Quantum Noise as an Entanglement Meter

Leonid Levitov

MIT and KITP UCSB

Landau memorial conference Chernogolovka, 06/22/2008

Part I: Quantum Noise as an Entanglement Meter

with Israel Klich (2008); arXiv: 0804.1377

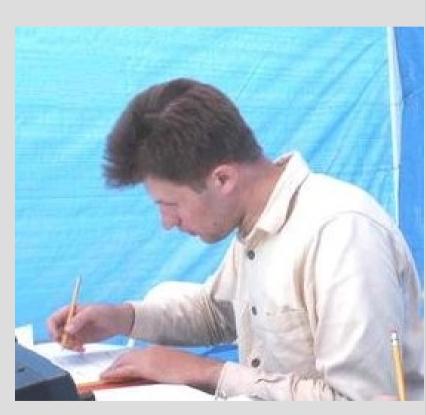
Part II: Coherent Particle Transfer in an On-Demand Single-Electron Source

with Jonathan Keeling and Andrei Shytov (2008) arXiv: 0804.4281

Israel Klich

UCSB Jonathan

Jonathan Keeling Cambridge Univ.



Andrei Shytov Utah

Density matrix

Pure state vs. mixed state

$$|\Psi\rangle = \sum_{i} a_i |\psi_i\rangle.$$

$$E(B) = \sum_{i,j} a_i^* a_j \langle i|B|j \rangle.$$

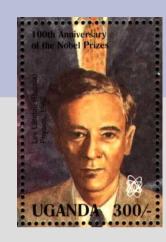
Density matrix Landau 1927

$$\rho = \sum_{j} p_j |\psi_j\rangle \langle \psi_j |,$$

 $E(B) = Tr(\rho B).$

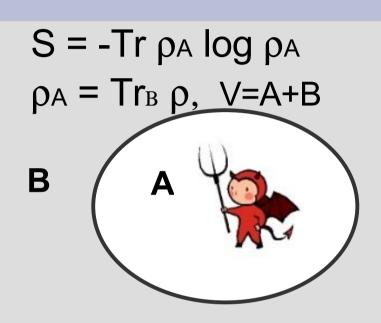
Quantum-statistical entropy von Neumann 1927

 $S(\rho) = -\mathrm{Tr}(\rho \ln \rho),$



Entanglement Entropy

- Expresses complexity of a quantum state
- Describes correlations between two parts of a many-body system
- Useful in: field theory, black holes, quantum quenches, phase transitions, quantum information, numerical studies of strongly correlated systems

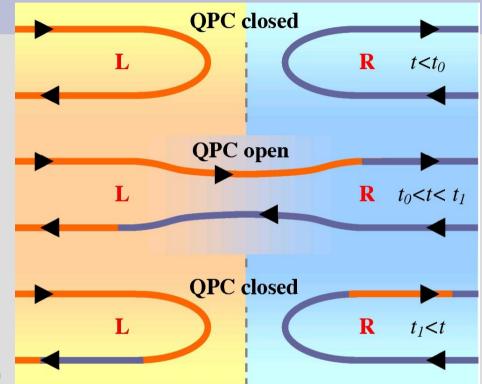


Wilczek, Bekenstein, Vidal, Kitaev, Preskill, Cardy, Bravyi, Hastings, Verstraete, Klich, Fazio, Levin, Wen, Fradkin...

Can it be measured?

arXiv: 0804.1377

- Relate to the electron transport
- Quantum point contact (QPC) with transmission tunable in time
- Open and close "door" between reservoirs R, L, let particles from R & L mix
- Statistics of current fluctuations encode S!

