrix G = I + F + F? + ... sums the gains
along all paths between each pair of links, and equals
(I — F)~*, since matrix F is nilpotent. Link  is said to
feed into link j if G(4, j) is nonzero.

4. r x v matrix B specifies how the receiver outputs Z;
are obtained, where the number of output processes r
is equal to the number of input processes. Then

Z; =Y B(,)Y(i)
ieT
where Y (¢), ¢+ € T are signals on the receiver node’s
terminal links 4.

We call a triple (A, F,B) a code. Note that a code
(A, F,B) is equivalently specified by the triple (4,G, B),
where G = (I — F)~'. A pair (A4, F), or (4,G), is called an
interior code.

We will use the following notation in this paper:

¢; is column j of AG. It can be viewed as a signal map
specifying the signal Y (j) = [X1 X» ... X;]¢; given
the vector [X; X, ... X;] of source processes.

b; is column j of B.



Gk is the submatrix of G consisting of columns that corre-
spond to links in a set K.

By is the submatrix of B consisting of columns that corre-
spond to links in a set K.

G", Gk and g;" are the altered values of G, Gk and ¢;, re-
spectively, resulting from failure of link h.

G*", G¥ and g;{ are the altered values of G, Gx and I
respectively, under the combined failure of links in set

H.

An example illustrating the structure of the transfer matrices
is given in Figure 2.

C Validity of codes for the network con-
nection problem

For the source processes to be reconstructable at the receiver,
the transfer matrix AGB” must be nonsingular [3]. We call
a code (A, G, B) wvalid for the network connection problem
if AGBT = I, where the specification of a particular value
(chosen here to be I) for AGBT imposes the requirement
that the receiver correctly identifies which signal corresponds
to which input process and outputs them in specific order (in
this case, the same order as the input processes).

An interior code (A, GQ) is called valid for the network con-
nection problem if there exists some B for which (A4, G, B) is
a valid code for the problem. Note that AGB” = AG7BY,
where the entries of the r X |7| matrix By are not constrained
by the network. The rank of AG+B¥ is thus constrained by
the rank of AGy. Thus, (A, G) is a valid interior code if and
only if AGT has rank r.

D Link failure model

Assuming that a constant zero signal is observed on failed
links, failure of link A corresponds to setting to zero the
h** column of matrices A, B and F, and the h'* row of
F. The overall transfer matrix after failure of link A is
AI"G"(BI")T = AG"B”, where I" = I — &y, is the identity

matrix with a zero in the (h,h)™" position, F* = I"FI"
and G* = I" + F* 4+ (F")? 4+ ... = I"(I-FI")™"
(I-1"F)""' I

If failure of link h is recoverable, there exists some
(A',G',B') such that A'G'"B'" = I. We say that a code
(A", G', B') covers (failure of) link h if A'G'"B'" =1.

Recovery codes can be classified as receiver-based (only B
changes), transmitter-based (only A changes) or network-wide
(any combination of A, F' and B may change). An interior
code (A, G) in a receiver-based scheme is called static.

III. LINK FAILURE RECOVERY AND MANAGEMENT

Nodes which need to change behavior for recovery from dif-
ferent failures must be appropriately directed by management
signals. We seek to characterize the network management
requirements based on parameters of the network connection
problem, as well as the type of recovery codes used, whether
receiver-based or network-wide.

In this paper we consider two formulations for quanti-
fying the essential management information. The first is a
centralized formulation where the behavior of the network
is described by a common code determining the behavior
of all nodes. Network management can be viewed as a
mapping from the code indices to the state of network
behavior. If n. different codes are needed to achieve re-
covery from different failure scenarios, then the network
management requirement is [log, n.| bits. An alternative
node-based formulation for quantifying network manage-
ment takes into account the number of nodes which change
behavior, and the number of different behaviors for each node.

A Codes for multiple failure scenarios

We first characterize codes which can be used for multiple
single link failures. The results in this section, from [6],
provide concepts and tools which are useful in proving the
results in later sections.

Lemma 1 Let T C T be the set of terminal links of receiver
B that are downstream of link h.

