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ABSTRACT Understanding the relationships between the structure (topology) and function of biological networks is a central
question of systems biology. The idea that topology is a major determinant of systems function has become an attractive and
highly disputed hypothesis. Although structural analysis of interaction networks demonstrates a correlation between the
topological properties of a node (protein, gene) in the network and its functional essentiality, the analysis of metabolic networks
fails to find such correlations. In contrast, approaches utilizing both the topology and biochemical parameters of metabolic
networks, e.g., flux balance analysis, are more successful in predicting phenotypes of knockout strains. We reconcile these
seemingly conflicting results by showing that the topology of the metabolic networks of both Escherichia coli and
Saccharomyces cerevisiae are, in fact, sufficient to predict the viability of knockout strains with accuracy comparable to flux
balance analysis on large, unbiased mutant data sets. This surprising result is obtained by introducing a novel topology-based
measure of network transport: synthetic accessibility. We also show that other popular topology-based characteristics such as
node degree, graph diameter, and node usage (betweenness) fail to predict the viability of E. colimutant strains. The success of
synthetic accessibility demonstrates its ability to capture the essential properties of the metabolic network, such as the
branching of chemical reactions and the directed transport of material from inputs to outputs. Our results strongly support a link
between the topology and function of biological networks and, in agreement with recent genetic studies, emphasize the minimal
role of flux rerouting in providing robustness of mutant strains.

INTRODUCTION

Many have suggested and debated the idea that topology

determines network function. Although structures of several

biological networks are available, it remains hard to separate

the contributions of topology from the contributions of

kinetic and equilibrium parameters. Because of their well-

established structures and the wealth of related experimental

data, the Escherichia coli and Saccharomyces cerevisiae
metabolic networks are perfect model systems to explore the

role of network topology. Is topology of a metabolic network

sufficient to predict the viability of knockout mutants?

Metabolic networks have been modeled extensively using

steady-state flux balance approaches (1–8). To test the

capabilities of metabolic network models, many groups have

compared predicted and experimentally measured effects of

gene deletions on cell growth. Among the most effective

methods are flux balance analysis (FBA) (3,4,6–9), the re-

lated minimization of metabolic adjustment (MOMA) method

(10), and elementary mode analysis (EMA) (11). Although

these methods have been shown to be useful in understand-

ing the structure and dynamics of metabolic fluxes, they

deliver different experimentally testable predictions. FBA

can accurately predict fluxes through individual reactions in

the wild-type and mutant strains as well as the viability of

single-gene knockout strains. EMA can predict the viability

of mutant strains with comparable accuracy. Because these

methods use the network topology, the stoichiometry of

metabolic chemical and transport reactions, and in some cases,

the maximal rates of some of the reactions, they cannot

separate the role of topology from the role played by other

parameters in network function. In addition, because of the

complexity of the method and the results, EMA techniques

are computationally expensive (12) and provide little insight

into why certain mutations are lethal, whereas others are

tolerated.

Here we untangle the topology and stoichiometry of the

metabolic network and show that topology alone is sufficient

to predict the viability of both E. coli and S. cerevisiae
mutant strains as accurately as FBA on large, unbiased sets

of mutants (9,13,14). This result supports the claim that

topology plays a central role in determining network func-

tion and malfunction (15,16). We employ a novel network

property, synthetic accessibility, and an intuitive and trans-

parent way of understanding the effects of metabolic muta-

tion (Fig. 1). We define synthetic accessibility, S, as the total
number of reactions needed to transform a given set of input

metabolites into a set of output metabolites and predict that

increases in S that result from alterations in the topology of

the metabolic network will adversely affect growth. The term

‘‘synthetic accessibility’’ is borrowed from the field of drug

design, where it is defined as the smallest number of chem-

ical steps needed to synthesize a drug from common labo-

ratory reactants and is similar in spirit to the ‘‘scope’’ of
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metabolites (17,18). We also demonstrate that other network

characteristics such as node degree or change in the graph

diameter are unable to predict the viability of E. coli mutant

strains better than random predictions, suggesting synthetic

accessibility is a more appropriate characteristic for networks

with directed transport, such as metabolic networks.

