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Many biological processes involve one-dimensional diffusion over a correlated inhomogeneous energy land-
scape with a correlation lengthjc. Typical examples are specific protein target location on DNA, nucleosome
repositioning, or DNA translocation through a nanopore, in all cases withjc<10 nm. We investigate such
transport processes by the mean first passage time(MFPT) formalism, and find diffusion times which exhibit
strong sample to sample fluctuations. For a displacementN, the average MFPT is diffusive, while its standard
deviation over the ensemble of energy profiles scales asN3/2 with a large prefactor. Fluctuations are thus
dominant for displacements smaller than a characteristicNc@jc: typical values are much less than the mean,
and governed by an anomalous diffusion rule. Potential biological consequences of such random walks,
composed of rapid scans in the vicinity of favorable energy valleys and occasional jumps to further valleys, is
discussed.
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I. INTRODUCTION

Diffusion appears in most basic processes in the living
matter and therefore has been studied extensively by theoret-
ical and experimental biophysicists for many decades. At the
macroscopic scale, the phenomena are adequately described
by continuum models that form a well established method-
ology finding many applications in science and technology
[1]. Advanced experimental methods, such as nanoprobing
and single-molecule techniques, provide us with a wealth of
data at the microscopic level. Theoretical description of the
observed phenomena at such scales is often a considerable
challenge, since many irregular features that average out on
the macroscopic scale cannot be ignored anymore. Some-
times, however, rather simple characteristics emerge, allow-
ing for exact analytic treatment.

One-dimensional(1D) transport is rarely found on the
macroscopic scale; at the molecular level though, one can
find several examples, e.g., kinesin motion along microtu-
bules[2–4] or DNA translocation through a nanopore[5–8].
Usually, in such problems, the underlying potential profile is
considered to be constant or at least regular. However, as we
show in this paper, DNA sequence heterogeneity and the
resulting random energy landscape can have a considerable
influence on the diffusion up to biologically relevant length
scales at room temperatures.

A. Protein-DNA interaction

The first example we study here arises in the context of
protein-DNA interaction. As proposed by von Hippel and
Berg [9,10], and recently observed in many systems[11], 1D
“sliding” of proteins along the DNA molecule is an impor-
tant component of protein specific site location; at least in

prokaryotes. The sliding is viewed as an unbiased, thermally
activated process. The actual rules of motion for sliding de-
pend on the details of interaction between the protein and the
DNA. The general belief is that there are two protein-DNA
binding modes: a strong “specific” mode that characterizes
binding of operator sites, and a much weaker “nonspecific”
mode in which binding of noncognate DNA occurs
[10,12–14]. In the nonspecific or “search” mode, the interac-
tion energy is usually assumed to be independent of the DNA
sequence that the protein is bound to, though not much ex-
perimental evidence beside relatively fast observed search
times favors this strictly “equipotential” picture. On the other
hand, scanning force microscopy experiments by Erieet al.
[15] clearly demonstrate DNA bending byCro repressor pro-
tein, both at operator and at nonoperator sequences[39].
Since local DNA elasticity is known to be highly sequence-
dependent[16], the energy of protein bound at random loca-
tions should have a random component, correlated at length
scales of the order of the protein binding domain size; see
Fig. 1(a). This sequence-dependent interaction energy com-
ponent appears in addition to possible local uncorrelated
sequence-dependent contributions from amino acid-base pair
contacts.