1. If code (A, G, B) covers the no-failure scenario and failure
of link h, then ¢, 3 icrn G(h,j)QJT =0.

2. If code (A, G, B) covers failures of links h and k, then either

(a) en jern G(h, 5)b] =0
and ¢ ZjeT’“ G(k,j)l_)jT =0

or

(b) Yh,k Z]‘e’rh G(ha])l_)J = Eje’rk G(k: ])Q] 7é 0
and ¢, =Ynie, 0

where yp,; € Fam is a constant for given h,k

Proof outline The results follow from writing AG% BT in the
form EjETg;'LI—);r and noting that Ag;? =g¢ —g;-” = G(h,j)c,.- O

These expressions simplify considerably for terminal links
as follows:

Corollary 1 1. If code (A,G,B) covers the no-failure sce-
nario and failure of terminal link h, then QhQZ =0.

2. If (A, G, B) covers failures of terminal links h and k of 3,
then either

(a) cbF =0 and b =0
or
(b) Yrxby, =b, #0 and ¢, =Y ke, #0

where yp,; € Fom s a constant for given h, k

These results lead to the notion of active and non-active
recovery codes. A recovery code which is active in a failed
link A is one in which AG%BZ¥ is affected by the value on
link h, ie. ¢, > icrn G(h,j)bf # 0. Otherwise, the code is
non-active in h.

In a code which is non-active in a failed link, the value on
that link is set to zero (by upstream links ceasing to transmit
on the link), cancelled out, or disregarded by the receivers.
Part 1 of Lemma 1 states that a code which covers the
no-failure scenario as well as one or more single link failures
must be non-active in those links. Part 2 of Lemma 1 states
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Figure 2: An example illustrating the structure of transfer matrices.

that a code which covers failures of two or more single links
is either non-active in all of them (case a) or active in all of
them (case b). In the latter case, those links carry signals
that are multiples of each other. We term a code active if it is
active in those links whose failures it covers, and non-active
otherwise. Active codes cannot be used if signals on failed
links are undetermined.

This classification is very useful in later proofs, as the
following results from [6] show that a set of codes with a com-
mon AG matrix, covering terminal link failures, corresponds
to a set of non-active codes each covering the same terminal
link failures, and vice versa. The analysis for terminal link
failures provides tools and results useful in the analysis of
network management for all link failures.

Lemma 2 In a given network, for any set of non-
active codes {(A1,G1,B1), (A2,G2,B2),...,(An,Gn,B,)},
there exists a set of receiver-based codes {(A,G,B}),
(A,G,B3),...,(A,G,B),)}, such that (A,G, B;) covers the
same terminal link failures as (A;, Gi, B;), for alli =1,...,n.

Corollary 2 Let ny be the number of codes needed to cover
the no-failure scenario and aoll single terminal link failures for
a given network connection problem in which all such failures
are recoverable. If only non-active codes are used, then nrt is
the same for network-wide and receiver-based codes.

Corollary 3 The terminal link failures covered by each code
in a network-wide scheme can be covered by one or two codes
in a receiver-based scheme.

Lemma 3 For any set of n > 2 codes with a common (A, Q)
covering failures from a set Ti C T of terminal links, there
ezists a set of n or fewer mon-active codes that cover failures
in set T1.

Corollary 4 For receiver-based recovery, the minimum num-
ber of codes for terminal link failures can be achieved with
non-active codes.

B Need for network management

We call a link h integral if it satisfies the property that there
exists some subgraph of the network containing h, on which

the set of source-receiver connections is feasible if and only if i
has not failed. The following result shows that there is a need
for network management for recovery from all recoverable link
failures, if there is at least one integral link whose failure is
recoverable.

Theorem 1 Consider any network connection problem with
at least one integral link whose failure is recoverable. Then
there is no single linear code (A, G, B) that can cover the no-
failure scenario and all recoverable failures for this problem.!.