MATERIALS AND METHODS

Definition of synthetic accessibility

Consider a metabolic network that has access to certain inputs: substrates

consumed from the environment (e.g., sugars, oxygen, and nitrogen), with

the aim of producing certain outputs such as amino acids, nucleotides, and

other components collectively called the biomass. We define the synthetic

accessibility Sj of an output j as the minimal number of metabolic reactions

needed to produce j from the network inputs (Fig. 1). Sj is set to infinity if j

cannot be synthesized from the network inputs. Summing the synthetic

accessibility over all components of the biomass, we obtain the total

synthetic accessibility S ¼ +i Si of the biomass. We propose that if an

enzyme knockout does not change S, i.e., the biomass can be produced

without extra metabolic cost, the mutant is viable. If S ¼ N, at least one

essential component of the biomass cannot be produced from network

inputs, and therefore we predict a lethal phenotype.

Construction of the graphic metabolism model

The reactions included in the E. coli metabolic network are taken from

Edwards and Palsson (4), and the reactions included in the yeast metabolic

network are taken from Duarte et al. (8). Although there is an updated

version of the E. coli metabolic network available (6), we chose to use the

previous version to enable the comparison of synthetic accessibility perfor-

mance to previous studies (4,9–11). Each reaction and metabolite is repre-

sented as a node, and directed edges connect reactants to reactions and

reactions to products, thereby accounting for the reversibility of reactions.

Selection of input and output metabolite sets

The input metabolites for E. coli minimal medium, E. coli rich medium, and

the various yeast medium conditions are listed in Supplementary Material,

Tables S1–S4. E. coli minimal medium consists of an energy source

(glucose, acetate, glycerol, or succinate), the components of minimal medium,

a sulfur source, carbon dioxide and oxygen, nicotinamide mononucleotide,

and the regulatory protein thioredoxin (Supplementary Material, Table S1).

The input metabolites are chosen to match the real composition of minimal

medium as closely as possible. Nicotinamide mononucleotide and thiore-

doxin are included to ensure that, in the wild-type network, all components

of the output biomass are accessible. They are chosen specifically because

they are the most upstream metabolites of the biomass synthesis pathways.

E. coli rich medium consists of all the metabolites in minimal medium

along with biotin, riboflavin, pantoate, pyridoxine, thiamin, dihydrofolate,

p-aminobenzoic acid, all 20 amino acids, and the three nucleotide bases

included as external metabolites in the metabolic network (external thymine

was not in the metabolic network). Rich medium is difficult to model

accurately, but using slightly different input metabolite sets has no

significant effect on the results (results not shown).

The input metabolites for yeast are all based on the descriptions in Duarte

et al. (8) and include histidine, leucine, and uracil to compensate for the

deletions of the His-3/Leu-2/Ura-3 in the mutant strains. Additionally,

thioredoxin (oxidized), H1 (in the endoplasmic reticulum), NADPH (in the

endoplasmic reticulum), and dolichol are included as inputs, for without

them, some of the components of biomass are not producible, even in the

wild-type network.

The E. coli output metabolites are taken from the components of E. coli

biomass (Supplementary Material, Table S5) (19). The yeast output metabo-

lites are the components of the biomass reaction reported in (8).

Synthetic accessibility algorithm

To determine the synthetic accessibility of the outputs given the inputs, we

use a type of iterative breadth-first search, similar to the previously described

‘‘forward-firing’’ (Fig. 1) (20). The algorithm starts by examining all the

reactions that require one of the given input metabolites as a reactant. It then

marks the reactions for which all the reactants are available ‘‘accessible’’

and marks all the metabolites produced by these reactions ‘‘accessible’’ as

well. The algorithm examines all the reactions that require one of the newly

marked metabolites as a starting material, determines whether each reaction

is accessible or not based on the availability of its reactants, and so on until

no new metabolites are marked accessible. Concurrently, the number of

steps needed to reach each accessible metabolite j, its synthetic accessibility

Sj, is recorded; the synthetic accessibility of the network S is calculated by

summing the synthetic accessibilities of all outputs.

