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ABSTRACT Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as
transcription, replication, and recombination. In the process of recognition, a protein rapidly searches for its specific site on
a long DNA molecule and then strongly binds this site. Here we aim to find a mechanism that can provide both a fast search (1–
10 s) and high stability of the specific protein-DNA complex (Kd ¼ 10�15–10�8 M). Earlier studies have suggested that rapid
search involves sliding of the protein along the DNA. Here we consider sliding as a one-dimensional diffusion in a sequence-
dependent rough energy landscape. We demonstrate that, despite the landscape’s roughness, rapid search can be achieved if
one-dimensional sliding is accompanied by three-dimensional diffusion. We estimate the range of the specific and nonspecific
DNA-binding energy required for rapid search and suggest experiments that can test our mechanism. We show that optimal
search requires a protein to spend half of its time sliding along the DNA and the other half diffusing in three dimensions. We also
establish that, paradoxically, realistic energy functions cannot provide both rapid search and strong binding of a rigid protein. To
reconcile these two fundamental requirements we propose a search-and-fold mechanism that involves the coupling of protein
binding and partial protein folding. The proposed mechanism has several important biological implications for search in the
presence of other proteins and nucleosomes, simultaneous search by several proteins, etc. The proposed mechanism also
provides a new framework for interpretation of experimental and structural data on protein-DNA interactions.

INTRODUCTION

The complex transcription machinery of cells is primarily

regulated by a set of proteins, transcription factors (TFs), that

bind DNA at specific sites. Every TF can have from one to

several dozens of such specific sites on the DNA. Upon

binding to the site, TF forms a stable protein-DNA complex

that can either activate or repress transcription of nearby

genes, depending on the actual control mechanism. Fast and

reliable regulation of gene expression requires 1), fast (;1–

10 s) search and recognition of the specific site (referred to as

the target or cognate site below) out of 106–109 possible sites
on the DNA; and 2), stability of the protein-DNA complex

(Kd ¼ 10�15–10�8 M). Despite its apparent simplicity, such

a mechanism is not understood in depth, either qualitatively

or quantitatively. Here we focus on a simpler case of bacterial

TFs recognizing their cognate (target) sites on the naked

DNA. Needless to say, eukaryotic protein-DNA recognition

is significantly complicated by chromatin packing of the

DNA and the multisubunit structure of the TFs. Interestingly,

similar problems of specific binding and binding rates arise in

the context of oligonucleotides-DNA binding (Lomakin and

Frank-Kamenetskii, 1998).

Vast amounts of experimental data available these days

provide the structures of protein-DNA complexes at atomic

resolution in crystals and in solution (Luscombe et al., 2000;

Bell and Lewis, 2001, 2000; Lewis et al., 1996; Schumacher

et al., 1994), binding constants for dozens of native and

hundreds of mutated proteins (Takeda et al., 1989; Grillo

et al., 1999), calorimetry measurements (Spolar and Record,

1994), and novel single-molecule experiments (Shimamoto,

1999). These experimental data contributed most signifi-

cantly to our present understanding of protein-DNA in-

teraction since the early work of von Hippel and co-workers.

In a series of pioneering articles (Berg et al., 1981; Winter

et al., 1989; von Hippel and Berg, 1989; Berg and von

Hippel, 1987), they created a conceptual basis for describing

both the kinetics and thermodynamics of protein-DNA

interaction, which has since become a starting point for

practically every subsequent theoretical work on the subject.

We start by reviewing the history of the problem and

describing the paradox of the faster-than-diffusion associa-

tion rate. Next, we present the classical model of protein-

DNA sliding and explain how this model can resolve the

paradox. We outline the problem that the sliding mechanism

faces if the energetics of protein-DNA interactions are taken

into account. Next we introduce our novel quantitative

formalism and undertake an in-depth exploration of possible

mechanisms of protein-DNA interaction.

Faster-than-diffusion search

The problem of how a protein finds its target site on DNA has

a long history. In 1970, Riggs et al. (1970a,b) measured the

association rate of LacI repressor and its operator on DNA as

;1010 M�1 s�1. This astonishingly high rate (as compared to

other biological binding rates) was shown to be much higher

than the maximal rate achievable by three-dimensional
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diffusion. In fact, if a protein binds its site by three-

dimensional diffusion, it has to hit the right site on the DNA

within b ¼ 0.34 nm. A shift by 0.34 nm would result in

binding a site that is different from the native site by 1 bp.

Such a site can be very different; e.g., GCGCAATT versus

CGCAATTC. Using the Debye-Smoluchowski equation for

the maximal rate of a bimolecular reaction (see e.g., Richter

and Eigen, 1974; Flyvbjerg et al., 2002; Bruinsma, 2002),

with a protein diffusion coefficient of D3d ;10�7 cm2 s�1

(Elowitz et al., 1999) we get

kDS ¼ 4pD3Db; 10
8
M

�1
s
�1
: (1)

This value for the association rate, relevant for in vitro

measurements, corresponds to target location in vivo on a

timescale of a few seconds, when each cell contains up to

several tens of TF molecules.

To resolve the discrepancy between the experimentally

measured rate of 1010 M�1 s�1 and the maximal rate of

108 M�1 s�1 allowed by diffusion, Richter and Eigen (1974),

and later Berg et al. (1981) and von Hippel and Berg

(1989), suggested that the dimensionality of the problem

changes during the search process. They concluded that, while

searching for its target site, the protein periodically scans the

DNA by sliding along it.

Sliding along the DNA

If a protein performs both three-dimensional and one-

dimensional diffusion, then the total search process can be

considered as a three-dimensional search followed by

binding DNA and a round of one-dimensional diffusion.

Upon dissociation from the DNA, the protein continues

three-dimensional diffusion until it binds DNA in a different

place, and so on. Some experimental evidence supports this

search mechanism. These include affinity of the DNA-

binding proteins for any fragment of DNA (nonspecific

binding), single molecule experiments where one-dimen-

sional diffusion has been observed and visualized, and

numerous other experiments where the rate of specific

binding to the target site has been significantly increased by

lengthening nonspecific DNA surrounding the site (Kim

et al., 1987). What are the benefits and the mechanism of

one-dimensional diffusion and what limits the search rate?

Here we address this question and consider possible

search mechanisms that involve both one-dimensional and

three-dimensional diffusion, where one-dimensional diffu-

sion along the DNA proceeds along the rough energy

landscape. Quantitative analysis of the search process

brought us to the following four main results:

1. When the roughness of the binding energy landscape is

*2 kBT, the diffusion along the DNA becomes extremely

slow, with the protein unable to diffuse more than a few

basepairs. The total search process is prohibitively slow.

2. If the search proceeds by a combination of one-

dimensional and three-dimensional diffusion, nonspecific

binding to the DNA plays a very important role in

controlling the balance between these two processes. The

optimal energy of nonspecific binding can provide the

maximal search rate. Although faster than either three-

dimensional or one-dimensional search alone, optimal

combination of three-dimensional and one-dimensional

diffusion cannot expedite the search if the roughness of

the landscape is *2 kBT.
3. Experimentally observed and biologically relevant rates

of search can be reached only when one-dimensional

sliding proceeds through a fairly smooth landscape with

a roughness of the order of kBT.
4. Paradoxically, the stability of the protein-DNA complex at

the target site requires a roughness of the binding energy

landscape considerably larger than kBT. Rapid search,

however, by one-dimensional/three-dimensional diffusion

is impossible at such a roughness.

Finally, we formulate this search-speed/stability paradox

and suggest a search-and-fold mechanism that can resolve it.