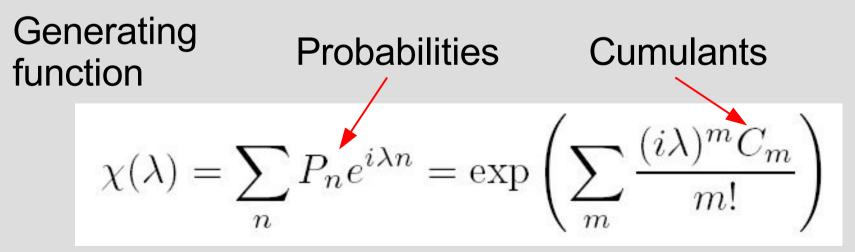


$$\mathcal{S}_L = -\mathbf{Tr}_L \left(\rho_L(t) \log \rho_L(t) \right)$$

 $\rho_L(t) = \mathbf{Tr}_R \left(\mathbf{U}(t) \rho(t=0) \mathbf{U}^{\dagger}(t) \right)$

Current fluctuations, counting statistics

- Probability distribution of transmitted charge
- Recently measured up to 5th moment in tunnel junctions, quantum dots and QPC (Reulet, Prober, Reznikov, Fujisawa, Ensslin)
- Well understood theoretically



A universal relation between noise and entanglement entropy

True for arbitrary protocol of QPC driving

Electron noise cumulants

$$S = \sum_{m>0} \frac{\alpha_m}{m!} C_m, \quad \alpha_m = \begin{cases} (2\pi)^m |B_m|, & \text{m even} \\ 0, & \text{m odd} \end{cases},$$

$$B_m \text{ are Bernoulli numbers } (B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}...);$$

$$S = \frac{\pi^2}{3} C_2 + \frac{\pi^4}{15} C_4 + \frac{2\pi^6}{945} C_6 + ...$$

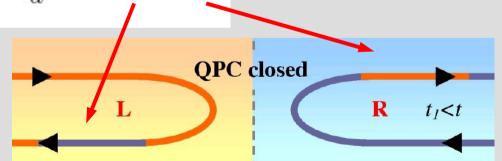
For free fermions Full Counting Statistics accounts for ALL correlations relevant for the entanglement entropy

Example: abrupt on/off switching

- Counting statistics computed explicitly
- Only C₂ is nonzero
- Logarithmic charge fluctuations, logarithmic entropy
- Agrees with field-theoretic calculations
- Can use electric noise to measure central charge

$$S_L = \frac{1}{3} \log \frac{t}{\tau}$$
 $S = \frac{c + \bar{c}}{6} \log \frac{\ell}{a}$ $\ell = v_F t$

Heuristically, number fluctuations in a timedependent interval:



Space-time duality: use time window (door open/close) instead of space interval at a fixed time

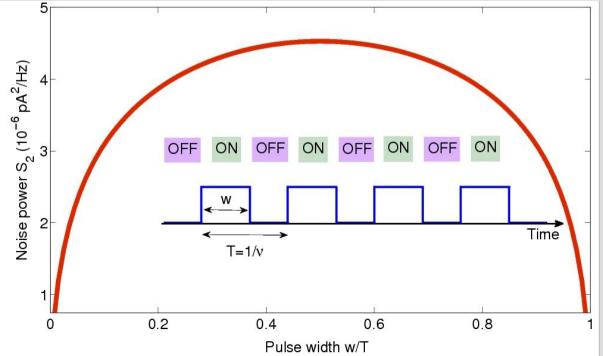
Possible Experimental Realization

- Periodic switching: particle fluctuations and entropy proportional to total time;
- Fixed increment ∆S per driving period;
- DC shot noise reproduces ∆S:

$$S_2 = \frac{e^2\nu}{\pi^2} \log \frac{\sin \pi\nu w}{\pi\nu\tau}$$

For v=500 Mhz, Tnoise=25 mK

Total # of periods $C_2(N) \approx \frac{N}{\pi^2} \log \frac{\sin \pi \nu w}{\pi \nu \tau}, \quad \nu = 1/T$ $C_2 \propto N \qquad dS/dt = \frac{1}{3}\nu \log \frac{\sin \pi \nu w}{\pi \nu \tau}$