To estimate the significance of the random component of
the elastic energy, we use DNA elasticity data supplied by
the BEND.IT server[17], that incorporates DNase I based
bendability parameters[18] and the consensus bendability
scale[19]. We assume that the protein-DNA complex in Fig.
1(a) has a fixed geometry, i.e., the protein is “hard.” Then,
the elastic contribution to the protein-DNA interaction en-
ergy at theith sequence has a random component propor-
tional to the random component of the Young’s modulusdEi:

Ui = F1 +
dEi

Ē
GS,pu2

2L
DkBT, s1d

where,p.50 nm is the DNA persistence length,u.60° is
the curvature angle[15], L=10−20 bp is the bent sequence*Electronic address: mich@mit.edu
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length and Ē.3.43108 N/m is the average Young’s
modulus. The resulting potential profile is plotted in Fig.
2(a). The standard deviation of the elastic energy induced by
the Young’s modulus variations(10–15 % typically) for bio-
logically relevant parameters isksdUd2l1/2,0.5–1.5 kBT,
so that disorder appears to be relevant for this problem. Fig-

ure 2(b) shows the normalized energy-energy correlator for
the random energy component

gsrd =
1

2kdU2sxdl
kfdUsxd − dUsx + rdg2l, s2d

averaged over 10 000 DNA sequences. Saturation togsrd
.1 is clearly observed on the scale of 15 base pairs, which is
the correlation length of this potential profile.

Another interesting example, also from the field of
protein-DNA interaction, was considered recently by Schies-
sel et al. [20], and deals with nucleosome repositioning by
DNA reptation. It was argued that chromatin remodeling
[21,22] can be readily understood in terms of intranucleoso-
mal loop diffusion, the size of the loop resulting mainly from
a compromise between elastic energy and nucleosome-DNA
binding energy. Here again, for a given size of the loop, the
elastic energy is sequence dependent[22], and therefore has
a random component with finite correlation length; see Fig.
1(b). For nucleosome repositioning, this effect may be even
more pronounced than for prokaryotic protein-DNA interac-
tion; the bending anglesu and the sequence lengthsL are 2
to 3 times larger so that the net effect may be twice as strong
as for theCro repressor[20].

It is known that DNA can have anintrinsic curvature
arising from the stacking interactions between base pairs.
Such sequence-dependent curvature can play a role similar to
sequence-dependent DNA bendability in providing a corre-
lated landscape. The bending energy of an intrinsically
curved region is easier, requiring a smaller angular deforma-
tion u=ucomplex−uintrinsic by the DNA-protein complex. Such
sequence-dependent intrinsic curvature was suggested to be
involved in positioning nucleosomes[23].

Aside from DNA bendability and curvature, local correla-
tions in nucelotide composition, known to be present in eu-
karyotic genomes,(AT/GC-rich isochores) can result in a
correlated landscape of the protein-DNA binding energy.
This effect becomes especially pronounced when a DNA-
binding protein has a strong preference toward a particular
AT/GC composition of its site. However, in this case, varia-
tions take place over much longer scales, and are not quan-
titatively relevant in the specific contexts addressed in this
paper.

Both above examples can be viewed as specific cases of
DNA reptation by means of a propagating defect(or “slack”)
of a fixed size. Elastic energy associated with the slack cre-
ation is sequence-dependent and correlated on the scale of
the slack size. The propagating defect is well localized and
samples the energies of well-defined subsequent DNA seg-
ments. As was pointed out by Cule and Hwa[24], short-
range correlated randomness of this kind has no effect on the
scaling of the reptation time. However, as we show below,
the defect motion itself is strongly influenced by the disorder
and has nontrivial behavior at different length scales.

B. DNA translocation through a nanopore

Consider a piece of single-stranded DNA(ssDNA) pass-
ing through a large membrane channel. If the potential dif-
ference across the membrane is zero, the motion of the ss-

FIG. 1. (a) Prokaryotic transcription factor sliding;(b) nucleo-
some repositioning.