The paradox can be resolved if the DNA-binding protein has

two distinct (conformational) states in which it exhibits two

modes of binding. In the first, which is the mode that has

weaker binding and a smoother landscape, it searches for its

site. In the second (recognition) mode, which has larger

roughness of the binding landscape, the protein tightly binds

DNA sites. Correlation between the energy landscapes in the

two modes and the energy difference and the barrier between

the two protein conformations controls the frequency of

transition between the two modes and provides effective

preselection of low-energy sites.

We suggest that these modes correspond to two distinct

conformational states of the protein-DNA complex (a

relatively open complex in the search mode, and a tighter

complex in the recognitionmode). Transition between the two

states can include partial folding of the protein, water

extrusion, change in the DNA conformation, etc. Focusing

on the conformation of the protein, and without loss of

generality, we consider a partially unfolded (disordered)

conformation and the folded conformation bound to the

cognate site as the two conformations required by our model.

In fact, a protein in the partially unfolded conformation may

have fewer and/or weaker interactions with DNA allowing

rapid sliding. Folded conformation, in turn, provides stronger

and more specific interactions required for tight binding.

We also quantify the requirements of this two-mode

mechanism to provide both rapid search and stability.

Structures of known DNA-binding proteins are known to

be flexible and have been reported to exhibit two or more

distinct binding modes. This two-state mechanism also

agrees well with the results of calorimetric experiments.

The proposed search-and-fold mechanism is not limited to

the protein-DNA interaction; it also provides a general
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framework for protein-ligand binding and demonstrates the

advantages of induced folding, a common theme in

molecular recognition.

THE MODEL

Search time

In our model, the search process consists of N rounds of one-dimensional

search (each takes time of t1d,i, i ¼ 1. . .N) separated by rounds of three-

dimensional diffusion (t3d, i). The total search time ts is the sum of the times

of individual search rounds,

ts ¼ +
N

i¼1

ðt1d;i 1 t3d;iÞ: (2)

The total number N of such rounds occurring before the target site is

eventually found is very large, so it is natural to introduce probability

distributions for the essentially random entities in the problem. The first

obvious simplification that can be made without any loss of rigor is to replace

t3d,i by its average t3d. Each round of one-dimensional diffusion scans

a region of n sites (where n is drawn from some distribution p(n)). The time,

t1d(n), that it takes to scan n sites can be obtained from the exact form of the

one-dimensional diffusion law (see Appendix A). If, on average, �nn sites are

scanned in each round, then the average number of such rounds required to

find the site of lengthM on DNA is N ¼ M=�nn: Using average values, we get

a total search time of

tsð�nn;MÞ ¼ M

�nn
½t1dð�nnÞ1 �tt3d�: (3)

From Eq. 3 it is clear that, in general, tsð�nn;MÞis large for both very small and

very large values of �nn: In fact, if �nn is small, so few sites are scanned in each

round of the one-dimensional search that a large number of such rounds

(alternating with rounds of three-dimensional diffusion) are required to find

the site. On the other hand, if �nn is large, lots of time is spent scanning a single

stretch of DNA, making the search very redundant and inefficient. An

optimal value, �nnopt; should exist, which provides little redundancy of one-

dimensional diffusion and a sufficiently small number of such rounds. For

a given diffusion law t1d(n), function tsð�nn;MÞ can be minimized producing

�nnopt; the optimal length of DNA to be scanned between the association and

the dissociation events. (Naturally, we assume here that t1dð�nnÞ grows with �nn

at least as Oð�nn11aÞ; with a . 0.)

Protein-DNA energetics

While diffusing along DNA, a TF experiences the binding potential Uðs~Þ of
every site s~it encounters. The energy of protein-DNA interactions is usually

divided into two parts—specific and nonspecific (Berg and von Hippel,

1987; Gerland et al., 2002),

Ui ¼ Uðs~¼ si; . . . si1l�1Þ1Ens; (4)

—where s~ describes a binding DNA sequence of length l. As its name

suggests, the nonspecific binding energy Ens arises from interactions that do

not depend on the DNA sequence that the TF is bound to, e.g., interactions

with the phosphate backbone. The specific part of the interaction energy

exhibits a very strong dependence on the actual nucleotide sequence. Here

and below we use the term energy to refer to the change in the free energy

related to binding DGb. This free energy includes the entropic loss of

translational and rotational degrees of freedom of the protein and amino

acids’ side chains, the entropic cost of water and ion extrusion from the DNA

interface, the hydrophobic effect, etc.

The energy of specific protein-DNA interactions can be approximated by

a weight matrix (also known as PSSM, or profile) where each nucleotide

contributes independently to the binding energy (Berg and von Hippel,

1987),

Uðs~¼ si; . . . si1l�1Þ ¼ +
l

j¼1

eðj; sjÞ; (5)

where sj is a basepair in position j of the site and e(j, x) is the contribution of

basepair x in position j. Most of the known weight matrices of TFs e(j, sj)

give rise to uncorrelated energies of overlapping neighboring sites, obtained

by one basepair shift (Gerland et al., 2002). Fig. 1 presents distributions of

the sequence specific binding energy f(U) obtained for different bacterial

transcription factors and all possible sites in the corresponding genome. The

weight matrices for these transcription factors has been derived using a set of

known binding sites and standard approximation (Berg and von Hippel,

1987; Stormo and Fields, 1998). Notice that for a sufficiently long site the

distribution of the binding energy of random sites (or genomic DNA) can be

closely approximated (see Fig. 1) by a Gaussian distribution with a certain

mean hUi and variance s2,

f ðUiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ps

2
p exp �ðUi � hUiÞ2

2s
2

� �
: (6)

We also assume independence of the energy of neighboring (although

overlapping) sites. Binding energies calculated for bacterial TFs support this

assumption. Other physical factors such as local DNA flexibility (Erie et al.,

1994) can create a correlated energy landscape, providing a different mode

of diffusion, as we have described in Slutsky et al. (2004).

Diffusion in a sequence-dependent
energy landscape

The whole DNAmolecule can thus be mapped onto a one-dimensional array

of sites, fs~ig—each corresponding to a certain binding sequence comprising

bases from the ith to the (i 1 l–1)th, l being the length of the motif (see

Fig. 2). At each site, there is a probability pi of hopping to site i 1 1 and

a probability qi of hopping to site i–1. These probabilities depend on the

specific binding energies, Ui and Ui61, at the i
th site and at the adjacent sites,

respectively, and are proportional to the corresponding transition rates,

vi,i11 and vi,i–1. For the latter, it is most natural to assume the regular

activated transport form

vi;i61 ¼ n3
e
�bðUi61�UiÞ if Ui61 .Ui

1:0 otherwise
;

�
(7)

where n is the effective attempt frequency, b[ (kBT)
�1; kB is the Boltzmann

constant; and T is the ambient temperature. Having defined that, we have

a one-dimensional random walk with position-dependent hopping proba-

bilities.

As has been shown in numerous articles throughout the last two decades,

the properties of one-dimensional random walks can vary dramatically

depending on the actual choice of probabilities, fpig (for review, see

Bouchaud and Georges, 1990). Here we employ the mean first-passage time

formalism (Murthy and Kehr, 1989) to derive the diffusion law t1dð�nnÞ for
protein sliding along the DNA given the sequence-dependent binding energy

(Eq. 7).

RESULTS

Using the model described above, we studied the following

problems:

1. How fast is the one-dimensional search on DNA as

a function of the roughness, s, of the binding energy

landscape?
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2. How significant is the role of nonspecific binding energy,

Ens, in determining the search time?

3. How fast is the search for the native site under conditions

that provide stability to the protein-DNA complex at the

target site?