Step 1: Relate many-body and one-particle quantities

Projected density matrix (gaussian for thermal state): T=0 $\rho_L \propto e^{-\hat{H}_{ij}a_i^{\dagger}a_j}$

$\begin{array}{l} \text{or} \\ \mathsf{T>0} \\ \end{array} \begin{array}{l} M_{ij} = \mathbf{Tr}_L \rho_L a_i^{\dagger} a_j \\ i, j \in L, \end{array} \begin{array}{l} \tilde{H} = \log((I-M)M^{-1}) \\ \end{array}$

Find the entropy of an evolved state:

$$S_L = -\text{Tr} \left(M \log M + (1 - M) \log(1 - M) \right)$$
$$S_L = -\int_0^1 dz \,\mu(z) \left(z \log z + (1 - z) \log(1 - z) \right)$$
$$\mu(z) = -\frac{1}{\pi} \text{Im} \,\text{Tr} \frac{1}{z - M + i0} = -\frac{1}{\pi} \partial_z \,\text{Im} \log \det(z - M + i0)$$

Step 2: Counting statistics yields same quantity M

Functional determinant in an original form (LL, Lesovik '92)

$$\begin{split} \chi(\lambda) &= \det \left(1 - n_{\epsilon} + n_{\epsilon} U^{\dagger} e^{i\lambda P_L} U e^{-i\lambda P_L} \right) \\ & \text{Scattering operator} \end{split}$$

Recently: Klich, Ivanov, Abanov, Nazarov, Vanevic, Belzig

$$\begin{split} \chi(\lambda) &= \det \left((1 - M + M e^{i\lambda P_L}) e^{-i\lambda n P_L} \right) \\ g(z) &= \log \det (1 - M + M e^{i\lambda P_L}) \\ z^{-1} &= 1 - e^{i\lambda} \\ g(z) &= \log \det (z - M) - \operatorname{rank}(M) \log z \end{split}$$

The quantity M

- Matrix in the single-particle Hilbert space;
- Describes partition of the modes between A and B: either statistical or dynamical;
- Intrinsic to the Full Counting Statistics
- Provides spectral representation for the entropy

Step 3: Combine results 1 and 2

$$\mu(z) = \frac{1}{\pi} \operatorname{Im} \partial_z g(z) + \operatorname{rank}(M) \delta(z)$$
$$\log \chi = \sum \frac{(i\lambda)^m}{m!} C_m$$
$$\mu(z) = \frac{1}{\pi} \sum_m \frac{C_m}{m!} \operatorname{Im} \partial_z \left(i\pi + \log \frac{1-z}{z} \right)^m + \operatorname{rank}(M) \delta(z)$$

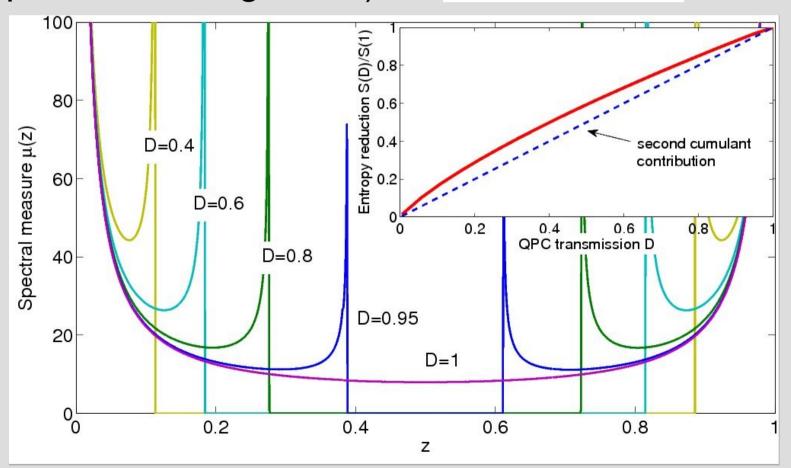
Entanglement entropy $S_{1} = \sum_{m=1}^{\infty} \frac{1}{m!} C_{m} \alpha_{m}$ Noise cumulants

