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Density matrix

Pure state vs. mixed state

) = 3 ailes)

E(B) = ZMJ (i| Bl3).
Density matrix o= > _p;|u5) (5],
Landau 1927 J

E(B) = Tr(pB).

Quantume-statistical entropy
von Neumann 1927
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I Entanglement Entropy

* Expresses complexity of a
I quantum state

* Describes correlations
between two parts of a
many-body system

* Useful in: field theory, black
holes, quantum quenches, Wilczek, Bekenstein,
phase transitions, quantum Vidal, Kitaev, Preskill,
information, numerical Cardy, Bravyi,

: Hastings, Verstraete,
studies of strongly correlated Klich. Fazio. Levin,

systems Wen, Fradkin...

S =-Tr palog pa
pA = Trs p, V=A+B




I Can it be measured?

I arXiv: 0804.1377 o
* Relate to the electron B @
I transport
» Quantum point contact >
(QPC) with transmission —« .
tunable in time . orc 0 —
* Open and close “door” L C r
between reservoirs R, L, —¢—
let particles from R & L
Mmix S; = —Try (pr () log pr(t))

o Statistics of current

fluctuations encode S!  7x(1) = Tre (Ut)p(t = 0O)U' (1))



Current fluctuations, counting
statistics

* Probability distribution of transmitted charge
* Recently measured up to 5" moment in

tunnel junctions, quantum dots and QPC
(Reulet, Prober, Reznikov, Fujisawa, Ensslin)

* Well understood theoretically

Generating Probabilites ~ Cumulants

function
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I A universal relation between
I noise and entanglement entropy

Electron noise cumulants

I True for gzm@/ [ (27" B, m even

‘my Om =

arbitrary = m! 0, m odd
prOtOCOI B,,, are Bernoulli numbers (B, = 1, By =—2 B —
- dle 7 L | ol e o = =, 4 =— ==, Ei=
of QPC " > =% 2
=73 -f-z—l—ﬁ A F 01T 6 = wa

For free fermions Full Counting Statistics accounts for
ALL correlations relevant for the entanglement entropy



I Example: abrupt on/off switching

* Counting statistics computed explicitly
* Only C2is nonzero
I * Logarithmic charge fluctuations, logarithmic entropy
* Agrees with field-theoretic calculations
* Can use electric noise to measure central charge

. 1 t c+ ¢ 4
S = Elﬁg— S = log — £ = wpt

0 (1
Heuristically, number - QPC closed —
fluctuations in a time- L ( R 1<t
dependent interval: Be—

Space-time duality: use time window (door open/close)
Instead of space interval at a fixed time




I Possible Experimental Realization

* Periodic switching: particle Total # of periods
I fluctuations and entropy =~ sinmw
proportional to total time; =~ =~ © w7
* Fixed increment AS per 2 ~ & d8/dt = grlog =i
driving period; -
* DC shot noise
reproduces AS:

p= 14T

N
T
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e’v SIN YW
SQ — — 10g w
ar VT 2r -
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Step 1: Relate many-body and
one-particle quantities

Projected density matrix (gaussian for thermal state):

T=O pL X E—Hiju i
Tc>)r(.) ﬂir;;} — Tl‘L;JL{l'I{LJ H —- l{)g[(f = JI]JI‘lJ
i, 7 € L,

Find the entropy of an evolved state:
Sy = —Tr (Mlog M + (1 — M)log(1 — M))

1

S, = / dz u(z) (zlogz + (1 — z)log(l — 2))

0

_ 1 1 1. .

(z) = ——=—Im'Ir 0 ——0. Im log det(z—M+i0)
m 2 — | ! T




I Step 2: Counting statistics yields
I same quantity M

Functional determinant in an original form (LL, Lesovik '92)
I X(A) =det (1 —ne +nUTeMrUe™ M)

Scattering operator

Recently: Klich, lvanov, Abanov, Nazarov, Vanevic, Belzig
1\\(}\) — det ((l — M + f\[pi)\PL)E__.—’e‘-)’mFL)
g(2) = logdet(1l — M + Me T

ml=1_¢"

g(2) = logdet(z — M) — rank(M ) log =



The quantity M

Matrix in the single-particle Hilbert space;
Describes partition of the modes between A
and B: either statistical or dynamical;
Intrinsic to the Full Counting Statistics
Provides spectral representation for the
entropy



I Step 3: Combine results 1 and 2

o1 - . i
I p(2) = =Ima, g(z) + rank(M)d(2)
(.i;\j'}’ﬂ.
logy = Crrz.
B Z m!