Comparison to experimental results

To compare the results of our approach to the experimental data sets, we first

create an adjacency matrix, which represents the wild-type metabolic net-

work topology. Then, for each mutant strain, we create a ‘‘mutated’’ adja-

cency matrix by removing all the reactions catalyzed by the gene. For all

FIGURE 1 An illustration of the synthetic accessibility approach. In this

representation of the metabolic network, circular nodes represent metabo-

lites, rectangular nodes represent reactions, and directed edges indicate their

relationships. Nodes with a thick outline (green or blue) are synthetically

accessible, and nodes with a thin outline (red or orange) are not accessible.

The algorithm begins by identifying all the reactions that neighbor the input

metabolites (nodes A–D) and marking the reactions for which all the

reactants are available as accessible (reactions 1 and 2). All the products of

these reactions are marked accessible (nodes F–H). The algorithm then

examines the neighboring reactions of the newly marked metabolites as in

the first step and continues until no new metabolites are marked accessible.

The inset demonstrates what happens if the gene that produces the enzyme

that catalyzes reaction 2 were deleted: metabolites H and K and reaction 5

would not be accessible any more. We define synthetic accessibility, S, as

the number of reactions required to transform a set of inputs into a set of

outputs. Synthetic accessibility is analogous to the diameter of a directed

graph, but in contrast to graph diameters, synthetic accessibility takes into

account the branching nature of chemical reactions and the purpose of

metabolic networks, to produce outputs from inputs.
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E. coli predictions, as per the previous papers, we delete all corresponding

genes for reactions catalyzed by multiple isozymes. We then calculate the

viability of each mutant and compare the results to the experimental data (see

Supplementary Material). If Smutant ¼ Swild-type, we predict that the mutant is

viable; else we predict it is inviable. In the E. coli insertional mutant data set,

phenotype data are given as competitive growth rates. A mutant is

considered negatively selected (or inviable) if there was a twofold decrease

in growth rates over 30 generations (9). For the Gerdes et al. data set (21), we

create mutated adjacency matrices only for genes included in the metabolic

network model, resulting in 598 mutated adjacency matrices. For the yeast

experimental data, we use the preprocessed data set created in Duarte et al.

(8) and do not simultaneously delete isozymes.

Calculation of other topology-based predictions

We explore a number of other topology-based measures as predictors of

E. coli mutant viability, including node degree, diameter, and node usage.

The degree of each enzyme is calculated by summing the degrees of all the

reactions catalyzed by the enzyme and its isozymes. We define network

diameter as the sum of all metabolites versus all metabolites’ shortest paths,

and for each mutant, we calculate the change in network diameter from wild-

type. We define node usage for each enzyme as the number of times the

reactions catalyzed by each enzyme are used to produce biomass in the wild-

type strain, according to the synthetic accessibility approach, which is

essentially analogous to betweenness (22,23). For each measure, degree,

diameter, and usage, we predict an enzyme to be essential (and, therefore,

the corresponding mutant stain to be inviable), when the measure is greater

than a given cutoff. We then vary the cutoff over the entire range of possible

values to find a value that gives an optimal performance, as measured either

by accuracy or significance of the x2 statistic.

Quantitative analysis of performance

To assess the performance of synthetic accessibility and other methods in

predicting the phenotype of mutant stains, we use four measures: accuracy,

sensitivity, specificity, and the p-value of the x2 statistic. We define accuracy

as (TP 1 TN)/(TP 1 TN 1 FP 1 FN), where TP is the number of true

positives, TN is the number of true negatives, FP is the number of false

positives, and FN is the number of false negatives. We define positives and

negatives in terms of the experimentally measured phenotypes, where

positives are viable strains and negatives are inviable strains, though the

assignment is arbitrary and may be reversed. In a similar fashion, we define

sensitivity as TP/(TP 1 FP) and specificity as TN/(TN 1 FN). To calculate

the x2 statistic, we use two-by-two contingency tables that sort each mutant

strain based on the in silico and in vivo phenotypes and then calculate the

appropriate p-value.