FIG. 2. (a) Energy of local elastic deformation and(b) potential
profile correlator, as calculated from the data supplied by the server
BEND.IT for a segment ofE.coli genome. The deformed DNA
sequence is assumed to be of lengthL=15 bp.
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DNA is governed by thermal fluctuations. Since the channel
width differs from the ssDNA external diameter only by few
Ångstroms[40], it is reasonable that local interactions be-
tween the nucleotides and the amino acids of the channel
take place. These interactions may have a local base-
dependent component. In addition, longer-range terms are
likely to appear in the presence of a voltage difference. In the
cytoplasm, the DNA negative charge is almost completely
screened out at distances of few nanometers by the counter-
ion cloud. When the DNA molecule enters the pore, most of
the counterions are likely to be “shaven off,” though some of
them may remain stuck to the DNA; see Fig. 3. Thus, the
linear charge density inside the pore acquires a random and
basically uncorrelated component:

qsxd = q̄sxd + dqsxd, kdqsxddqsydl = r2adsx − yd, s3d

where a=0.34 nm is the interbase distance. The potential
energy of the DNA segment inside the pore in the presence
of a voltage difference ofV0 is

Usxd =
V0

h
E

0

h

x8qsx + x8ddx8. s4d

Since the average charge densityq̄sxd is in general non-
zero, DNA transport is driven by the average forceV0q̄sxd /h.
The correlation function of the random component ofUsxd is
readily calculated to be

kdUsxddUsx + ydl =
V0

2r2a

3h2 sh − uyud2Sh +
uyu
2
DHsh − uyud,

s5d

where Hsxd is the Heaviside function. Thus, the potential
profile for DNA motion has a random component with cor-
relation length ofh. Taking V0,100 mV, r,e/h (e is the

elementary charge), h,10 nm, we obtaindU,kBT.
Although this example differs from the above ones in that

a nonzero average driving force is present, large random
fluctuations of the energy landscape may have significant
effect on the distribution of translocation times — a problem
that has attracted much interest lately[25].

II. DIFFUSION IN A RANDOM POTENTIAL

A. The model

The problems described above map onto a one-
dimensional random walk with position-dependent hopping
probabilitiespi, qi =1−pi to the right and to the left, respec-
tively; it is most natural to assume the regular activated
transport form

pi ~ e−bsUi+1−Uid, qi ~ e−bsUi−1−Uid, s6d

whereb;skBTd−1 andUi is the sequence-dependent compo-
nent of the potential energy. The latter is basically a sum of
many random contributions and can therefore be considered
to be normally distributed[13]. Thus, in the absence of cor-
relations, the probability for realization of a certain profile
Usxd of lengthL is (in the continuum limit)

PfUsxdg ~ expF−
a

2
E

0

L

dxU2sxdG . s7d

This is the well-known random-energy model[26] that
was applied successfully to various biophysical problems,
from protein folding[27] to protein-DNA interaction[13]. It
assumes no correlations between energies of different sites.
One can think of a more general form of potential profile

FIG. 3. (Color online) ssDNA transport through the nanopore; on the right: charge densityqsxd and correlatorgsrd=kfdUsxd−dUsx
+rdg2l / s2kdU2sxdld as a function of the coordinater.
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PfUsxdg ~ expF−
1

2
E

0

L E
0

L

dy dx UsxdGsx − ydUsydG .

s8d

Taking for example,Gsx−yd~]xy
2 dsx−yd, we obtain the

random-force model[28] that describes an energy landscape
appearing as a random walk with linearly growing correla-
tions. This model was studied during the last decades in the
context of heteropolymer dynamics[24,29], glassy systems
[30,31] and quite recently—to describe DNA denaturation
dynamics[32]. Characteristic features of the random-force
model are logarithmically slow(“Sinai’s”) diffusion [33,34]
and aging[31,32]. More generally,G is related to the correl-
lator of U by kUsxdUsydl=G−1sx−yd.