(2) IZC'”“ g, (ir +10g 222 + k(M)d(2)
Wz2) = — ). | i + loe rank(M)o(z
/ T m) . S t

e

Entanglement >~ 1 Noise cumulants
entro S &= Z — it
Py m!
m=1
Relation of am to 00 142 duy

L 2m
Bernoulli numbers: fo  ont2w W | Bam|



I The spectrum of M for a non-unit
I QPC transmission

Dependence on the parameters of

driving unchanged S ~ logsin mrvw
) - WEPJZE
(up to a rescaling factor) £ = S(D)/S(1)
100 - | —7 | I —
&
=08
a
80 5067
Ei %0.4- ,*"“H““‘secondcumulant 1
o - contribution
% 60 20.2—
LIJ L L L L
£ % 0.2 04 N o6ll ds 1
‘_E 401 QPC transmission D i
o
w
D=0.95 k
201 &
D=1 ___:ﬁ"_
O—

0 0.2 0.4 0.6 0.8 1



I Summary & Outlook

I * Universal relation between entanglement entropy
and noise
I * A new interpretation of Full Counting Statistics
* Generalization to other entropies (Renyi, etc);
* Opens way to measure S by electric transport (by
pulsing QPC through on/off cycle)
* Realize in cold atoms: particle number statistics
* Restricted vs. unrestricted entanglement
* Interacting systems? Neutral modes?
* A similar relation of entropy and noise (FCS) for
Luttinger liquid is found






Part Il
Coherent Particle Transfer in an
On-Demand Single-Electron
Source

with Jonathan Keeling and Andrei Shytov (2008)
arXiv: 0804.4281



I Noiseless particle source

continuum without creating other excitations
* Populate a one-particle state in a Fermi gas
without perturbing the rest of the Fermi sea
* Minimally entangled states in electron systems:
coherent, noiseless current pulses
* Extend notion of quantized electron states
(quantum dots, turnstiles) to states that can
travel at a high Fermi velocity
* Bosons? Luttinger liquids?

I * Transfer a particle from a localized state to a



Eject a localized electron into a

Fermi continuum In a noiseless
I fashion

I Electron system:

Electron Beamsplitter,
source noise detector }

I
O QHE edge channel I

-

Cold atoms:

Quantum Tweezers (one-atom Too noisy?
optical trap in a quantum gas)



I Experimental realization in
a 1d QHE-edge electron system

Quantized current pulses in
I an On-Demand ,,, ,

Coherent
Single-Electron
Source

@

G. Feve et al.
Science 316, 1169 ]
(2007) 0 8 16 24 32 6 16 24 32 8 16 234

time (ns) time (ns) time (ns)




Excitation content: particles and
holes

Tunnel

coupling o/ icle states

oy
® i Hole states

o— |

. ; ! " o

&Yy S st

No splash, Captain?

The number of excitations: unhappiness = Np + Nn



I Minimize unhappiness?

Optimize driving so that

I Nex = Ne + Nh = min, AN = Ne - Nh = 1
Localized and delocalized particles
indistinguishable: Excitation unavoidable? No.

Addicted

[

fufuu{;n'ufin




I Multilevel Landau-Zener

I problems, exact S-matrix
Demkov-Osherov O.ur OOl
Continuous spectrum,
I arbitrary driving

non-linear

Discrete states,
linear driving



Time-dependent S-matrix

Gate voltage, tunnel coupling
/
Edt Z )\

30 — €, Uy (t) = f\*(t){r}(t),

| | Gl E) = p € Prhy(t) €p — —1URpOy
Quasi 1D scattering

channel representation; [79: — E(t)] o(t) = A(t) / dzd(x)y(t, v)

In-state: 10 + 1vpdy | U(t, x) = A*(t)0(x) (1)
v(t,z < 0) =g(t, z) = o— i€ (t—z/vF)
V2T

The S-matrix: Out-state:

/ dt _, (IL 0) -_ (IL r )'
AV 2T | ! i VR /|




Find the S-matrix:

| | T . r | T
W(t, x) = Yo [f — —] — — A" lf — —] O [t - —] {z)
E:f'l l:_{"-l I:il_"l E ‘f'l

| 2

FmEm+a ]()M) (1)

. Resonance width:
(’J(IL) — 3/; {{IL f\( )f “( ) ."X':‘t't ) ‘)\(ﬂ‘g;’f’l.’ _ F(IL)

)If

H)r){ { ) } }{(ffj
ANSWER: \(¢
U(e,e') =d6(e — €) / df/ I HJ_ eA(t,t")

At 1) = i(et — €'t') — f{»—r U7 B
t’ s i

2




(e, €")

Number of excitations
Energy representation:
EZER / /
Time representation:
o B o0 t o's, s
f\-'T—l_ — (f_) / n"hL/ fiff/ l’j‘-}/ l‘fl’--‘:?r

(t—t' +s5—45") —sz, - {f”’%-ff E (1) f‘"]

lul'__l

exp [

(t — s +:0)(t — 5" +i0)

Excitation number depends on the protocol, E(t)



Optimal driving?