 $\int_0^\infty \frac{u^{2m} \mathrm{d}u}{\sinh^2 u} = \pi^{2m} |B_{2m}|$

Relation of αm to Bernoulli numbers:

The spectrum of M for a non-unit QPC transmission

Dependence on the parameters of
driving unchanged
(up to a rescaling factor) $\mathcal{S} \sim \log \sin \pi \nu w$
 $F = \mathcal{S}(D)/\mathcal{S}(1)$



Summary & Outlook

- Universal relation between entanglement entropy and noise
- A new interpretation of Full Counting Statistics
- Generalization to other entropies (Renyi, etc);
- Opens way to measure S by electric transport (by pulsing QPC through on/off cycle)
- Realize in cold atoms: particle number statistics
- Restricted vs. unrestricted entanglement
- Interacting systems? Neutral modes?
- A similar relation of entropy and noise (FCS) for Luttinger liquid is found

?

Part II Coherent Particle Transfer in an On-Demand Single-Electron Source

with Jonathan Keeling and Andrei Shytov (2008) arXiv: 0804.4281

Noiseless particle source

- Transfer a particle from a localized state to a continuum without creating other excitations
- Populate a one-particle state in a Fermi gas without perturbing the rest of the Fermi sea
- Minimally entangled states in electron systems: coherent, noiseless current pulses
- Extend notion of quantized electron states (quantum dots, turnstiles) to states that can travel at a high Fermi velocity
- Bosons? Luttinger liquids?

Eject a localized electron into a Fermi continuum in a noiseless fashion

Electron system:

Electron Beamsplitter, source noise detector QHE edge channel V(t)

Cold atoms:

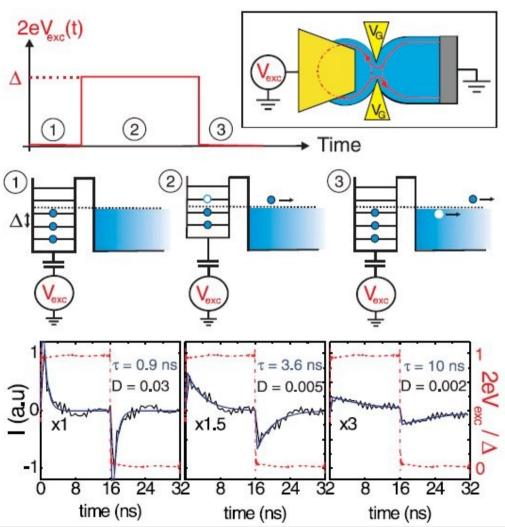
Quantum Tweezers (one-atom optical trap in a quantum gas)

Too noisy?

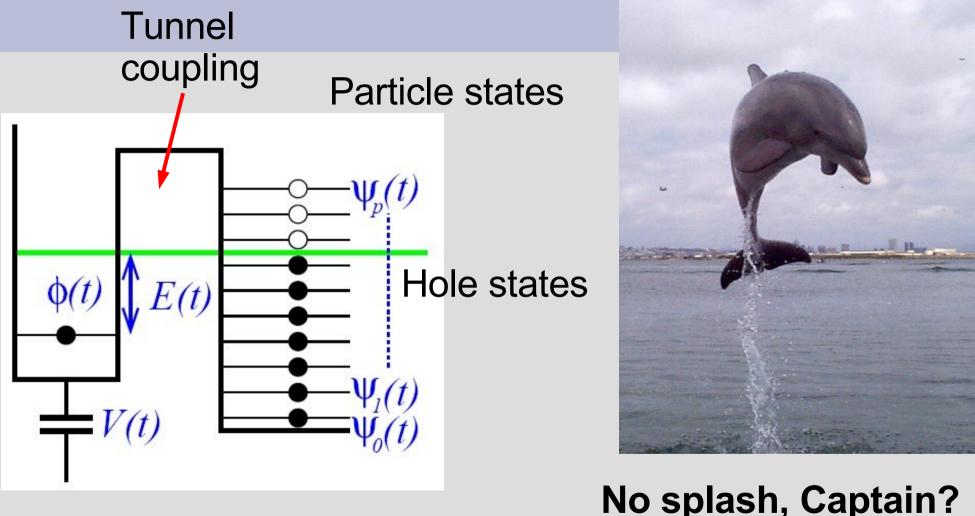
Experimental realization in a 1d QHE-edge electron system