Proof outline Consider an integral link A whose failure is
recoverable, and a subgraph G’ on which the set of source-
receiver connections is feasible if and only if A has not failed.
G’ does not include all links, otherwise failure of A would not
be recoverable. Then the set of links not in G', together with
h, forms a set ‘H of two or more links whose individual fail-
ures are recoverable but whose combined failures are not. By
Lemma, 1, a code which covers the no-failure scenario and fail-
ure of a link £ is non-active in k. However, a code which is
non-active in all the links in # is not valid. O

Corollary 5 For a network connection problem with one or
more nonzero source-receiver connections, there is no single
linear code (A, G, B) that can cover the no-failure scenario
and all single link failures, assuming they are recoverable.

C Centralized network management for
all link failures

In this section we establish bounds on centralized network
management for receiver-based and network-wide recovery
from all single link failures, which are presented in Theorem 3.

Our approach is to first consider the number of codes
needed for failures among a set M of links across a minimum
capacity cut between the sources and the receiver?. We note
that AGaq has rank r for any valid interior code (A, G), since
the signal maps on the terminal links are linear combinations
of those on links in M.

1A solution with static A and F matrices always exists for any
recoverable set of failures in a multicast scenario [3], but the receiver
code B must change.

2a partition of the network nodes into a set containing the
sources, and another set containing the receiver, such that the min-
imum number of links cross from one set to the other



In the development leading up to Theorem 3, we establish
Lemmas 5 to 8, making use of the following definitions. We
first define transfer matrices for the set J of links upstream
of and including links in M. (Q, J) is a partial interior code
defining the behavior of links in 7, where

1. r x |J| matrix Q specifies how the source processes X,
i = 1,...,r are represented on the source nodes’ inci-
dent outgoing links®. The signal on source link j is

> QGNX:

1€ A¢ai1 ()

Y ()=

where X;, i € Atajl(;) are processes generated at tail(j)
and transmitted on j.

2. |J| % |J| matrix D specifies how signals are transmitted
between incident links in J. D(i,j) is nonzero only if
head(i) = tail(j). The signal on link j is

>

i : head(s)=tail(j)

Y() = D(i, §)Y (4)

3. |J| x |J| matrix J = I + D + D* + ... sums the gains
along all paths between each pair of links, and equals
(I — D)™! since matrix D is nilpotent.

We also define the following:

Ja is the submatrix of J consisting of columns that corre-
spond to links in M.

Ay is the submatrix of A consisting of columns that corre-
spond to links in 7.

F7yx 7 is the |J| x |J| submatrix of F' consisting of rows and
columns corresponding to links in J.

Ggx g is the |J| x |J| submatrix of G counsisting of rows and
columns corresponding to links in J.

IT' is a related network connection problem in which all nodes
upstream of M, and the links between them, are the
same as in the original problem, but each link A in M
is replaced by a link A’ such that tail(h') = tail(h), and
head(h’') = B’, a new receiver node that is the head of
all links h'.

Note that @, D and J are defined analogously to A, F' and
G respectively, except that they are limited to specifying the
behavior of links in J. Az is the value of Q) that specifies the
same behavior for links in J as does A. Similarly, Fyx 7 is the
value for D that corresponds to F', and G 7« 7 is the value for
J that corresponds to G. Note that Gyxs = (I — Fyxg)™"
ifG=UI—-F)""

We also use the following theorem, from [6], which gives
bounds on n in terms of the number of transmitted processes
r and the number of terminal links |7| of the receiver:

Theorem 2 The following are tight bounds on the number of
receiver-based codes needed for the no-failure scenario and all
terminal link failures, assuming they are recoverable (i.e. for
any values of v and d, there are examples for which the bounds
are met with equality):

3all of which are in 7, since M is a cut between the source nodes
and the receiver

upper bound

mas ([ 5] )

_fr+1 for
Tl

for
Lower bound: Corollary 4 allows us to limit consideration
to non-active codes, which can each cover at most |T| — r
terminal link failures (Lemma 1).