To include finite-range correlations into Eq.(7), we must
incorporate a limitation on the acceptable forces. The en-
semble of energy profiles is therefore naturally described by
the following probability density:

PfUsxdg ~ e−HfUg, s9ad

with pseudoenergy

HfUg =
1

2
E

0

L

dxFaU2sxd + gSdU

dx
D2G . s9bd

Energy level statistics for this kind of potential profile is
also Gaussian, as can be seen from the average

keikUl =
E DfUgeikUe−HfUg

E DfUge−HfUg
= expS−

k2

4Îag
D , s10d

which is the characteristic function for Gaussian distribution
with zero mean and variance

s2 =
1

2p
E

−`

` dq

a + gq2 =
1

2Îag
. s11d

The correlator of the potential profile is readily calculated
as

gsrd ; 1
2kfUsxd − Usx + rdg2l = s2s1 − e−ur u/jcd, s12d

wherejc=Îg /a is the correlation length.

B. Mean first passage time

A convenient formalism for analyzing diffusion in a ran-
dom one-dimensional potential profile is that of mean first-
passage time[34,35]. For a given set of probabilitieshpij, the
MFPT from i =0 to i =N (in terms of number of steps) is

t̄0,N = N + o
k=0

N−1

vk + o
k=0

N−2

o
i=k+1

N−1

s1 + vkd p
j=k+1

i

v j , s13d

wherevi ;qi /pi (see Appendix A for derivation). The MFPT
given by this expression is for a fixed realization of prob-
abilities, i.e., for a given potential energy profile; as such, it
is itself a random variable. The disorder-averaged version of

the MFPT is readily obtained after we note that the sequen-
tial products in Eq.(13) reduce to

p
j=k

i

v j = expfbsUi+1 + Ui − Uk − Uk−1dg. s14d

For an uncorrelated potential profile, this exponential fac-
torizes into independent exponentials; after the ensemble av-
eraging and the summations are carried out, we obtain for
N@1,

kt̄0,Nl = N2e2b2s2
, s15d

where, for the uncorrelated potentialsg=0d

s2 =
1

aa
. s16d

Note that this expression cannot be obtained by simply
putting g=0 in Eq.(11). The reason is that wheng becomes
small, the discrete nature of the underlying lattice(the DNA)
starts to matter. The integration in the Fourier space in Eq.
(11) extends only up touqmaxu=p /a, and thus,

s2ug→0 =E
−p/a

p/a dq

2pa
=

1

aa
. s17d

Returning to the case of a finite correlation length, we
note that in the limit ofjc@a, variations of the potential
between neighboring sites can be neglected compared to
variations between sites separated by distances of orderjc or
larger. Since the main contribution to the MFPT comes from
the double sum in Eq.(13), we can write the continuum
version as

t̄0,N . 2E
0

N

dxE
x

N

dy e2bfUsxd−Usydg. s18d

To average over all possible realizations ofhUsxdj, we cal-
culate

ke2bfUsxd−Usydgl =
E DfUge2bfUsyd−Usxdge−HfUg

E DfUge−HfUg

= expF2b2jc

g
s1 − e−ux−yu/jcdG . s19d

For ux−yu!jc, Eq. (19) reduces to expsb2ux−yu /gd, so that
for N!jc we have

kt̄0,Nl , N2exps4b2s2N/jcd. s20d

(Here and in what follows, we measure distances in units of
a, unless specified otherwise.) This kind of exponential creep
is quite expected, since fora→0, jc→` our model(9a) and
(9b) reduces to the random-force model.

In the opposite limitux−yu@jc, we can neglect the expo-
nente−ux−yu/jc, so that Eq.(18) produces an ordinary diffusion
law, with a disorder-renormalized diffusion coefficient:
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kt̄0,Nl = N2e4b2s2
. s21d

Comparing Eqs.(21) and (15), we see that diffusion in a
correlated potential profile proceeds more slowly than in an
uncorrelated profile. It is straightforward to obtain an expres-
sion for the disorder-averaged MFPT for arbitrary correlation
length. If we keep all four terms in the exponential in Eq.
(14) while going to the continuum limit, we obtain

t̄0,N . 2E
0

N

dxE
x

N

dy ebfUsx+ad+Usxd−Usyd−Usy−adg. s22d

Averaging this expression over the disorder as in Eq.(19)
yields for N@jc:

kt̄0,Nl = N2expf2b2s2s1 + e−a/jcdg, s23d

which has the obvious limits of Eqs.(15) and (21) for
jc→0 andjc@a, respectively.