Diffusion along the DNA

We state here the main results without a derivation (which

can be found in Appendix A). For a given set of probabilities

fpig, the mean first-passage time (MFPT) from i¼ 0 to i¼ L
(in terms of number of steps) is (Murthy and Kehr, 1989)

�tt0;L ¼ L1 +
L�1

k¼0

ak 1 +
L�2

k¼0

+
L�1

i¼k11

ð11akÞ
Yi
j¼k11

aj; (8)

where ai [ qi/pi. The relation in Eq. 8 gives the MFPT for

one given realization of probabilities. Assuming that the

specific binding energies fUig have a normal distribution

with variance s2 (see above), we plug the probabilities in

Eq. 7 into Eq. 8 and after a somewhat lengthy but straightforward

calculation, we obtain an expression for the MFPT averaged

over genomic sequences for L � 1,

h�ttFPðLÞi ’ t0L
2
e
7b

2
s
2
=4ð11b

2
s

2
=2Þ�1=2

; (9)

where t0 is the reciprocal of the effective attempt frequency

for hopping to a neighboring site.

The main result is that the one-dimensional search by

hopping to neighboring sites proceeds by normal diffusion

with t ; L2/2D1d, where the diffusion coefficient

D1dðsÞ ’ 1

2t0
11

b
2
s

2

2

� �1=2
e�7b

2
s
2
=4

(10)

exhibits an exponential dependence on the roughness of the

binding energy landscape s, dropping rapidly as s becomes

greater than a few kBT (Slutsky et al., 2004). Hence, rapid

diffusion of a protein along the DNA is possible only if the

roughness of the binding energy landscape is small com-

pared to kBT (bs , 1.5). This requirement imposes strong

constraints on the allowed energy of specific binding interac-

tions.

Optimal time of three-dimensional/
one-dimensional search

When one-dimensional scanning is combined with three-

dimensional diffusion, what is the optimal time a protein has

to spend in each of the two regimes? To answer this question

we compute the optimal number of sites the protein has to

scan by one-dimensional diffusion to get the fastest overall

search. Results of this section are rather general and are not

limited to the particular scenario of slow one-dimensional

diffusion on a rough landscape discussed above.

Each time the protein binds DNA it performs a round of

one-dimensional diffusion. If the round lasts t1d, then, on

average, the protein scans �nn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16D1dt1d=p

p
bps (Hughes,

1995). By plugging this relation into Eq. 3 for search time ts,
and minimizing ts with respect to �nn; we get the optimal total

search time and the optimal number of sites to be scanned in

each round,

t
opt

s ¼ tsð�nnoptÞ ¼
M

2

ffiffiffiffiffiffiffiffiffi
p�tt3d
D1d

r
�nnopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

p
D1d�tt3d

r
; (11)

which brings us to the following conclusions.

First, and most importantly, we obtain that, in the optimal

regime of search,

t1dð�nnoptÞ ¼ t3d; (12)

i.e., the protein spends equal amounts of time diffusing along

nonspecific DNA and diffusing in the solution. This striking

result is very general, and is true irrespective of the values of

diffusion coefficients D1d or D3d, or size of the genomeM. In

fact it follows directly from the diffusion law �nn;
ffiffiffiffiffiffi
t1d

p
:

More importantly this central result can be verified

experimentally by either single-molecule techniques or by

traditional methods.

Also note that the optimal region of the DNA scanned in

a single round of one-dimensional diffusion �nnopt does not

depend on M—i.e., is the same irrespective of the size of the

genomes to be searched for a specific site.

Second, the optimal one-dimensional/three-dimensional

combination reached at t1d ¼ t3d leads to a significant

speedup of the search process. In fact, an optimal one-

dimensional/three-dimensional search is �nnopt times faster

than a search by three-dimensional diffusion alone, and

M=�nnopt times faster than a search by one-dimensional

diffusion alone. For example, if the protein operates in the

FIGURE 1 Spectrum of binding energy for three different transcription

factors and the Gaussian approximation (solid line).
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optimal one-dimensional/three-dimensional regime and

scans �nnopt ¼ 100 bp during each round of DNA binding,

then the experimentally measured rate of binding to the

specific site can be 100 times greater than the rate achievable

by three-dimensional diffusion alone.

Third, we can estimate �nnopt; the maximal number of sites

a protein can scan in each round of one-dimensional search.

If we setD1d to its maximum, i.e.,D1d; D3d and �tt3d;l2d=D3d;
with lm ; 0.1 mm, we get

�nn
max

opt ; 500 bp: (13)

For a smaller one-dimensional diffusion coefficient, e.g.,

D1d ; D3d/100, we get �nn
max
opt ;50 bp: Again, single molecule

experiments can provide estimates of these quantities for

different conditions of diffusion.

Finally, we obtain estimates of the shortest possible total

search time. If M � 106 bp and one-dimensional diffusion

is at its fastest rate, i.e., D1d ; D3d ¼ 10�7cm2/s, then using

Eq. 11 we get

t
opt

s ;
M

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�tt3dt0

p
; 5 s; (14)

where we estimate t0;a20=D3d;10�8 s:
One can also estimate the search time using in vitro

experimentally measured binding rates in water, kwateron �
1010 M�1 s�1 (Riggs et al., 1970a,b). The diffusion co-

efficient of a protein in the cytoplasm is 10–100 times lower

than that in water, leading to the estimated binding rate of

kcytoplasmon � 108 � 109 M�1 s�1 (see Appendix D). From this

we obtain the time it takes for one protein to bind one site in

a cell of 1 mm3 volume (i.e., [TF] � 10�9 M) as

t
exp

s ¼ ðkcytoplasmon ½TF�Þ�1
; 1�10 s: (15)

One can see perfect agreement between our theoretical

estimates and experimentally measured binding rates.

As we mentioned above, there are usually several TF

molecules searching in parallel for the target site. Naturally,

in this case, the search is sped up proportionally to the

number of molecules.

Diffusion of PurR on the Escherichia coli genome

To check the applicability of the above considerations, we

simulated one-dimensional diffusion of PurR transcription

factor on the E. coli chromosome.

The specific energy profile was built using a weight matrix

derived from 35 PurR binding sites following a standard

procedure described elsewhere (Berg and von Hippel, 1987;

Stormo and Fields, 1998). The resulting energy profile is

random and uncorrelated and has a standard deviation s ’
6.5 kBT. This profile was used as an input for calculating

mean first passage time at different temperatures. (Since the

magnitude of the interaction is fixed, in these calculations we

vary temperature rather than binding strength.) The result

of these calculations is presented in Fig. 3. It is clear that

when the roughness of the landscape becomes significant at

FIGURE 2 The model potential.
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s . 2 kBT, the diffusion proceeds extremely slowly. Only

;10–100 bp can be scanned by a TF when s ¼ 2 kBT. A
natural requirement for sufficiently fast diffusion is, as be-

fore, s ; kBT.

Nonspecific binding

Whereas the diffusion of the TF molecules along DNA is

controlled by the specific binding energy, the dissociation of

the TF from the DNA depends on the total binding energy,

i.e., on the nonspecific binding as well as on the specific one.

Moreover, since the dissociation events are much less

frequent than the hopping between neighboring basepairs

(roughly by a factor of �tt3d=hti), the nonspecific energy Ens

makes a sensibly larger contribution to the total binding

energy.