lower bound
[

Proof outline

r=1or|T|-1
2<r<|T|-2

Upper bound: [|7|’IL—‘T-| >ronlyforr=1o0rr=|T|—-1, for

which cases it is easy to verify that r + 1 codes are needed.
For 2 < r < |T| — 2, consider any valid static code (A4, G).
Let v,,...,v, be r columns of AG7 that form a basis, and
Wy, .-, W 7|_, the remaining columns. Assuming single link
failures are recoverable, we can find two pairs (v;,w,;) and
(yj,wj,) such that w; can replace v; in the basis, and w,;r can
replace v; in the basis. Then the links corresponding to v; and
w;s can be covered by one code, the links corresponding to v ’
w, and {w, |k =1,...,|T|—r, k #¢,j} by another code,
and the links corresponding to {v, |k =1,...,r, kK #1,j} by
a separate code each. [J

The following lemma allows us to relate the number of codes
needed for terminal link failures in problem II', bounds on
which are given in Theorem 2, to the number of codes needed
for failures of links in M.

Lemma 4 If failure of some link in J is recoverable, recovery
can be achieved with a code in which no link in M feeds into
another.

Proof outline Having one link in M feed into another only
adds a multiple of one column of AGa¢ to another, which
does not increase its rank. [

Lemma 5 below characterizes, for a code which covers some
links in M, the behavior of links in 7, in terms of matrices
and J.

Lemma 5 Let (Q,J) be a partial interior code in which no
link in M feeds into another. If there exists an r X | M| matriz
L such that QJY LT = I for h € M1 C M, then there eists a
code (A, G, B) covering failure of links in M1 such that Ay =
Q and Ggxg = J. Conversely, if (A, G, B) covers links in
M1 C M, then there exists some r X |[M| matriz L such that
Q=Ag and J = Ggxyg satisfy QI LY =1 for h € M.

Proof outline There exists a set of link-disjoint paths
{P: | k € M} where P, connects link k to the receiver. (Q,J)
can be eztended to a valid interior code (A, G), where Ay = Q
and Gyxg = J, by having each link £ € M transmit without
coding along the path Py to the receiver. For the converse, we
can construct a matrix L which satisfies the required property

as follows: -
ZjeT G(ele)llj
LT = :
Yier Glemi) by
where e1,...,e | are the links of M in the order they appear

in Jap. O



Lemma 6 Tight bounds on the number of receiver-based
codes needed to cover the no-failure scenario and failures of
links in M, assuming they are recoverable, are given in the
following table. These bounds are the same in the case where
only non-active codes are used.

lower bound upper bound
M|
M| max([‘M‘_T] ,T‘)
[\M\_T] [ r+1 for r=1lor |M|-1
Tl for 2<r<|M|-2

Proof outline It follows from Lemma 4 that if failure of
some link in J is recoverable, it is recoverable for the related
problem IT'. Any code (Q',J’) covering failure of terminal
links h € M in problem II' can be extended to obtain a
code (A, G, B) covering links h € M; in the original problem
(Lemma 5). The upper bound from Theorem 2 thus applies,
with | M| in place of |T|.

For the lower bound, from Lemma 1, a single code in a
valid receiver-based scheme can cover at most |[M| — r of the
links in M.

By Corollary 4, restricting consideration to non-active
codes does not increase the receiver-based lower bound for
the related terminal link problem IT'; which is also [%],
and so does not increase the receiver-based lower bound here.

O

Lemma 7 A tight lower bound on the number of network-
wide codes needed to cover the no-failure scenario and fail-
ures of links in M, assuming they are recoverable, is given by

[IM[+1
[M]—r+1 |*

Proof outline It follows from Lemma 1 that a single non-
active code covers the no-failure scenario and at most |[M|—r
single link failures among links in M, while a single active code
covers at most |M| — r + 1 links in M. Each code therefore
covers at most |[M| —r + 1 out of [M]| + 1 scenarios of no
failures and failures of links in M. O

Lemma 8 For receiver-based recovery with a single receiver
and a set of connections recoverable under all single link fail-
ures, there exists a valid static interior code (A, G) such that
no link feeds into more than one link in M.

Proof outline From Lemma 4, there exist valid codes for
failures of links in J in problem IT'. Thus, a static interior
code (Q',J'") covering these failures exists for II' [3]. This
can be extended (Lemma 5) to a static interior code (A, G)
in which no link in M feeds into another. For any such code
(A, @), consider any link h which feeds into more than one
link in M. Let the set of these links be M" = {h1,...,hs},
and let the set of remaining links in M be M*,

Case 1: h feeds into some link h; in M via some path P
without further coding with other signals. We can construct
a partial code (Q,J) in which h feeds only into h; € MP",
whose extension is a valid static code.