Quantized current pulses in an On-Demand Coherent Single-Electron Source

G. Feve et al. Science 316, 1169 (2007)



Excitation content: particles and holes

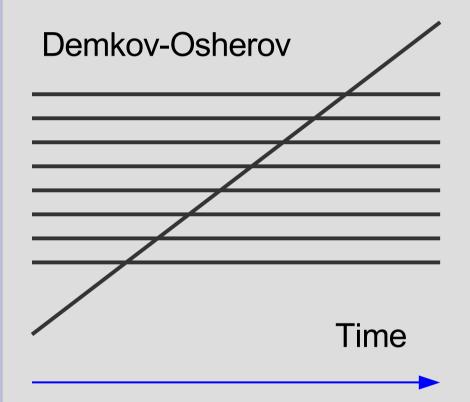


The number of excitations: **unhappiness** = N_p + N_h

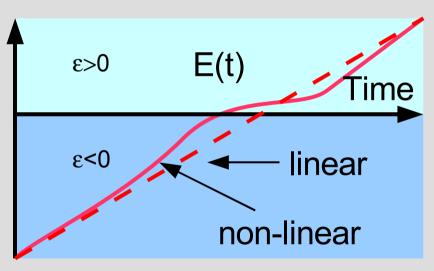
Minimize unhappiness?

Optimize driving so that $N_{ex} = N_e + N_h = min$, $\Delta N = N_e - N_h = 1$ Localized and delocalized particles indistinguishable: Excitation unavoidable? No.

Multilevel Landau-Zener problems, exact S-matrix



Our problem: Continuous spectrum, arbitrary driving



Discrete states, linear driving

Time-dependent S-matrix

Gate voltage, tunnel coupling

$$\begin{split} \left[i\partial_{t} - E(t)\right]\phi(t) &= \sum_{p}\lambda(t)\psi_{p}(t),\\ \left[i\partial_{t} - \epsilon_{p}\right]\psi_{p}(t) &= \lambda^{*}(t)\phi(t),\\ \end{split}$$
Quasi 1D scattering
channel representation:
In-state:
$$\begin{aligned} \psi(t,x) &= \sum_{p}e^{ipx}\psi_{p}(t) \quad \epsilon_{p} \rightarrow -iv_{F}\partial_{x},\\ i\partial_{t} - E(t)\right]\phi(t) &= \lambda(t)\int dx\delta(x)\psi(t,x),\\ \left[i\partial_{t} + iv_{F}\partial_{x}\right]\psi(t,x) &= \lambda^{*}(t)\delta(x)\phi(t),\\ \psi(t,x < 0) &= \psi_{0}(t,x) = \frac{1}{\sqrt{2\pi}}e^{-i\epsilon'(t-x/v_{F})},\\ \end{aligned}$$
The S-matrix:
$$U(\epsilon,\epsilon') &= \int \frac{dt}{\sqrt{2\pi}}\psi(t,x > 0) \exp\left[i\epsilon\left(t - \frac{x}{v_{F}}\right)\right] \end{split}$$