For a TF at rest bound to some DNA site i, the dissociation
rate, ri, would be given by the Arrhenius-type relation,

ri ¼
1

t0
e
�bðEns�UiÞ: (16)

Given the specific (Ui) and the nonspecific (Ens) energy, one

can calculate the average time, t1d, a protein spends before

dissociating from the DNA (see Appendix B). We obtain

Ens ¼ kBT ln
t1d

t0

� �
� 1

2

s

kBT

� �2
" #

; (17)

and in the optimal regime where t1d ¼ �tt3d;

E
opt

ns ¼ kBT ln
t3d

t0

� �
� 1

2

s

kBT

� �2
" #

: (18)

The parameter space

Since for a given value of s, the nonspecific binding controls

the dissociation rate, the search time will deviate from the

optimum if Ens moves from this predetermined value. In

Fig. 4 a we plot the search time as a function of the nonspe-

cific binding energy for different values of s.

We now define the tolerance factor, z, as the ratio between

the acceptable value of the search time, ts, and the optimal

search time, topts : Experimental data suggest z# 5, but for the

moment we allow for much larger values of z; 10–100 (this

can be done when, for instance, there are many protein

molecules searching in parallel). As we can see from Fig. 4 a,
for each value of s, there is a range of possible values of Ens

such that the resulting search time is within the region of

tolerance (see Appendix B). Note the dramatic increase in the

search time as Ens deviates from its optimal value.

Specifying z, we can define our parameter space, i.e., the

values of specific and nonspecific energy producing a total

search time within the region of tolerance. In Fig. 4 b, we
consider three values of z. The most relaxed requirement z ¼
100 provides a search time of ts # 500 s. If 100 proteins are

searching for a single site, then the first one will find it after

;5 s—leading, however, to a fairly low binding rate of kon�
1/500 s � 109 M�1 ¼ 2 � 106 M�1 s�1 (compared to

experimentally measured 1010 M�1 s�1 in water). Impor-

tantly, to comply with even this most relaxed search time

requirement, the characteristic strength of specific interaction

must be &2.3 kBT.
These results bring us to a very important conclusion that

a protein cannot find its site in biologically relevant time if the

roughness of the specific binding landscape is *2 kBT.
Although an optimal one-dimensional/three-dimensional com-

bination can speed up the search, it cannot overcome the

slowdown of one-dimensional diffusion. Only fairly smooth

landscapes (s; 1 kBT) can be effectively navigated by proteins.

Speed versus stability

Whereas rapid search requires fairly smooth landscapes

(s ;1 kBT), stability of the protein-DNA complex, in turn,

requires a low energy of the target site (Umin , 15 kBT for

a genome of 106 bp).

In Fig. 5 a, we present the equilibrium probability Pb of

binding the strongest target site with energy Umin ¼ U0

(Gerland et al., 2002) as a function ofs/kBT. In equilibrium,Pb

equals the fraction of time the protein spends at the target site,

Pb ¼
exp½�bU0�

+
M

i¼0

exp½�bUi�
: (19)

Since the target site is not separated from the rest of the

distribution by a significant energy gap, Pb is comparable to

1 (which is the natural requirement for a good regulatory

site) only at s � kBT.
Fig. 5 b shows the optimal search time at the correspond-

ing values of s/kBT. High roughness of s� kBT required for

FIGURE 3 The mean first passage time versus traveling distance for purR

transcription factor on the binding landscapes of different roughness (or at

different temperatures). The horizontal line indicates the optimal regime,

t1d ; �tt3d:
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stability of the protein-DNA complex leads to astronomi-

cally large search times. In contrast, a protein can effectively

search the target site at s , 1–2 kBT.
This brings us to the central result that the ability to

translocate rapidly along the DNA clearly cannot comply

with the stability requirement.

Requirement of high stability at the target site, Pb ;1 (or

Pb ;1/Np, if Np copies of the protein are present), yields an

estimate for the minimal s of

s; kBT
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnM

p
; 5 kBT; (20)

given a genome size M ¼ 106.

From the above analysis, an obvious conflict arises: the

same energy landscape cannot allow for both rapid trans-

location and high stability of states formed at sites with the

lowest energy. This conflict is similar to the speed-stability

paradox of protein folding formulated by Gutin et al. (1998):

rapid search in conformation space requires a smooth energy

landscape, but then the native state is unstable. In protein

folding, this conflict is resolved by the presence of a large

energy gap between the native state and the rest of the con-

formations (Finkelstein and Ptitsyn, 2002; Pande et al., 2000).

As evident from Fig. 1, no such energy gap separates

cognate sites from the bulk of other (random) sites. In fact,

the energy function in the form of Eq. 5 cannot, in principle,

provide a significant energy gap. Increasing the number of

TFs cannot resolve the paradox either (see Appendices D and

E). An alternative solution must be sought.

The two-mode model

The search-speed stability paradox has already been

qualitatively anticipated by Winter et al. (1989), who there-

fore concluded that a conformational change of some sort

FIGURE 4 (a) Dependence of the search time on the nonspecific binding

energy. (b) The parameter space. The dashed line corresponds to optimal

parameters s and Ens connected by Eq. 18.

FIGURE 5 (a) Stability on the protein-DNA complex on the cognate site

measured as the fraction of time in the bound state at equilibrium. (b)

Optimal search time as a function of the binding profile roughness, for the

range of parameters 10�4 s # t3d # 10�2 s, 10�10 s # t0 # 10�6 s.
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should exist that would allow fast switching between the

specific and the nonspecific modes of binding. In the

nonspecific mode, the protein is sliding over an essentially

equipotential surface (in our terms, snon-spec ¼ 0), whereas

site-binding takes place in the specific mode (sspec � kBT).
A protein in the nonspecific binding mode is ‘‘unaware’’ of

the DNA sequence it is bound to. Thus, it should per-

manently alternate between the binding modes, probing the

underlying sites for specificity.

This model naturally raises a question about the nature of

the conformation change. Originally, it was described as a

microscopic binding of the protein to the DNA accompan-

ied by water and ion extrusion. However, numerous

calorimetry measurements and calculations (Spolar and

Record, 1994) show that such a transition is usually

accompanied by a large heat capacity change DC. This DC
cannot be accounted for, unless additional degrees of

freedom, namely, protein folding, are taken into account.

On-site folding of the transcription factor may involve

significant structural change (Flyvbjerg et al., 2002;

Bruinsma, 2002; Kalodimos et al., 2004) and take a time

of;10�4–10�6 s (Akke, 2002) (compared to a characteristic

on-site time of t0 ;10�7–10�8 s). We conclude that con-

formational transition between the two modes involves (but

is not limited to) partial folding of the TF.

If the TF is to probe every site for specificity in this

fashion, it would take hours to locate the native site. We note,

however, that if there was a way to probe only a very limited

set of sites, i.e., only those having high potential for

specificity, the search time would be dramatically reduced.

From the previous section it is clear that a relatively weak

site-specific interaction (i.e., smooth landscape, s ; kBT)
does not significantly affect the diffusive properties of the

DNA and the total search time. If this landscape, however, is

correlated with the actual specific binding energy landscape

(with s ; 5–6 kBT), the specific sites will be the strongest

sites in both modes. The protein conformational changes

should occur therefore mainly at these sites, which constitute

traps in the smooth landscape. Since such sites constitute

a very small fraction of the total number of sites, the

transitions between the modes are very rare.