Case 2: Coding occurs between h and each h; € M. We
show that there exists a proper subset £ C M such that AG%

has full rank and which does not include all links in M”. Let
h;j be some link in M" N M/L.

Case 2a: There exists a set R of links forming a single path
from h to hj, excluding h and hj, such that none of the links
h' € R feeding into some other link h;, i =1,...,z, i # j has
a signal map other than G(h,h')c,. We can then construct a
partial code (Q', D') which is the same as (A7, F7x ) except
that h feeds only into links in R, whose extension is a valid
static code.

Case 2b: Every path from h to h; contains some link that
feeds into one or more links h; € M" besides h;, and has
a signal map which is a linear combination of ¢, and some
other signal map. Consider any path R’ from h to h; and let
7 be the furthest upstream of these links.

We apply the entire argument described from paragraph 1
onwards with (4, G) and h. If case 1 or case 2a applies, then
we have a modified code (A’, G') in which b feeds into only one
link in M. We then apply the same argument once again, this
time to (A’, G') and h, with h feeding into strictly fewer links
in M than before. If on the other hand case 2b applies, we
proceed recursively, with B replaced by one of its downstream
links. If we come to a link that is incident to a link in M,
then case 1 or case 2a will apply, allowing us to eliminate a
nonzero number of links in M from consideration. Thus, the
procedure terminates with a valid static interior code in which
h feeds into only one link in M. O

Theorem 3 For a network with r source processes, a single
recetver and a minimum cut capacity of |[ M|, tight bounds on
the number of codes needed for the no-failure scenario and all
single link failures, assuming they are recoverable, are given
below (i.e. for any values of r and | M|, there are examples for
which the bounds are met with equality).

recovery lower upper
scheme bound bound
[M] ]
max r
receiver- M| (LM'_’“ ’
based [M[—7 _f r+1 forr=1lor |M|-1
Tl for2<r<|M|—-2
twork max (2, 7)
network- |M|+1 _
wide [|M|—7+1-| — 2 forr=1
r for2<r<|M|-1

Proof outline We can find a valid static interior code such
that the subgraphs Sy, of links which feed into each k € M are
link disjoint with each other, and the paths P, along which
k transmits to the receiver are also link disjoint (Lemmas 5
and 8). Any non-active code which covers failure of link & also
covers failure of all links in S, and Pi. Thus the receiver-based
bounds here are the same as those in Lemma 6.

The network-wide lower bound is the same as that in
Lemma 7.

For 1 < r < |M| — 2, the receiver-based upper bound
of max(2,r) is also a tight upper bound for network-wide
recovery, which includes the former as a special case. For
r = |[M| — 1, we start with a static interior code (A4,G) in
which no link feeds into more than one link in M, and use
this to construct an active code which covers two of the links



in M with their upstream links. The remaining r — 1 links in
M, and their upstream links, can be covered by their corre-
sponding receiver-based codes. [

D Node-based management requirement

In this section we consider an alternative measure of network
management, the node-based management requirement, which
is defined as the sum over all nodes of the log of the number of
different behaviors for each node. This formulation imputes
higher management overhead to recovery schemes which
require multiple nodes to change their behavior.

We show in Theorem 4 that in the single-receiver case,
receiver-based codes are sufficient to achieve the minimum
node-based management requirement for terminal link failures
and the no-failure scenario. This is in contrast to the central-
ized formulation of the preceding sections, in which network-
wide schemes may in some cases require fewer codes than
receiver-based schemes for terminal link failures [6]*. Thus, al-
though network-wide schemes may require fewer overall codes
than receiver-based schemes for terminal link failure recov-
ery, more nodes are involved, which offsets the effect of hav-
ing fewer codes where node-based management requirement is
concerned. We first establish a lemma needed in the proof of
Theorem 4:

Lemma 9 If the no failure scenario and all single terminal
link failures are covered by a set of n codes {(Ai1,G1,B),
(A2,G2, B),...,(An,Gr,B)} having a common B matriz,
then they can be covered by a set of n codes {(A,G, B1),
(A,G, Bs),...,(A,G, B,)} with a common AG matriz.