III. TYPICAL VERSUS AVERAGE

Large deviations from the average are characteristic to
many disordered systems. In this section, we therefore ex-
plore thetypical properties of random walks as compared to
the disorder-averaged ones.

A. Quantifying fluctuations

After the potential profile is generated(see Appendix B),
we calculate the MFPT using Eq.(13). Figure 4(a) presents
the mean first passage times calculated for various realiza-
tions of Usxd at biologically relevant temperaturess.kBTd.
It is clear that although the ensemble-averaged MFPT does
behave as prescribed by Eq.(23), typical MFPT exhibits
high variability from one profile to another. The stepwise
shape of typical curves suggests that a random walk in such
a profile consists of regions characterized by subdiffusion
(vertical “steps”) and superdiffusion(plateaus), appearing in-
termittently. Uncorrelated potential profiles, as Fig. 4(b)
shows, also lead to a certain disorder-induced variability,
though of a considerably smaller magnitude. To quantify the
sample dependence of the MFPT, we calculate its variance
over the ensemble of potential profiles. Figure 5 presents the
standard deviation int̄0,N as a function ofN for correlated as
well as uncorrelated potential profiles. We observe that the
variance scales asN3 for all profiles. This dependence can be
obtained analytically in a quite straightforward fashion. In a
correlated profile, the MFPT is given by Eq.(18); then

ksDt̄0,Nd2l . 4E
0

N

dxE
x

N

dyE
0

N

dx8

3E
x8

N

dy8fke2bsUsxd−Usyd+Usx8d−Usy8dgl

− ke2bfUsxd−Usydglke2bfUsx8d−Usy8dglg. s24d

We now recall that energies at points separated by distances
larger thanjc are essentially independent. Therefore, to esti-
mate the averages, we assume the energies to be equal for
points within one correlation length and independent other-
wise. The first average in the integral produces

FIG. 4. (Color online) Mean first passage times: typical versus
average. Thick solid lines are the result of averaging over 1000
realizations of potential profilessbs=1.0d: (a) correlated profile
with jc=40.0; (b) uncorrelated profile.

FIG. 5. MFPT standard deviation forbs=1.0 for correlated and
uncorrelated potential profiles.
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ke2bfUsxd−Usyd+Usx8d−Usy8dgl

. ke2bfUsxd−Usydglke2bfUsx8d−Usy8dgl

+ jcdsx − x8dke2bf2Usxd−Usydglke−2bfUsy8dgl

+ jcdsy − y8dke−2bf2Usyd−Usxdglke2bfUsx8dgl

+ jc
2dsx − x8ddsy − y8dke−4bfUsyd−Usxdgl + ¯

. ke2bfUsxd−Usydglke2bfUsx8d−Usx8dgl + jce
12b2s2

fdsx − x8d

+ dsy − y8dg + jc
2e16b2s2

dsx − x8ddsy − y8d + ¯. s25d

Plugging this expression into Eq.(24) and performing the
integrations, we obtain the leading term

ksDt̄0,Nd2l , jcN
3e12b2s2

. s26d

Similar reasoning yields for the uncorrelated case

ksDt̄0,Nd2l , N3e6b2s2
. s27d

We see that for givens andb, correlated energy landscapes
produce stronger fluctuations in MFPT than uncorrelated
ones, in agreement with Fig. 4.