We therefore suggest that there are two modes of protein-

DNA binding: the search mode and the recognition mode

(Fig. 6). In the search mode, the protein conformation is such

that it allows only a relatively weak site-specific interaction

(ss; 1.0–2.0 kBT) (Fig. 6, top). In the recognition mode, the

protein is in its final conformation and interacts very strongly

(sr $ 5 kBT) with the DNA (Fig. 6, bottom). If two energy

profiles are strongly correlated, then the lowest-lying energy

levels (i.e., traps) in the search mode (# �5 kBT) are likely
to correspond to the strongest sites in the recognition mode

(putatively, the cognate sites). The transitions between the

two modes happen mainly when the protein is trapped at

a low-energy site of the search landscape. In this fashion, the

one-dimensional diffusion coefficient D1d is ;10–100 times

smaller than the ideal limit, but the search time in the optimal

regime is reduced only by a factor of ;3–10 (Eq. 11).

The coupling between the conformational change and

association at a site with a low-energy trap is likely to take

place through time conditioning. Namely, the folding (or

a similar conformation transition) occurs only if the protein

spends some minimal amount of time bound to a certain site.

This statement is basically equivalent to saying that the free

energy barrier that the protein must overcome to transform to

the final state must be comparable to the characteristic energy

difference that controls hopping to the neighboring sites.

The protein conformation in the recognition mode should

be stabilized by additional protein-DNA interactions. If these

interactions are unfavorable, the folded structure is destabi-

lized; the search conformation is then rapidly restored and

the diffusion proceeds as before. If the new interactions are

favorable, however, the folded structure is stable and the

protein is trapped at the site for a very long time.

For this mechanism to work, transition between the two

modes of search has to be associated with a significant

change in the free energy (;5..10 kBT) of the protein-DNA
complex (see Fig. 6 c). Such an energy difference between

the two states is required to make the majority of the high-

energy sites in the recognition mode less favorable than in

the search mode. A protein would rather (partially) unfold

than bind an unfavorable site. As a result, sites that lay higher

in energy than a certain cutoff exhibit a similar nonspecific

binding energy (i.e., there is a switch into the search mode of

binding). The folding of partially disordered protein loops or

helices can provide the required free energy difference

between the two modes.

Efficiency of the proposed search-and-fold mechanism

depends on the energy difference between the two modes,

correlation between the energy profiles, and the barrier

between the two states. The barrier determines the rate of

partial folding-unfolding transition. If the barrier is too low,

then the protein equilibrates while on a single site, having no

effect on search kinetics. On the contrary, too high a barrier

can lead to rear folding events and the cognate site can be

missed. It can be shown that having a barrier of proper size

provides for an efficient search and stable protein-DNA

complexes. Alternatively, the cognate site can lower the

barrier by stabilizing the transition state (i.e., the folding

nucleus; see Abkevich et al., 1994; Mirny and Shakhnovich,

2001), whereby it acts as a catalyst of partial folding.

(Quantitative analysis of these factors is beyond the scope of

this study, and will be published elsewhere.)

DISCUSSION

Specificity for free: kinetics
versus thermodynamics

The proposed mechanism of specific site location is akin to

kinetic proofreading (Hopfield, 1974), which is a very general
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concept for a broad class of high-specificity biochemical

reactions. The required specificity is achieved in kinetic

proofreading through formation of an intermediatemetastable

complex that paves the way for irreversible enzymatic

reaction. If the reaction is much slower than the lifetime of

the complex, then substrates that spend enough time in the

complex are subject to the enzymatic reaction, whereas

substrates that form short-lived complexes are released back

to the solvent before the reaction takes place. In other words,

the substrates are selected by kinetic partitioning.

In contrast to kinetic proofreading that increases equilib-

rium specificity for the price of energy consumption, the

search-and-fold model does not require any additional source

of energy. The two-mode search-and-fold model provides a

faster on-rate of binding while keeping the equilibrium bind-

ing constant unchanged. Naturally, the off-rate is increased

as well. This makes our two-mode model thermodynami-

cally neutral.

Coupling of folding and binding in
molecular recognition

Several DNA- and ligand-binding proteins are known to

have partially unfolded (disordered) structures in the un-

bound state. The unstructured regions fold upon binding to

the target. Does binding-induced folding provide any biolog-

ical advantage?

The idea of coupling between local folding and site

binding has been around for some time and was recently

reassessed in the much broader context of intrinsically

unstructured proteins (Wright and Dyson, 1999; Dyson and

Wright, 2002; Uversky, 2002). Induced folding of these

proteins can have several biological advantages. First,

flexible unstructured domains have an intrinsic plasticity

that allows them to accommodate targets/ligands of various

sizes and shapes; and second, free energy of binding is

required for compenstation for the entropic cost of ordering

of the unstructured region. A poor ligand that does not

provide enough binding free energy cannot induce folding

and, hence, cannot form a stable complex. Williams et al.

(2001) have suggested that unstructured domains can be

the result of evolutionary selection that acts on the bound

(structured) conformation, while ignoring the unbound

(unstructured) conformation. Partial unfolding can also

increase protein’s radius of gyration and, hence, increase

the binding rate (Shoemaker et al., 2000; Levy et al., 2004).

Here we propose a mechanism that suggests the role of

induced folding in providing rapid and specific binding.

Induced folding (or any sort of two-state conformational

transition) allows a protein to search and recognize DNA in

two different conformations providing rapid binding to the

target site. Importantly, this mechanism reconciles rapid

search for the target site with a stable bound complex (see

above). The rate of induced folding can also play a role in

determining the specificity of recognition (M. Slutsky and

L.A. Mirny, unpublished).

Structural and thermodynamic data argue in favor of

distinct protein conformations for search along noncognate

DNA and for recognition of the target site. Proteins such as

lcI, EcoRV, and GCN4 apparently do not fold their

unstructured regions while bound to noncognate DNA

(Winkler et al., 1993; Clarke et al., 1991; O’Neil et al.,

1990); this supports our hypothesis.

Heat capacity measurements on a vast variety of protein-

DNA complexes report a large negative heat capacity change

in site-specific recognition, which is a clear indication of

a phase transition. These measurements supplemented by

x-ray crystallography and NMR structural data were inter-

preted by Spolar and Record (1994), mainly in terms of

hydrophobic and conformational contributions to entropy.

FIGURE 6 Cartoon demonstrating

the two-mode search-and-fold mecha-

nism. (Top) Search mode; (bottom)

recognition mode. (a) Two conforma-

tions of the protein bound to DNA:

partially unfolded (top) and fully folded

(bottom). (b) The binding energy land-

scape experienced by the protein in the

corresponding conformations. (c) The

spectrum of the binding energy de-

termining stability of the protein in the

corresponding conformations.
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Thus, folding-binding coupling is now considered a well-

established effect for a large set of transcription factors.

However, real-time kinetic measurements were not

performed until recently, so that the question of the actual

mechanism was left open. Serious advances in this direction

were made by Kalodimos et al. (2001, 2002, 2004), who

observed a two-step site recognition by dimeric Lac
repressor. The H/D-exchange NMR data unambiguously

demonstrates site preselection by a-helices bound in the

major groove followed by folding of hinge helices that bind

to the minor groove elements and complete the specific site

recognition. Although the experiments in this field were

performed with a single model system, their implications are

likely to have a general character.

It should be mentioned that no transition of this kind is

observed when the protein is unbound from DNA. A

possible reason for this can be a significant reduction of the

free energy barrier for folding, entropic in essence, that

accompanies protein-DNA association. Entropy barrier

reduction is a natural consequence of relative anchoring of

the various parts of the protein on the DNA scaffold.

Thermal fluctuations that the associated protein is subject to

are generally of the order of ;kBT, and their main effect is

protein translocation along the DNA. From the above

analysis, it follows that the translocation actually takes place

only if the protein encounters barriers of ss ; kBT on its

way. In a large enough collection of sites (M� 1), however,

potential wells of depth ;ss

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnM

p
will be present. If the

well depth is larger than the folding barrier height, the

probability of on-site (in-well) folding increases, leading

eventually to a stable complex formation. (More detailed

computational analysis of coupling between folding and

binding will be published elsewhere.)