Assessment of synthetic accessibility robustness

To test the robustness of our approach, we introduce random mistakes into

the E. coli network by randomly reassigning a certain fraction of enzymes to

unrelated reactions. We then measure the performance of synthetic acces-

sibility in the erroneous network by plotting accuracy against the percentage

of shuffled assignments.

RESULTS

Performance of synthetic accessibility on the
E. coli metabolic network

To study the performance of synthetic accessibility in

predicting viability of knockout strains and compare it to

previous studies, we first applied the method to the E. coli
metabolic network. We initially tested it on two data sets

used in previous studies: a large, unbiased data set of

insertional (transposon-induced) mutants (9) and a smaller

data set collected for FBA analysis (4), which mainly

contained knockouts of enzymes involved in central metab-

olism. All mutants were grown on minimal medium. We

used these data sets specifically because they were used in

previous studies (4,9–11), to which we compared our results.

We also used the union of these data sets and refer to it below

as the combined data set. When applied to the combined data

set, our approach performed as well (62% accuracy, p¼ 63

10�8) as the FBA approach (62%, p ¼ 33 10�8) (see Table

1, Fig. 2 for details). On the large data set of 487 insertional

mutants (9), the synthetic accessibility approach performed

as well (60% accuracy, p ¼ 3 3 10�5) as the FBA and

MOMA approaches (58% and 59% accuracy, p ¼ 1 3 10�3

and 1 3 10�4, respectively), with a somewhat higher

statistical significance. On a smaller data set of 79 mutants

(4), FBA correctly predicted 86% of the cases, whereas our

topology-based synthetic accessibility approach had 71%

accuracy, providing correct predictions for 53/68 ¼ 78% of

the cases predicted correctly by FBA.

The difference in the performance of the synthetic

accessibility approach as compared to FBA between the

first two data sets is probably related to the way the data sets

were interpreted and the cases included in the data sets. In the

smaller data set, the mutant strains are classified as viable or

inviable, whereas in the insertional data set, the mutants are

labeled as negatively selected (the population of the mutant

strain is less than one-half the wild-type population after 30

generations of competitive growth) or not negatively selected.

Because the synthetic accessibility approach deems a mutant

strain inviable or negatively selected based on the path

TABLE 1 Comparison of the accuracy and statistical significance of the FBA, MOMA, EMA, and synthetic accessibility methods

applied to the E. coli metabolic network

Method

Mutant data source No. of cases Synthetic accessibility FBA MOMA EMA

Collected from literature 79 71%, 8 3 10-5* 86%, 7 3 10�11 (4) � 90%, 3 3 10�14 (11)

Insertional mutants 481 60%, 3 3 10�5 58%, 1 3 10�3 (9) 59%, 1 3 10�4 (10) –

Combined data sets 560 62%, 6 3 10�8 62%, 3 3 10�8 – –

Gerdes data set 598 74%, 1 3 10�5 – – –

*Accuracy, p-value of x2 statistic.
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lengths from inputs to outputs and the accessibility of outputs,

the latter classification scheme may correspond more closely

to the synthetic accessibility approach: longer path lengths

may correspond to reduced growth rates rather than invia-

bility.

The number and type of data points included in the data

sets are also different. The insertional data set is much larger

(487 vs. 79 data points) and includes a fairly random col-

lection of insertions in metabolic genes, whereas the smaller

data set contains data about only the enzymes used in the

central metabolism (glycolysis, pentose phosphate pathway,

citric acid cycle, respiration processes) (4). Because the

central metabolism contains a number of alternate pathways,

some of which may require fewer steps than the commonly

used pathways, it is not surprising that the synthetic acces-

sibility approach performs more poorly than FBA when

applied to the smaller data sets.