Comparing the expressions for the variance with the cor-
responding expressions for disorder-averaged MFPT, we see
that for any temperature, there is a characteristic distanceNc,
below which there is no self-averaging and the typical MFPT
is determined by fluctuations. This length is

Nc , jce
4b2s2

s28d

for correlated profiles, and

Nc , e2b2s2
s29d

for uncorrelated ones. This effect is akin to “freezing” in the
random-energy model[26]: for low enough temperatures,
typical passage times for distances belowNc are dominated
by high barriers. This is more pronounced for correlated pro-
files since in addition to stronger temperature dependence,
there is amplification by a factor of,jc, as sites within a
correlation length give similar contributions. Figure 6 dem-
onstrates the lack of self-averaging for uncorrelated potential
profiles at short distances and low temperatures: themedian
MFPT (defined as the 50th percentile of a sample) shows
large deviations from the average at distances shorter thanNc
and coincides with it at distances larger thanNc.

B. Anomalous diffusion

The lack of self-averaging in the regionjc!N!Nc can
be quantified by estimating the typical MFPT. Consider Eq.
(14) for an uncorrelated potential and define the following

coarsening procedure:Ũi =U2i +U2i+1. Then, in the “freezing
regime,” the double sum

o
k

o
i

expfbsŨi − Ũkdg s30d

is dominated bysi ,kd producing the largest exponent. For a
finite samplehUij of sizeN and variances2, the correspond-

ing samplehŨij containsN/2 values distributed with a vari-

ance 2s2. The minimum and the maximum ofhŨij have

therefore characteristic values of ±2sÎlnfN/ s2Î2pdg, re-
spectively. Thus, a typical MFPT for an uncorrelated poten-
tial reads

t̄0,N , expF4bsÎln
N

2Î2p
G . s31d

For the purposes of estimating the extreme values of a cor-
related energy landscape, the sample size is effectively re-
duced by a factor of,jc, therefore, the extrema ofhUij are

approximately ±sÎ2 lnfN/ sjc
Î2pdg. Noting that sites within

a correlation length around the extrema contribute similarly
to the MFPT, for a correlated potential we write

t̄0,N , jc
2expF4bsÎ2 ln

N

jc
Î2p

G . s32d

Figure 7 compares typical values oft̄0,N calculated from Eqs.
(31) and (32) with numerically calculated median values of
MFPT. We see that our analytical estimates produce a correct
order of magnitude fort̄0,N. As expected, for uncorrelated
profiles, the agreement is better at lower temperatures; for
higher temperatures, Eq.(31) is an underestimation since we
do not include contributions from second lowest, second
highest, etc., energy levels. Eq.(32), on the other hand, turns
out to be a slight overestimation, since we have replaced the

FIG. 6. Median versus disorder-averaged[solid lines calculated
from Eq. (23)] MFPT. Median values were calculated for 1000
realizations of potential profiles:(a) Correlated potential profile
with jc=20.0; (b) uncorrelated potential profile.
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average of,jc
2 terms by their maximum value.

Large difference between the median and the average val-
ues is a signature of a broad(“fat tailed”) asymmetric prob-
ability distribution. The insets of Fig. 8 present two probabil-
ity density functions for MFPT, atN!Nc and N@Nc. For
short distances, the distribution is very broad and spans sev-
eral orders of magnitude. ForN@Nc, the system is self-
averaging, in the sense that the MFPT distribution is much
narrower with almost coinciding median and average values.

C. Characteristics of random walk

To complete the picture, we perform direct simulations of
random walks in correlated and uncorrelated potential pro-
files; typical results are depicted in Fig. 9. One can see a
clear qualitative difference between the two cases: random
walks in the uncorrelated profile look very much like stan-
dard walks withpi =qi =1/2, whereas motion of a particle in
a correlated profile has a somewhat different nature.

As above, we see that macroscopic motion of a particle in
a correlated potential consists of subdiffusive as well as su-
perdiffusive segments. It also appears that the particle tends
to be localized near the bottom of “valleys” of fewjc in
extent, whereas in an uncorrelated profile, there are no pref-
erable sites for localization. Obviously, when the time is
measured in real-time units, rather than in number of steps,
the particle is more likely to be found at the minima of the
energy landscape in both cases. In terms of the number of
steps though, all sites of the uncorrelated landscape are re-
visited more or less uniformly.