Biological implications

The mechanism of three-dimensional/one-dimensional

search described above has several biological implications.

The studied model, as with any quantitative model, is, of

course, a gross simplification of protein-DNA recognition in

vivo. Despite this simplification, proposed mechanism can be

generalized to describe the in vivo binding. Here we briefly

discuss some of the biological implications of our model.

Simultaneous search by several proteins

If several TFs are searching for its site on the DNA, the total

search time is given by Eq. 15 and is obviously shorter than

the time for a single TF. For example, if 100 copies of a TF

are searching in parallel for the cognate site, then assuming

kcytoplasmon � 108 M�1 s�1 and a cell of 1 mm3 volume, we

obtain the search time of ts � 0.1 s. Increasing the number of

TF molecules can further decrease the search time, but can

have harmful effects due to molecular crowding in the cell.

Note, however, that increasing the number of TF molecules

to 100–1000 per cell cannot resolve the speed-stability

paradox (see Fig. 5).

Search inside a cell: molecular crowding on
DNA and chromatin

Above we assumed that a TF is free to slide along the DNA.

The in vivo picture is complicated by other proteins and

protein complexes (nucleosomes, polymerases, etc.) that are

bound to DNA, preventing a TF from sliding freely along the

DNA. What are the effects of such molecular crowding on

the search time?

Our model suggests that molecular crowding on DNA will

have little effect on the search time if certain conditions are

satisfied. Obviously, the cognate shall not be screened by

other DNA-bound molecules/nucleosomes. DNA-bound

molecules can interfere with the search process by shortening

regions of DNA scanned on each round of one-dimensional

diffusion. If, however, the distance between DNA-bound

molecules/nucleosomes in the vicinity of the cognate site is

greater than �nnopt;300� 500 bp (see Eq. 13 and Kim et al.,

1987), then obstacles on the DNA do not shorten the rounds

of one-dimensional diffusion and, hence, do not slow down

the search process. Our analysis also suggests that

sequestration of part of genomic DNA by nucleosomes can

even speed up the search process.

If DNA-bound proteins are separated by .300–500 bp,

E. coli genomic DNA can accommodate 4.63 106 bp/300 bp�
1.5 3 104 proteins. In other words, all 150 known and

predicted E. coli TFs can be simultaneously present in 100

copies each, and search for their cognate sites without

affecting one other (in fact, they can be present in 200 copies

each, since optimal search requires 50% of proteins to be in

solution at any one time). On the other hand, a short;50-bp

linker between nucleosomes in eukaryotic chromatin can

increase the search time ;10-fold. Details of this analysis

will be published elsewhere.

Funnels, local organization of sites

Several known bacterial and eukaryotic sites tend to cluster

together. One may suggest that such clustering or other local

arrangement of the sites can create a funnel in the binding

energy landscape, which leads to a more rapid binding of

cognate sites. Our model suggests that even if such funnels

do exist, they would not significantly speed up the search

process. The proposed search mechanism involves

;M=�nnopt ; 104 rounds of one-dimensional/three-dimen-

sional diffusions. So a TF spends all the search time far

from the cognate site. Only the last round (out of 104) will be

sped up by the funnel, leading to no significant decrease of

the search time.

Local organization of sites and other sequence-dependent

properties of the DNA structure (flexibility of AT-rich re-

gions, DNA curvature on poly-A tracks, etc.) may influence

preferred localization of TFs and lead to faster on-/off-binding
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rates and fast equilibration on neighboring sites (see Slutsky

et al., 2004, for details).

Protein hopping: intersegment transfer

Our model assumed that rounds of one-dimensional

diffusion are separated by periods of three-dimensional

diffusion. Intersegment transfer is another mechanism that

can be involved. If two segments of DNA come close to each

other, a TF sliding along one segment can hop to another.

The benefit of this mechanism is that it significantly shortens

the transfer time, t3D. Several examples of experimental

evidence suggest that tetrameric LacI, which has two DNA-

binding sites, travels along DNA through one-dimensional

diffusion and intersegment transfer.

We did not consider this mechanism because of the two

following considerations. First, it is unclear whether TFs that

have only one binding site can perform intersegment

transfer; and second, for this mechanism to work, distant

segments of DNA need to come close to each other.

Although DNA packed into a cell/nuclear volume crosses

itself every ;500 bp, DNA in solution, at in vitro concen-

trations, is unlikely to have any such self-crossings. Hence

intersegment transfer cannot explain the faster-than-diffusion

binding rates observed in vitro. This mechanism, however,

may play a role in vivo, especially for proteins that have

multiple DNA-binding sites.

Proposed experiments

Our results propose several experimentally testable predic-

tions.

First, we predict that the maximal rate of binding is

achieved when the protein spends half of the time in solution

and half sliding along the DNA. This result can be readily

verified experimentally by measuring the concentration of

free protein in solution that contains DNA but no cognate

site. We also show how the search time depends on the

energy of nonspecific binding, which, in turn, can be con-

trolled by the ionic strength of solution or by engineering

proteins with stronger or weaker nonspecific binding. In vivo

observation of the 50/50 rule would suggest that proteins are

optimized by evolution for rapid search.

Second, we show how the binding rate depends on the

average travel time between two random segments of DNA,

t3d. This time measurement (t3d) depends on the DNA

concentration and the domain organization of DNA. By

changing DNA concentration and/or DNA stretching in

a single molecule experiment, one can alter t3d and thus

study the role of DNA packing on the rate of binding. This

effect has implications for DNA recognition in vivo, where

DNA is organized into domains. Similarly, one can experi-

mentally measure and compare the binding rate, in the pres-

ence of other DNA-binding proteins or nucleosomes, with

analytical predictions.

Single molecule experiments and AFM/SFM imaging

allow direct observation of protein trajectory and measure-

ment of the one-dimensional diffusion coefficient, D1d, on

noncognate DNA. Our formalism, in turn, allows us to cal-

culate the spectrum of specific binding energy, given D1d.

Such measurements can be direct tests of our conjecture that

one-dimensional search along noncognate DNA proceeds

along a smoother energy profile.

Third, using protein engineering one can stabilize un-

structured regions of DNA-binding proteins (e.g., lcI,

EcoRV, and GCN4), and study the binding rates of these

engineered, rigid proteins. Such experiments can test the

proposed search-and-fold mechanism and shed light on the

role of unstructured regions in determining stability, speci-

ficity, and binding rates.

We also suggest that proteins bound to noncognate DNA

are not fully ordered. Unfortunately very few studies

(Kalodimos et al., 2001, 2002, 2004) have addressed the

mechanisms of binding to noncognate DNA. More studies of

structures, thermodynamics, and dynamics of proteins bound

to noncognate DNA will deepen our understanding of

specific protein-DNA recognition.

CONCLUSIONS

We have developed a quantitative model of protein-DNA

interaction that provides an insight into the mechanism of

fast target site location. We found the range of parameters

(specific and nonspecific binding energies) that are crucial

for fast search and, hence, the robust functioning of gene

transcription. Paradoxically, realistic energy cannot provide

both rapid searches and strong binding of a rigid protein.

This allowed us to formulate the speed-stability paradox of

protein-DNA recognition (which is similar to the famous

Levinthal paradox of protein folding). To resolve the

paradox, we proposed a search-and-fold mechanism that

involves the coupling of protein binding and protein folding.