In regard to the combined data set, synthetic accessibility

had greater sensitivity, indicating that it was better than FBA

or MOMA at predicting strains that are viable, but it had

lower specificity, indicating that it was not as good at

predicting inviable strains (Figs. 3 and 4). The success of

synthetic accessibility on the combined data set demonstrates

three important results, making transparent the difference

between most of viable and nonviable strains.

1. Most nonviable mutants simply lack a pathway to

synthesize some of their biomass components (S ¼ N),

i.e., one of essential metabolites cannot be produced from

the network inputs (Table 2).

2. Our approach correctly predicted that most strains with

longer rerouted pathways are inviable, suggesting that

rerouting of metabolic fluxes plays a small role in rescuing

mutant strains. This result is consistent with results of

FBA analysis of yeast mutants (24).

3. Most viable mutants have either untouched primary

synthetic pathways or only short rerouting (e.g., because

of isozymes).

Although it has not been used in previous FBA studies, we

also applied the synthetic accessibility approach to the large-

scale knockout study by Gerdes et al. (21), which identified

genes essential for robust growth on rich medium using a

genetic footprinting technique based on transposon-based

mutagenesis. The synthetic accessibility approach performed

well on this data set (74% accuracy, p ¼ 1 3 10�5).

Performance of synthetic accessibility on the
yeast metabolic network

To ensure that the success of the synthetic accessibility

method was not limited to the E. coli metabolic network, we

tested the method on the metabolic network of S. cerevisiae,
another metabolic network that has been reconstructed by

hand (8). This reconstruction has been extensively validated

by the use of FBA to predict the phenotypes of a large

number of single-gene knockout yeast strains grown under a

variety of conditions (13,14). The conditions include glucose

minimal medium (MMD) and rich medium with a defined

FIGURE 2 Performance of synthetic accessibility as compared to FBA, MOMA, EMA, and other topology-based measures using the E. coli metabolic

network. The graphs illustrate the relative performance of the techniques using two measures, accuracy, (TP1 TN)/(TP1 TN1 FP1 FN), and the negative

log of the x2 statistic’s p-value, which indicates the correlation between the in silico predictions and the in vivo observations of E. coli mutant strain viability.

The x2 statistic is calculated using a contingency table like the ones in Fig. 3 for the smaller data set (79 data points, 90 data points for EMA), the insertional

mutant data set (487 data points), and the combined data set (560 data points) (4,9,11). When the larger, more representative insertional mutant data set or the

combined data set is used, synthetic accessibility is as accurate and statistically significant as for FBA. However, synthetic accessibility performs more poorly

on the smaller data set, probably because this data set has few data points and only covers central metabolism, a small fraction of the whole metabolic network.

The other topology-based measures, degree and diameter, perform worse than FBA, MOMA, EMA, and synthetic accessibility, indicating that they poorly

characterize the functioning of the metabolic network. The random predictions are made using the expected values produced for the FBA x2 test and represent

the expected performance if there were no correlation between the in silico and in vivo predictions. They vary very little if the expected values for the other

x2 tests are used.
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carbon source (YPGal, galactose; YPD, glucose; YPDGE,

glucose-ethanol-glycerol, YPG, glycerol; YPE, ethanol; and

YPL, lactate). Sets of essential and slow-growth genes were

also identified experimentally as either genes for which

mutant strains could not be constructed or genes that pro-

duced slow-growing mutant strains on rich (YPD) medium.

The results (Table 3) for all the gene sets show, except the

essential and slow sets, that synthetic accessibility performs

comparably to FBA. When all the conditions are considered

simultaneously, synthetic accessibility predicts phenotype

with 83.7% accuracy, as compared to FBA with 82.6%

accuracy.

We believe that the higher overall accuracy of synthetic

accessibility and FBA when applied to the yeast metabolic

network is probably largely a result of the way the data sets

were used. For all the E. coli data sets, predictions were made

only for knockout strains that involved genes that were

included in the metabolic network model. For the yeast data

sets, following the protocol of the previous FBA study (8),

we made predictions for all strains, whether the gene was

included in the metabolic network model or not. Because

most genes are nonessential, and we predict knockouts of

genes absent from the metabolic network model to be viable,

this inflates the accuracy. We also report the accuracies for

predictions of only metabolic gene knockouts in Table 3, and

the accuracies are even higher in most cases.