IV. BIOLOGICAL IMPLICATIONS

A. Transcription factors

Consider a DNA-binding protein searching for its target
site on the genome. As explained in the Introduction, a cor-
related random-energy landscape can arise from the interplay
of sequence-dependent flexibility, and the bending contribu-
tion to the total DNA-binding energy. Diffusion on such a
landscape may then lead to localization in the energy “val-
leys,” i.e., the protein will reside preferentially in specific
(favorable) areas of the genome. Such nonuniform sampling
has important implications for biological strategies of tran-
scription factor bindings: First, if a valley contains several
binding sites, the rapid(superdiffusive) scanning of the val-
ley leads to quick equilibration between these sites(while
equilibration for similarly spaced sites outside a valley will
take much longer). This is important when the protein binds
nearby sites with distinct binding energies, and the strongest

FIG. 7. Typical MFPT forN!Nc at various values ofbs: (a)
Uncorrelated potential profile;(b) correlated potential profile with
jc=10. Solid lines are the analytical estimates from Eqs.(31) and
(32).

FIG. 8. Probability density functions for MFPT calculated for
100 000 uncorrelated profile realizations atbs=2.

FIG. 9. Random walk in(a) uncorrelated, and(b) correlated
with jc=20.0, potential energy profiles.
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one has to be occupied first to provide correct regulation(as
in the case of theCro repressor). Second, several proteins
bind their specific sites only when activated by ligands(e.g.,
PurR, GalS, etc.), spending the rest of the time in an inactive
form “waiting” for the ligand. These proteins can benefit
from staying close to the site in the waiting mode, since they
can then quickly find their target upon activation.

One of the results of this study was that inhomogeneities
significantly reduce the overall diffusion rate, as in Eq.(23).
While this may be beneficial in confining a protein to favor-
able regions, it severely restricts the ability to search large
portions of the genome by one dimensional diffusion. Since
we argue that a portion of the inhomogeneity originates from
variations in the bending energy of the DNA, a potential
strategy is for the binding protein to switch between two
states which bend the DNA weakly or strongly. The weak
bending state is subject to reduced variations in the energy
landscape and can diffusive more freely(search mode), com-
pared to the strongly bending state which is more likely to be
confined in the vicinity of favorable energy valleys(waiting
mode). One potential candidate for exploiting this strategy is
the tertarmericLacI protein that consists of two DNA-
binding dimeric subunits. Each subunit binds DNA and
bends it slightly; when both subunits are bound, DNA is
deformed into an extended loop. Several experimental results
suggest thatLacI binds DNA with only one subunit while
searching for its target site(“holding DNA with one arm”).
Only when both subunits find their site, the DNA is bent into
a loop. Very few structural data are available for proteins
bind to DNA nonspecifically(search mode). The above strat-
egy suggests that DNA is less deformed in such complexes.

Another potential source for a correlated inhomogeneous
energy landscape is an extended protein–DNA interface with
net interactions that are the sum of several local contribu-
tions. (The addition of such correlated contributions leads to
a much larger variance of energy than if they were uncorre-
lated.) This can be a significant effect for large multiprotein
complexes(such as polymerases, TFIID, TFIIB complexes in
yeast, etc.). To avoid slow down by such inhomogeneities,
protein complexes can avoid scanning DNA in the fully as-
sembled state when the protein-DNA interface is extensive.
Individual components of the complex can search for their
sites independently, assembling the whole complex only on
the right site. In fact, most of large protein–DNA complexes
follow this strategy of assembly on the site, while many
dimers and tetramers are assembled in the solution.

B. Nucleosomes

Other implications concern nucleosome positioning and
dynamics. Wrapping of the DNA around these large multi-
protein complexes is essential for packing DNA in the small
volume of the cell nucleus. Nucleosomes, however, prevent
transcription factors and other proteins from accessing DNA.
To allow a transcription factor to access its target, nucleo-
somes close to that site have to be removed from the DNA or
repositioned. While removal of nucleosomes is made by spe-
cific enzymes that chemically modify them(e.g., by histon
methilation), repositioning relies in part on nucleosome mo-

bility. In general, nucleosomes have to be(i) positioned at
specified locations, and(ii ) be able to move along the DNA
in the vicinity to the initial placement site allowing access to
this region of the DNA.