The proposed mechanism has several important biological

implications in explaining how a protein can find its site

on DNA, in vivo, in the presence of other proteins and

nucleosomes and by a simultaneous search of several

proteins. Our model provides, for the first time, a quantitative

framework for analysis of the kinetics of transcription factor

binding and, hence, gene expression. Importantly, our model

links molecular properties of transcription factors to the

timing of transcription activation. Proper understanding of

the entire mechanism will hardly be possible without further

experimental effort in these directions.

APPENDIX A: DIFFUSIVE PROPERTIES OF
THE DNA

The derivation consists of two steps. First, we describe the random walk

along the DNA in terms of number of steps. Next, we calculate the mean

time between successive steps in the random energetic landscape that

provides the timescale for the problem. Such a decoupling, strictly speaking,
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does not hold when the number of steps is small, i.e., when the number of

visited sites is small and the random quantities are not averaged properly.

However, since we are dealing with a large number of steps (;105–106), this

approach is legitimate—as is also confirmed by numerical simulations.

The MFPT

To derive the diffusion law, we calculate the mean first passage time (MFPT)

from site 0 to site L, defined as the mean number of steps the particle has to

make to reach the site L for the first time. The derivation here follows that in

Murthy and Kehr (1989).

Let Pi,j(n) denote the probability to start at site i and reach the site j in

exactly n steps. Then, for example,

Pi;i11ðnÞ ¼ piTiðn� 1Þ; (21)

where Ti(n) is defined as the probability of returning to the ith site after n

steps without stepping to the right of it. Now, all the paths contributing to

Ti(n–1) should start with the step to the left and then reach the site i in n–2

steps, not necessarily for the first time. Thus, the probability Ti(n–1) can be

written as

Tiðn� 1Þ ¼ qi +
m;l

Pi�1;iðmÞTiðlÞdm1l;n�2: (22)

We now introduce generating functions

~PPi;jðzÞ ¼ +
N

n¼0

z
n
Pi;jðnÞ; ~TTiðzÞ ¼ +

N

n¼0

z
n
TiðnÞ: (23)

One can easily show (see e.g., Goldhirsh and Gefen, 1986) that

~PP0;LðzÞ ¼
YL�1

i¼0

~PPi;i11ðzÞ: (24)

Knowing ~PPi;i11ðzÞ; one calculates the MFPT straightforwardly as

�tt0;L ¼
+
n

nP0;LðnÞ

+
n

P0;LðnÞ
¼ d

dz
ln ~PP0;LðzÞ

� �
z¼1

¼ +
L�1

i¼0

d

dz
ln ~PPi;i11ðzÞ

� �
z¼1

: (25)

Using Eqs. 21 and 22, we obtain the recursion relation for ~PPi;i11ðzÞ;

~PPi;i11ðzÞ ¼
zpi

1� zqi
~PPi�1;iðzÞ

: (26)

To solve for �tt0;L;we must introduce boundary conditions. Let p0¼ 1, q0¼ 0,

which is equivalent to introducing a reflecting wall at i ¼ 0. This boundary

condition clearly influences the solution for short times and distances.

However, as numerical simulations and general considerations suggest, its

influence relaxes quite fast, so that for longer times, the result is clearly

independent of the boundary. The benefit of setting p0 ¼ 1 becomes clear

when we observe that

~PP0;1ð1Þ ¼ 1 0 "i ~PPi;i11ð1Þ ¼ 1: (27)

Hence,

�tt0;L ¼ +
L�1

i¼0

~PP#i;i11ð1Þ: (28)

The recursion relation for P#i;i11ð1Þ is readily obtained from Eq. 26,

~PP#i;i11ð1Þ ¼
1

pi

1
qi

pi

~PP#i�1;ið1Þ ¼ 11ai½11 ~PP#i�1;ið1Þ�; (29)

with ai [ pi/qi. Thus, the expression for �tt0;L is obtained in closed form as

�tt0;L ¼ L1 +
L�1

k¼0

ak 1 +
L�2

k¼0

+
L�1

i¼k11

ð11akÞ
Yi
j¼k11

aj: (30)

This solution expression gives MFPT in terms of a given realization of

disorder producing a certain set of probabilities fpig, wherein we are

interested in the behavior averaged over all realizations of disorder. The

cumulative products in Eq. 30 reduce to the two forms of ebðUi�UjÞ; which,
after being averaged over uncorrelated Gaussian disorder, produces a factor

of eb
2s2

: After the summations are carried out, the expression for MFPT

becomes for L � 1,

h�tt0;Li ’ L
2
e
b
2
s
2

: (31)

Thus, the diffusion law appears to be the classical one, with a renormalized

diffusion coefficient.

The time constant

Consider a particle at site i. The particle will eventually escape to one of the

neighboring sites (i6 1), the escape rate being

ri ¼ vi; i11 1vi;i�1: (32)

To calculate the characteristic diffusion time constant hti, this rate should be
averaged over all configurations of disorder fUig. To obtain an analytic

expression for the hti, we assume the form

vi;i61 ¼ ne�bðUi61�UiÞ (33)

for both Ui61 . Ui and Ui61 , Ui, as opposed to Eq. 7. Numerics show that

this approximation introduces an up to ;15% error for small values of bs

and is practically exact for bs . 2. Thus,

ri ¼
1

2t0
ðe�bðUi11�UiÞ 1 e�bðUi�1�UiÞÞ; (34)

where t0 ¼ 1/(2n). The mean time between the successive steps can be

calculated therefore as the average over all possible configurations of Ui,

Ui61 of the reciprocal of the escape rate, i.e.,

hti¼ 1

ri

� �
¼2t0

Z N

�N

dUidUi11dUi�1

f ðUiÞf ðUi11Þf ðUi�1Þ
e
�bðUi11�UiÞ1e

�bðUi�1�UiÞ:

(35)

Assuming Gaussian energy statistics as above, this integral is evaluated as

hti ¼ t0 e
b
2
s
2
=2

p

Z N

�N

dxdy
e
�ðx21y

2Þ=2

e
�bsx

1 e
�bsy: (36)

After the change of variables

s ¼ 1ffiffiffi
2

p ðx1 yÞ; t ¼ 1ffiffiffi
2

p ðx � yÞ; (37)

the integral factorizes leading to

hti ¼ t0 e
b
2
s
2
=2

2p

Z N

�N

ds e
�s

2=21bss=
ffiffi
2

p Z N

�N

dt
e
�t

2
=2

coshðbst=
ffiffiffi
2

p
Þ

¼ t0 e
3b

2
s
2
=4ffiffiffiffiffiffi

2p
p

Z N

�N

dt e�t
2
=2�ln½coshðbst=

ffiffi
2

p
Þ�

’ t0 e
3b

2
s
2
=4ffiffiffiffiffiffi

2p
p

Z N

�N

dt e
�t

2ð11b
2
s
2=2Þ=2

¼ t0 e
3b

2
s
2=4½11b

2
s

2
=2��1=2

:

(38)
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Now, multiplying Eq. 31 by hti, we obtain the diffusion coefficient as

D1dðsÞ ’ 1

2t0
11

b
2
s

2

2

� �1=2

e
�7b

2
s
2=4
: (39)

APPENDIX B: NONSPECIFIC ENERGY

To find how the nonspecific energy Ens is related to the average time, t1d,

that a protein spends scanning a single region of the DNA, we use the simple

observation that

+
i

tiri

� �
¼ 1; +

i

ti

� �
¼ t1d; (40)

which states that, eventually, protein dissociates from the region it scans

with probability 1.