Performance of other topology-based measures
on the E. coli metabolic network

We tested the ability of other topology-based graph charac-

teristics, such as node degree, graph diameter, and node

usage (see Materials and Methods), to predict the viability of

FIGURE 4 Plot of sensitivity and specificity for synthetic accessibility

(SA) and other prediction methods. For the combined E. coli data set (560

data points), sensitivity, TP/(TP 1 FP), and specificity, TN/(TN 1 FN), are

calculated for the predictions made using synthetic accessibility, FBA,

degree, and diameter. The cutoff values for degree and diameter are selected

to minimize the x2 test p-value. The random values are calculated using the

expected values calculated for the x2 test for FBA and are essentially the

same if the values for synthetic accessibility are used instead. Though both

degree and diameter give good sensitivity, their specificity is quite low. Both

synthetic accessibility and FBA have more moderate values for sensitivity

and specificity. In all cases, the sensitivity is always greater, implying the

viable predictions are more reliable than the inviable predictions, as can also

be seen in Fig. 3.

TABLE 2 E. coli mutants predicted to be inviable by

synthetic accessibility approach in the combined data set,

divided by reason for predicting inviability

Reason for predicting inviability Correct (percent) Incorrect (percent)

No. of accessible outputs ,

wild-type (S ¼ N)

89 (59%) 63 (41%)

S . wild-type 10 (67%) 5 (33%)

FIGURE 3 Results of the synthetic accessibility approach, divided by type of prediction. These contingency graphs allow the exploration of the types of

errors that are most common. Results are reported for (A) the combined E. coli data set, (B) the Gerdes et al. (21) E. coli data set, and (C) the combined yeast

data set (metabolic genes only). The x axis represents the phenotypes predicted by the synthetic accessibility method, and the y axis represents the experimental

phenotypes. The green blocks correspond to cases where prediction matches experiment, and the red, hashed blocks correspond to errors. The area of each box

is proportional to the number of cases in each category. From this diagram, we can see that the most common type of error is when the synthetic accessibility

approach predicts the mutant viable when it is actually inviable.
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E. coli mutant strains. Several studies have suggested that

nodes that have higher degrees are more important for the

network, and removal of such nodes in biological networks

is more likely to lead to a lethal phenotype (15,16). To test

this hypothesis, we computed the degree of each enzyme as

the number of metabolites participating in reactions cata-

lyzed by this enzyme. A strain was predicted to be inviable if

the degree of the knocked-out enzyme was above a certain

cutoff. Fig. 2 shows that for an optimized cutoff value, this

procedure predicts viability worse than a random prediction.

Several theoretical studies have focused on graph diameter

as a measure of network performance, defining a graph

diameter as a mean of shortest paths between every pair of

nodes (15,25,26). To test graph diameter as a predictor of

viability, we predicted a mutant to be inviable if increase in

graph diameter exceeded a cutoff. Fig. 2 shows that, similar

to node degree, graph diameter did not perform any better

than random predictions.

Similarly, we tested another topology-based measure,

enzyme usage, which is defined as the number of times the

reactions catalyzed by each enzyme are used to produce

biomass in the wild-type strain according to the synthetic

accessibility approach. Enzyme usage is analogous to node

betweenness, which is the number of shortest paths between

all pairs of nodes that go through the node (22,23). Enzyme

usage performed somewhat better than random predictions

but worse than synthetic accessibility, which is not surprising

because it basically used a subset of the data produced by the

synthetic accessibility approach.

In summary, popular topology-based measures performed

more poorly than synthetic accessibility. Moreover, node

degree and diameter are no more accurate than simply pre-

dicting that all the mutants are viable, which gives an accu-

racy of 53.8%, and although node usage performed better

than node degree and diameter, it was a worse predictor than

the synthetic accessibility (see Supplementary Material).