Find the S-matrix:

$$\begin{split} \psi(t,x) &= \psi_0 \left[t - \frac{x}{v_F} \right] - \frac{i}{v_F} \lambda^* \left[t - \frac{x}{v_F} \right] \phi \left[t - \frac{x}{v_F} \right] \theta(x). \\ \left[i\partial_t - E(t) + i \frac{|\lambda(t)|^2}{2v_F} \right] \phi(t) &= \lambda(t)\psi_0(t) \\ \phi(t) &= -i \int_{-\infty}^t dt' \lambda(t')\psi_0(t') e^{X(t,t')} &|\lambda(t)|^2/v = \Gamma(t) \\ i\partial_t X(t,t') &= \left[E(t) - i\Gamma(t)/2 \right] X(t,t') \end{split}$$

ANSWER:

$$U(\epsilon, \epsilon') = \delta(\epsilon - \epsilon') - \int_{-\infty}^{\infty} dt \int_{-\infty}^{t} dt' \frac{\lambda(t)\lambda(t')}{2\pi v_F} e^{A(t,t')}$$

$$A(t,t') = i(\epsilon t - \epsilon't') - \int_{t'}^{t} d\tau \left[\frac{\Gamma(\tau)}{2} + iE(\tau)\right]$$

Number of excitations

Energy representation:

$$N^{+} = \langle \Omega | U^{\dagger} \sum_{\epsilon > \epsilon_{F}} a_{\epsilon}^{\dagger} a_{\epsilon} U | \Omega \rangle = \int_{\epsilon_{F}}^{\infty} d\epsilon \int_{-\infty}^{\epsilon_{F}} d\epsilon' \left| U(\epsilon, \epsilon') \right|^{2}$$

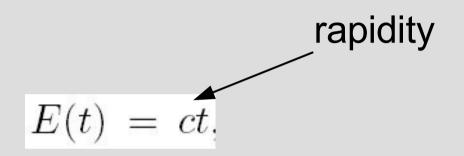
Time representation:

$$N^{+} = -\left(\frac{\Gamma}{2\pi}\right)^{2} \int_{-\infty}^{\infty} dt \int_{-\infty}^{t} dt' \int_{-\infty}^{\infty} ds \int_{-\infty}^{s} ds'$$
$$\underbrace{\exp\left[-\frac{\Gamma}{2}(t-t'+s-s') - i\int_{t'}^{t} E(\tau)d\tau + i\int_{s'}^{s} E(\tau)d\tau\right]}_{(t-s+i0)(t'-s'+i0)}$$

Excitation number depends on the protocol, E(t)

Optimal driving?

Linear driving minimizes unhappiness



Slow or fast rapidity, degeneracy in c

Resulting state depends on c value

Relevant energy window: $|\epsilon - \epsilon_F|$ of order Γ

S-matrix for linear driving

$$\begin{split} A(T,\tau) &= i(\epsilon+\epsilon')\frac{\tau}{2} - i(\epsilon'-\epsilon)T - \frac{\Gamma}{2}\tau - icT\tau.\\ t &= T + \tau/2, \ t' = T - \tau/2, \ \text{with} \ \tau > 0 \end{split}$$

S-matrix: rank-one particle/hole block

$$\begin{split} U(\epsilon \neq \epsilon') &= \theta(\epsilon - \epsilon') \frac{\Gamma}{c} e^{-\frac{\Gamma}{2c}(\epsilon - \epsilon') + \frac{i}{2c}(\epsilon^2 - \epsilon'^2)} \\ N^+ &= 1 \qquad N^- = 0 \qquad N^+ - N^- = 1 \end{split}$$