Proof outline Since an active code cannot cover the no-
failure scenario (Lemma 1), there is at least one non-active
code. If codes {(A1,G1,B),(A2,G2,B),...,(An,Gn, B)} are
all non-active, there is a set of n codes with common (A4, G)
that cover the same terminal link failures (Lemma 2). Other-
wise, there is at least one active code among them. We can
show that one of links covered by each active code can be cov-
ered together with some non-active code, and the rest by a
separate non-active code. [

Theorem 4 For the single-receiver case, the minimum node-
based management requirement for terminal link failures and
the no-failure scenario is achieved with receiver-based schemes.
Proof outline If interior nodes ¢ = 1,...,x each
switch among m; codes and the receiver switches among
n codes, the node-based management requirement is
i log, m; + log, n = log, (II_;m;) n > log, mn, where m
is the number of different values for AG among all the codes.
m > II{_;m; because between two distinct values of AG,
there is at least one interior node which switches code.

Let a set of codes covering the no-failure scenario and all
terminal link failures be called complete. We show that for
any complete set of network-wide codes with m values for
AG and n values for B, there exists a complete set of < mn
receiver-based codes. Then the receiver-based management
requirement is < log, mn, which is less than or equal to the

4unless attention is restricted to non-active codes (Corollary 2)

network-wide requirement.

Case 1: m = 1. There exists a complete set of n = mn
codes with a static AG matrix, which are receiver-based codes.

Case 2: n = 1. There exists a complete set of m codes with a
static B matrix. By Lemma 9, there exists a complete set of
m = mn receiver-based codes with a static B matrix.

Case 3: m > 2,n > 2. If any set of n; > 2 codes {(4, G, B1),
(4,G,By),...,(A,G, By,,)} has a common AG matrix, there
is a corresponding set of < my non-active codes covering the
same terminal links (Lemma 3). Each of the remaining codes
can be covered by one or two non-active codes (Corollary 3).
The maximum number of non-active codes resulting from
this procedure is mn. Thus, there exists a complete set of
< mn receiver-based codes (Lemma 2). O

IV. CONCLUSIONS AND FURTHER WORK

We have analyzed two formulations for quantifying net-
work management for link failure recovery. The first is a
centralized formulation where network behavior is described
by an overall code determining the behavior of every node,
and the management requirement is taken as the log of the
number of codes the network may switch among. For this
formulation, we have given tight upper and lower bounds on
network management for receiver-based and network-wide
recovery from all single link failures, assuming they are
recoverable. In this paper we consider the single-receiver
case, but the approach appears to be amenable to extension
to the multi-receiver case.

The second is a node-based formulation where the man-
agement requirement is taken as the sum over all nodes of
the log of the number of different behaviors for each node.
We have shown that minimum node-based management
requirement for terminal link failures and the no-failure
scenario is achieved with receiver-based schemes in the
single-receiver case. This does not however hold for the
multi-receiver case. An example of a multi-receiver scenario
for which this does not hold is shown in Figure 3. Here, the
source multicasts one process to two receivers. Receiver-based
recovery requires each of the two receivers to switch between
two codes, whereas network-wide recovery allows for recovery
with only the source node switching between two codes.

Src

Revl Rcv2

Figure 3: Counter-example showing that Theorem 4 does
not hold for the multi-receiver case.

Further work includes studying the capacity requirements
for decentralized network management, where management



information is transmitted from a failed link to nodes requir-
ing the information for code selection. For a given network and
set of connections, there may be a number of possible codes
for each recoverable scenario. As different choices of coding
scheme have different network management requirements, the
coding scheme may be chosen to meet constraints on, or some
objective criterion for, the management network. If, for in-
stance, we want to find the minimum capacity management
network, we will look for localized recovery schemes involving
nodes close to the failed link. Alternatively, given a manage-
ment network, we would look for coding schemes which the
management network can support.
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