These characteristics ignore essential properties of a

metabolic network, directionality and branching of reactions,

and directed transport of material from cellular substrates

(sugars, oxygen, etc.) to products (biomass). Synthetic

accessibility, in contrast, takes into account these properties

of the metabolic network. As such, synthetic accessibility

can be thought of as a generalization of the concept of graph

diameter for directed transport networks. Although certain

topological characteristics such as node degree and diameter

can be predictive in information-carrying networks (e.g., the

Internet, protein–protein interaction networks), our results

suggest that other characteristics such as synthetic accessi-

bility are more appropriate for transport in directed networks,

such as metabolic networks.

Robustness of synthetic accessibility

Metabolic networks are almost always incomplete and may

contain some errors. To study how predictions made using

synthetic accessibility depend on some errors in the network,

we performed a robustness analysis using the E. coli meta-

bolic network. Errors were modeled by random reassignment

of certain percentages of enzymes to different reactions. Fig.

5 shows how the accuracy of prediction decreased with

increased fraction of introduced mistakes. The method

tolerated assignment error rates of 5–10%, but the accuracy

TABLE 3 Accuracy of the synthetic accessibility and FBA methods for predicting viability of yeast deletion strains

Data set

Essential Slow MMD YPGal YPD YPDGE YPG YPE YPL All

No. of cases 118 83 564 564 565 565 565 565 565 4154

FBA (8) 31.4% 19.3% 84.0% 85.6% 84.4% 85.3% 86.5% 85.7% 86.4% 82.6%

Synthetic accessibility 11.9% 1.20% 94.0% 97.2% 85.3% 84.4% 83.7% 84.1% 84.1% 83.7%

No. of cases (only metabolic enzymes) 100 45 459 459 462 462 462 462 462 3373

FBA 33.0% 4.44% 95.0% 97.6% 87.9% 87.9% 89.2% 87.4% 88.3% 87.6%

Synthetic accessibility 14.0% 2.22% 94.3% 96.9% 88.5% 88.3% 89.0% 88.7% 88.7% 87.1%

FIGURE 5 Accuracy of the synthetic accessibility approach with a

percentage of enzyme-reaction assignments shuffled. To assess the robust-

ness of the synthetic accessibility method to errors in the topology of the

E. coli metabolic network, we randomly shuffle a given percentage of the

assignments between enzymes and reactions and calculate the accuracy of

the synthetic accessibility method for 10 trials. We plot average accuracy

against the percentage of assignments shuffled, with the error bars noting the

minimum and maximum observed accuracy. The horizontal line denotes the

accuracy of predicting all mutants to be viable, the best expected result in a

random network. The approach is relatively robust to random errors in the

enzyme-reaction assignments, although there is a clear and expected trend

toward lower accuracy and great variability in accuracy as the number of

shuffled assignments increases.

Topology-Based Metabolic Predictions 2309

Biophysical Journal 91(6) 2304–2311



dropped to the level of random predictions when ;50% of

enzyme-reaction assignments were shuffled.

DISCUSSION

In this study, we show that the topology and function of the

metabolic network are intimately related. By introducing a

novel topology-based measure, synthetic accessibility, we

were able to correctly predict viability of 443 of 598 mutant

E. coli strains from a comprehensive, reliable data set (21)

and 3477 of 4154 mutant yeast strains grown under several

conditions (13,14). Synthetic accessibility, S, is essentially a

network diameter specifically tailored for transport networks,

and we show that an increase in S is correlated to an inviable
phenotype. A significant increase in S on mutation suggests

increased metabolic costs, leading to reduction of the growth

rate or death. The apparent success of synthetic accessibility

can only be attributed to the contribution of network

topology because no other information has been used in

these predictions.