No e/h pairs: Uab Uab' - Uab' Uab = 0

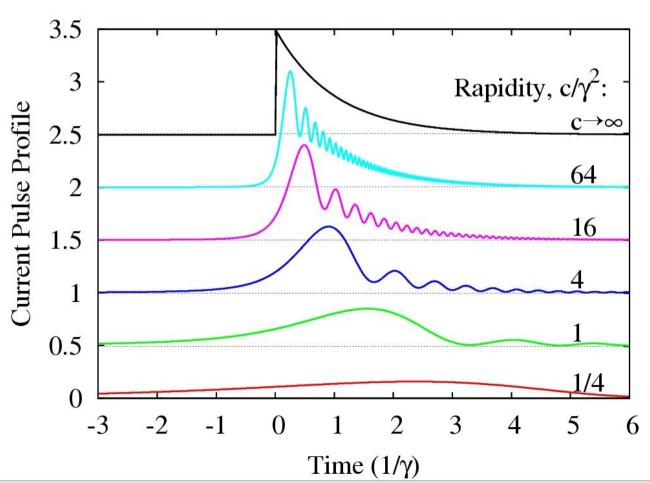
Current pulse profile at different rapidities

$$\psi(t,x) = \sqrt{\frac{\Gamma}{c}} \int_0^\infty \frac{d\epsilon}{\sqrt{2\pi}} \exp\left[-i\epsilon \left(t - \frac{x}{v_F}\right) - \frac{\Gamma\epsilon}{2c} + i\frac{\epsilon^2}{2c}\right]$$

High c: exponential profile

One-electron pulse with fringes on the trailing side

> Low c: Lorentzian profile



Energy excitation and e/h pair production suppressed by Fermi statistics

Pauli principle helps to eliminate entanglement

Use noise to measure unhappiness

- Send current pulses on a QPC (beamsplitter): The partition noise generated at QPC is a direct measure of the excitation number
- Use a periodic train of pulses, vary frequency, protocol, duty cycle, etc, to demonstrate noise minimum
- At finite temperature must have hv>kT:
 e.g. T = 10 mK, v > 200 MHz

More examples

- Harmonic driving, E(t)=E₀+cosΩt, simulates repeated linear driving;
- Linear driving + classical noise: $E(t) = ct + \delta V(t),$ $< \delta V(t) \delta V(t') > = \gamma_2 \delta(t-t')$

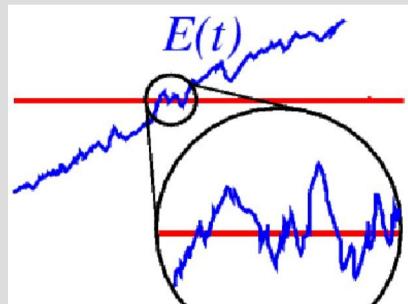
Total number of excitations:

Nex = 1 for fast driving;

$$N^{\rm ex} \approx \frac{2\gamma\gamma_2}{\pi c} \ln \frac{\omega_0}{\gamma_*}$$

for slow driving (multiple crossings of the Fermi level);

Crossover at c ~ $\gamma \gamma_2$



Slow driving

A more intuitive picture at slow driving: quasistationary time-dependent scattering phase

 $\theta(t) = \arctan((\epsilon - E(t))/\Gamma)$

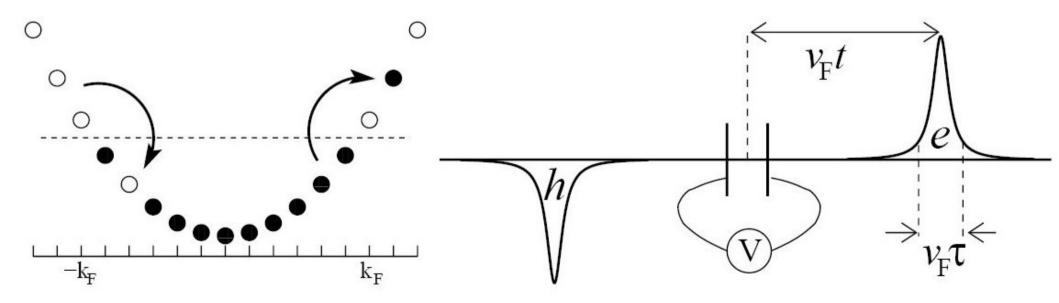
Translates into an effective time-dependent ac voltage:

 $V(t) = (h/e) d\theta/dt$

Noiseless excitation realized for Lorentzian pulses of quantized area (PRL 97, 116403 (2006))

Clean excitation by a voltage pulse

- Particle excited above E_F ;
- Other particles filling the void at $E < E_F$ (near $+k_F$);
- Undisturbed Fermi sea (no mess left behind);
- Counter-propagating hole (similar, near $-k_F$).