Linear driving minimizes

unhappiness
rapidity
E(t) = ct.

Slow or fast rapidity, degeneracy in c
Resulting state depends on c value

Relevant energy window: |e-er| of order I



S-matrix for linear driving

I

AT, 7)=td(e+ €)= —i(€ —f‘)[—_)! —gel T,

T—TJr“"fo—I—u”z ’ﬂlth U

S-matrix: rank-one particle/hole block
I r ., -

ul“i

Ule # €)= O — € )—e~ Te (=€) ga(€ =),
f B &
N+*+=1 N-=0  N+-N-=1

No e/h pairs: Uab Uab' - Uab' Uab =0



Current pulse profile at different

rapidities
(¢, / > de - LT Ie K=
I {—“{ ) | —1l€ S — (}
Ve P vr ) 2¢ 20
High c:
exponential 3t
profile Z 25
=
One-electron pulse 2 2
with fringes onthe < 15
trailing side 5o
] ) i L
OW C: |
: . 14
O —
Lore_nt2|an -3 2 1 0 1 2 3 4 5
profile

Time (1/y)




Energy excitation and e/h pair
production suppressed by Fermi
statistics

Pauli principle helps to eliminate
entanglement



Use noise to measure
unhappiness

e Send current pulses on a QPC (beamsplitter):
The partition noise generated at QPC is a
direct measure of the excitation number

* Use a periodic train of pulses, vary frequency,
protocol, duty cycle, etc, to demonstrate noise
minimum

* At finite temperature must have hv>kT:

e.g. T =10 mK, v > 200 MHz



More examples

* Harmonic driving, E(t)=Eo+cost,
simulates repeated linear driving;
* Linear driving + classical noise: L(1)

E(t) = ct + SV(t),
<SV(HSV(t')> = 12 §(t-t)

Total number of excitations:

Nex = 1 for fast driving;

ATEX 2972 |, <0 for slow driving (multiple crossings

11 '
i ~. of the Fermi level);

Crossover at ¢ ~ vy



Slow driving

A more intuitive picture at slow driving:
quasistationary time-dependent scattering phase

O(t) = arctan( (e — E(t))/T")
Translates into an effective time-dependent ac voltage:
V(t) = (h/e) do/dt

Noiseless excitation realized for Lorentzian pulses
of quantized area (PRL 97, 116403 (2006))



Clean excitation by a voltage pulse

e Particle excited above Ep;
e Other particles filling the void at E < Ep (near +kp);
e Undisturbed Fermi sea (no mess left behind);

e Counter-propagating hole (similar, near —kp).

«)




I Minimal noise requirement

I Now = Naba¥e == il &fje=Ve— iV5=8—=0008

e An interesting variational problem, solved by pulses of integer area 27n:

e |
g=1...n

. h 2'rE _

Lorentzian pulses (overlapping or non-overlapping): N, =0 or N,

Degeneracy: N., = n, the same for all t;, 7;
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WHEN DOES A UNITARY EVOLUTION EXCITES AT MOST
ONE PARTICLE?

Evolve a Fermisea, n =) p _p_|k)(k|:
n — UnU™t, U,_=(1—-n)Un, U_, =nU(1—n)

Criterion: IF and ONLY IFU_,. =0, U, _ = ¢|od)(d_| a rank one matrix.
Proof: (&’

1K) = (16:){0— k) for By < B, By > B

-

UisesaUp—ty — Ug—oyUp— o» = 0, — at most one particle excited.

Transition amplitude for Lorentzian pulses 1(t, ) = (0, z + vt)e'®):

e gk — Tk — “Lk

Fourier transform: [ e**"tiwigt = §(w) + 27 %“0(w), w = Ep — Ex;
Criterion fulfilled due to multiplicativity of exp!



( FEATURES:
e A many body excitation which conspires to behave like a single particle;

e Direct product of e and h;

e Energy distribution width /7 — inverse pulse width;

e Generalized to many pulses of equal sign. “Laughlin” algebra:

T

H &Pl H ii — Eifi;l?ll;l;ll...i'—li[)), 4;[& = Z & ha

k=1 k<k’ ' e>Ep

e Pulses of opposite sign: entangled e-h pairs and an undisturbed Fermi sea;

Tk Tkr /

Sk e S;f

e 41D eit2(t)|0) = ?jL?fA{BéU)wL
k !

)

e Gereralized for chiral Luttinger liquid (QHE edge state):
e — e, = €e/m, de.t = h/e, — fractional charge pulses.



I Summary

* Many-body states that conspire to behave like
I one-particle states

* Release/trap a particle inffrom a Fermi sea in a
clean, noiseless way

* Single-particle source can be realized using
quantum dots: a train of quantized pulses of
high frequency

* Can employ particle dynamics with high Fermi
velocity 1078 cm/s to transmit quantized states
in solids