Since some massive hopping from site to site takes place before the

particle eventually dissociates, the dissociation rates and, consequently, the

nonspecific binding energy, should satisfy the equation

+
i

tiri

� �
¼ 1

t0
+
i

tie
�bðEns�UiÞ

� �

¼ 1

t0

Z N

�N

e
�bðEns�UÞ

tðUÞf ðUÞdU ¼ 1;

(41)

and this is subject to a condition

+
i

ti

� �
¼
Z N

�N

tðUÞf ðUÞdU ¼ t1d; (42)

where ti is the time that the TF spends at the ith site and t1d is the average time

of a one-dimensional search to dissociation. The average lifetime ti¼ t(Ui) at

that site is proportional to exp(�bUi). In this specific case, the particle usually

escapes to one of the neighboring sites, and we should average over their

energies. Hence, the explicit form t(U) as calculated from Eq. 42 is

tðUÞ ¼ t1de
�b

2
s
2
=2
e
�bU

: (43)

Substituting this into Eq. 41, we have

t1d

t0
e
�1
2
b
2
s
2�bEns ¼ 1; (44)

or

Ens ¼ kBT ln
t1d

t0

� �
� 1

2

s

kBT

� �2
" #

: (45)

Next we recall that, in the optimal regime, t1d ¼ �tt3d: Thus, to ensure optimal

performance, Ens should be equal to the expression in Eq. 45 with t1d
replaced by �tt3d;

Ens ¼ kBT ln
t3d

t0

� �
� 1

2

s

kBT

� �2
" #

: (46)

The meaning of this relation is quite transparent. The logarithm gives Ens in

a system with zero or constant specific binding energy. The second term

introduces suppression of Ens due to disorder, so that the dissociation events

in a system with disorder are more frequent, to compensate partially for the

one-dimensional diffusion slowdown. This relation obviously holds as long

as Ens . 0. Negative values of Ens mean simply that the nonspecific

interaction became overshadowed by the specific one, and no longer has any

direct physical sense.

Since for a given value of s, the nonspecific binding controls the

dissociation rate, the search time will deviate from the optimum if Ens moves

from this predetermined value. In Fig. 3 a we plot the search time as

a function of the nonspecific binding energy for different values of s.

We now define the tolerance factor, z, as the ratio between the maximal

acceptable value of the search time ts and the minimal time ts0. Experimental

data suggest z # 5, but we for the moment allow for much larger values of

z ; 10–100 (this can be done when, for instance, there are many protein

molecules searching in parallel). As we can see from Fig. 3 a, for each value

of s, there is a range of possible values of Ens such that the resulting search

time is within the region of tolerance. This range is easily calculated

producing the values of nonspecific energy between

E
6

nsðs;zÞ ¼
2

b
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1dðsÞ�tt3d
D1dð0Þt0

s
z6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
2�D1dð0Þ

D1dðsÞ

s !" #
�s

2
b

2
:

(47)

APPENDIX C: ROLE OF DNA CONFORMATION

The central parameter here is t3d, the interval of time between a dissociation

of the protein from DNA until the next binding to DNA. Exact calculation of

t3d is a very difficult task, considering the nontrivial packaging of the DNA

molecule inside a bacterial cell, electrostatic effects, and the inhomogeneity

of the cytoplasm.

Considering the microscopic picture one can easily obtain a reasonable

estimate of t3d as a characteristic time of three-dimensional diffusion across

the nucleoid (the region of a bacterial cell to which the DNA is confined).

The corresponding diffusion length depends on the conformation of the

DNA molecule. Indeed, if the DNA molecule was a single homogeneous

globule, there would be a single relevant length scale, which is the molecule

characteristic size lm (the gyration radius). On the other hand, as Fig. 7

shows, diffusion of a protein molecule inside a more realistic non-

homogeneous multidomain molecule involves at least one additional length

scale ld, which is a characteristic size of a domain. These two lengths may

differ by a factor of ;10 (Neidhardt et al., 1996), making the ratio of the

resulting diffusion times tm3d=t
d
3d;102: In the original problem (a single

protein molecule searching for a single site on the DNA), the search process

is dominated by the larger timescale, since at least a few domains must be

explored before the target site is located. However, there are usually ;102

TF molecules present in a cell, so it is reasonable to assume that the domains

are scanned in parallel, making the interdomain transfer processes irrelevant.

APPENDIX D: STABILITY REQUIREMENT

In fact, it is not hard to estimate analytically the (s/kBT) ratio for a genome of

lengthM such that the probability of binding to the lowest site is comparable

to the probability of binding to the rest of the genome; i.e., their

contributions to the partition function are of the same order of magnitude.

The partition sum for the Gaussian energy level statistics is

V ¼ Mffiffiffiffiffiffiffiffiffiffiffi
2ps

2
p

Z N

�N

e
�bU�U

2
=ð2s2Þ

dU

¼ Me
b
2
s
2
=2
; exp½�bUmin�;expðbs

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnM

p
Þ;

(48)

so that for M ¼ 106

s; kBT
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnM

p
; 5 kBT: (49)

Strictly speaking, for a large, albeit finite set of energy levels, the integration

limits are cut off at 6s
ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnM

p
so that for bs �

ffiffiffiffiffiffiffiffiffi
lnM

p
the partition

function is dominated by the lower edge of the distribution. The estimate for
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bs gives, therefore, the crossover value between the regime of multiple-site

contribution to V and the regime with single-site domination (the analog of

this effect would be thermodynamical freezing; see Derrida, 1981).
If Np proteins are searching and binding a single target site, then the

probability of being occupied is given by

PðNpÞ ¼ 1� ð1� PbÞNp � NpPb; (50)

where Pb is the probability of the site being occupied by a single protein (see

Eq. 19) and the approximation is for Pb � 1/Np. As evident from Fig. 4 b,

requirement of the rapid search is satisfied if Pb(s/T � 1) ; 10�5. An

unfeasible amount of 104 copies of a single TF is required to saturate such

a weak binding site.

APPENDIX E: ENERGY GAP

Large energy gap between the cognate site s~c and the bulk of genomic sites

would solve the paradox of rapid search and stability. One may seek

parameters, e(j, s), of the energy function

Uðs~¼ si; ::si1l�1Þ ¼ +
l

j¼1

eðj; sjÞ (51)

to maximize the energy gap by minimizing the Z-score

Zðs~cÞ ¼
Uðs~cÞ � hUi

s
; (52)

where averaging and variance is taken over all possible sequences of length l

(or over genomic words of length l). It is easy to see that Zðs~cÞ is minimal if

e
optðj; sÞ ¼ �dðs; scjÞ; (53)

where d(x,y) is the Kronecker delta. For K types of nucleotides assuming

their equal frequency in genome we obtain the maximal reachable energy

gap of

Z
min ¼ �

ffiffiffiffiffi
lK

p
: (54)

For K ¼ 4 and l � 8 we get Zmin � �5. For the genome of 106–107 bp, the

energy spectrum of the genomic DNA ends at Z � �5. Although sufficient

to provide stability of the bound complex (see main text), such an energy gap

is unable to resolve the search-stability paradox.

APPENDIX F: DIFFUSION IN WATER AND
IN CYTOPLASM

The diffusion coefficient of a protein molecule in water can be estimated as

in Landau and Lifshitz (1987),

D ’ kBT

3phd
; (55)

where d is the diameter of the molecule and h is the water viscosity. Setting

h ;10�2 g/(s 3 cm) and d ; 10 nm, we obtain at room temperature

D; 10
2
mm

2
=s: (56)

Diffusion coefficient measurements for GFP in E. coli (Elowitz et al., 1999)

produce values of ;1–10 mm2/s. This difference in diffusion coefficients

may account for more than an order-of-magnitude difference in the

theoretically calculated and measured target location times.
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