Minimal noise requirement

 $N_{ex} = N_e + N_h \rightarrow \min, \quad \Delta q/e = N_e - N_h = n = const$

• An interesting variational problem, solved by pulses of integer area $2\pi n$:

$$V(t) = \frac{\hbar}{e} \sum_{i=1...n} \frac{2\tau_i}{(t-t_i)^2 + \tau_i^2} \quad (\tau_i > 0)$$

Lorentzian pulses (overlapping or non-overlapping): $N_h = 0$ or $N_e = 0$ Degeneracy: $N_{ex} = n$, the same for all t_i , τ_i

WHEN DOES A UNITARY EVOLUTION EXCITES AT MOST ONE PARTICLE?

Evolve a Fermi sea, $n = \sum_{E_k < E_F} |k\rangle \langle k|$:

 $n \to UnU^{-1}, \qquad U_{+-} = (1-n)Un, \qquad U_{-+} = nU(1-n)$

Criterion: IF and ONLY IF $U_{-+} = 0$, $U_{+-} = c |\phi_+\rangle \langle \phi_-|$ a rank one matrix. Proof: $\langle k'|U|k \rangle = \langle k'|\phi_+\rangle \langle \phi_-|k \rangle$ for $E_k < E_F$, $E_{k'} > E_F$; $U_{a \to a'}U_{b \to b'} - U_{a \to b'}U_{b \to a'} = 0$, — at most one particle excited.

Transition amplitude for Lorentzian pulses $\psi(t, x) = \psi(0, x + vt)e^{i\phi(t)}$:

$$e^{i\phi(t)} = \frac{t + i\xi_k^*}{t - i\xi_k}, \quad \xi_k = \tau_k - it_k$$

Fourier transform: $\int e^{i\phi(t)+i\omega t} dt = \delta(\omega) + \sqrt{2\tau}e^{-\xi\omega}\theta(\omega)$, $\omega = E_{k'} - E_k$; Criterion fulfilled due to multiplicativity of exp!

FEATURES:

- A many body excitation which conspires to behave like a single particle;
- Direct product of e and h;
- Energy distribution width \hbar/τ inverse pulse width;
- Generalized to many pulses of equal sign. "Laughlin" algebra:

$$\prod_{k=1}^{n} e^{i\phi_k(t)} |0\rangle = \prod_{k < k'} \frac{\xi_k + \xi_{k'}^*}{\xi_k - \xi_{k'}} A_n^{\dagger} A_{n-1}^{\dagger} ... A_1^{\dagger} |0\rangle, \qquad A_k^{\dagger} = \sum_{\epsilon > E_F} e^{-\xi_k \epsilon} a_k^{\dagger}$$

Pulses of opposite sign: entangled e-h pairs and an undisturbed Fermi sea;

$$e^{-i\phi_1(t)}e^{i\phi_2(t)}|0\rangle = \frac{\xi_k - \xi_{k'}}{\xi_k + \xi_{k'}^*}A_1^{\dagger}B_2^{\dagger}|0\rangle + \frac{2\sqrt{\tau_k\tau_{k'}}}{\xi_k + \xi_{k'}^*}|0\rangle$$

• Gereralized for chiral Luttinger liquid (QHE edge state): $e \rightarrow e_* = e/m$, $\int V dt = h/e_*$ — fractional charge pulses.

Summary

- Many-body states that conspire to behave like one-particle states
- Release/trap a particle in/from a Fermi sea in a clean, noiseless way
- Single-particle source can be realized using quantum dots: a train of quantized pulses of high frequency
- Can employ particle dynamics with high Fermi velocity 10^8 cm/s to transmit quantized states in solids