Synthetic accessibility can be rapidly computed for a given

network, has no adjustable parameters, and, in contrast to

FBA, MOMA, and EMA, does not require the knowledge of

stoichiometry or maximal uptake rates for metabolic and

transport reactions. On the E. coli insertional data set, the

accuracy of the synthetic accessibility approach is comparable

to those of FBA and MOMA. The performance of synthetic

accessibility as compared to FBA and EMA on the smaller E.
coli data set is worse, but this smaller data set only has data for

mutants affecting the central metabolism and therefore may

be biased, whereas the large data set of insertional mutants is

fairly unbiased and representative. Synthetic accessibility

also performs comparably to FBA on the yeast data sets.

Unlike FBA, synthetic accessibility also does not assume

optimality with regard to biomass production. But our model

assumes that long rerouted fluxes are less efficient than native

ones, predicting mutants with longer fluxes (larger synthetic

accessibility) as inviable. Although this assumption fails in

certain cases, the similar success rates of FBA and our ap-

proach suggest that this assumption holds true for vast ma-

jority of mutant strains. We conclude, in agreement with recent

studies (24,27), that rerouting does not contribute signifi-

cantly to robustness of knockout mutants.

Similar accuracy achieved by techniques based on flux

balance and synthetic accessibility points at the network topol-

ogy as a primary determinant of the viability predictions of

FBA and MOMA. Although our results suggest that network

topology is sufficient to predict strain viability and that the use

of stoichiometric coefficients and flux balances does not im-

prove prediction accuracy,more detailed predictionof thefluxes

in individual reactions by FBA/MOMAdoes require the knowl-

edge of stoichiometric coefficients and maximal uptake rates.

Importantly, both flux balance and synthetic accessibility

fail to predict viability of a significant number of mutants.

Analysis of incorrect predictions in E. coli (see Supplemen-

taryMaterial) demonstrateswell-known complexities ofmetab-

olism: the metabolic pathway used to produce a specific

product is not always the shortest one; the system cannot be

completely characterized by sets of input and output meta-

bolites. Similar rates of failure of flux balance techniques

suggest the importance of regulation in adaptation to muta-

tions and the possible role of yet undiscovered metabolic and

transport reactions.

We also explore other popular network characteristics

such as graph diameter, node degree, and betweenness (usage)

as predictors of mutant viability. Our results demonstrate that

these characteristics fail to predict mutants’ viability. We

conclude, in agreement with a recent similar study (28), that

node degree cannot be used to predict viability of metabolic

knockout strains.

The lack of predictive utility of node degree and graph

diameter in metabolic networks is easy to understand. Both

concepts have been widely applied to information exchange

networks, such as the Internet and social networks, where every

pair of nodes can potentially interact. On the contrary, the

metabolic network is a transport network where products are

beingsynthesized froma set of initial substrates. Performance of

such a network is determined by its ability to synthesize pro-

ducts, and hence, paths from inputs to final products are of

central importance, in contrast to diameter, where every pair of

nodes is considered. Because chemical reactions can require

more thanone substrate to yield a product, the linear pathused in

information networks needs to be replaced by a tree of all

required substrates. Considering these aspects naturally leads to

the concept of synthetic accessibility to study metabolic and

similar transport networks, e.g., signaling networks, which are

also webs of reactions, in which the input is a chemical or

physical stimulus and the output is a group of chemical re-

sponses to the stimulus. Synthetic accessibility defined this way

is a generalization of graph diameter for directed, branching

chemical reactions in an input–output transport network.

In summary, we show that the topology of the metabolic

network is central in determining the viability of mutant

strains, and the success ofwidely usedflux balance techniques

in predicting viability should be primarily attributed to

topology. The addition of stoichiometric and other parameters

does not significantly improve the accuracy of predictions,

though they may be used by FBA to predict fluxes in in-

dividual reactions. We introduce the concept of synthetic

accessibility, which allows fast, accurate, and easily inter-

pretable analysis of metabolic networks. Our results suggest

that rerouting of metabolic fluxes plays a minimal role in

providing viability of mutant strains. Importantly, our results

strongly support the central role of network topology in

determining phenotypes of biological systems.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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