Nucleosome positioning is determined by specific se-
quences on the DNA. Such sequences are also known to
provide DNA flexibility and/or internal curvature[23,36]. As
discussed above, local DNA flexibility and curvature create a
correlated energy landscape for binding. We suggest that in-
homogeneous diffusion on such landscapes is an important
element that provides both(i) preferential positioning of the
nucleosomes due to DNA flexibility and curvature, and(ii )
relatively rapid diffusion within the confines of the energy
valley. Conversely, uncorrelated landscapes cannot achieve
both objectives, since strong nucleosome binding sites pre-
vent local diffusion along the DNA, while weak sites are not
able to localize these proteins, leading to their random place-
ment. In fact, experiments[36] have shown that nucleosome
positioning sites are extended and are fairly weak. Such
structure of positioning sites creates an extended valley on
the correlated binding landscape, supporting our hypothesis.

This mechanism can also explain how certain proteins
(such as HMGB) can reposition nucleosomes by binding to
the DNA in their proximity. It has been suggested that such
proteins alter the local mechanical properties of the DNA
(such as its flexibility, curvature, or supercoiling) leading to
repositioning of the nucleosome[37]. If the nucleosome is
indeed preferentially localized by being trapped in a valley
of the binding landscape, HMGB proteins may well alter the
shape of the valley(e.g., by shrinking it on one side). Mobile
nucleosomes, rapidly diffusing within the boundaries of the
valley, will then reposition themselves in the new landscape.

C. Translocation

In Sec. IB we described how slow(activated) passage of
ssDNA through a nanopore can be modeled by diffusion over
a correlated landscape. In particular, we demonstrated that if
there are inhomogeneities in the charge of the DNAinside
the channel, there will be variations in the potential energy
landscape that are proportional to the applied voltage differ-
enceV. There is in fact scant structural information about the
reconfigurations of charges(both free and bound) as DNA
passes through a channel. Examining the variations in the
MFPT of DNA as a function of the applied voltage[8], may
provide an indirect probe of any inhomogeneities in the
charge passing through a channel.

V. CONCLUSIONS

We studied one-dimensional diffusion in a random-energy
landscape with short-range correlations. We found that dis-
order with short correlation lengthjc leads to a strong
sample dependence of diffusion characteristics. The diffusive
transport is influenced up to length scales exceedingjc by
orders of magnitude. Three diffusion regimes can be identi-
fied:

(1) For distances smaller than the correlation length(N
!jc), the disorder-averaged MFPT is
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kt̄0,Nl , N2exps4s2b2N/jcd.

At biologically relevant temperatures, theN2 factor prevails;
however, at low temperaturesskBT&2s /Îjcd, we obtain ex-
ponential creepsSinai’s diffusiond.

(2) For distancesN much larger than the characteristic
value Nc, MFPT exhibits some variability from sample to
sample. However, the typical value of the MFPT is given by
the disorder-averaged MFPT:

kt̄0,Nl = N2expf2b2s2s1 + e−a/jcdg.

The variance of MFPT over the ensemble of potential profile
realizations scales asN3 with distance aboveNc. The char-
acteristic distanceNc equalsjce

4b2s2
for correlated profiles

ande2b2s2
for uncorrelated ones.

(3) In the intermediate casejc!N!Nc, the disorder-
averaged MFPT behaves as described by Eq.(23). However,
the MFPT distribution over the ensemble of profile realiza-
tions is much broader belowNc than above it, as Fig. 8
demonstrates. As a result, a typical sample yields diffusion
times orders of magnitude shorter than the average. This ef-
fect can be qualitatively understood in terms of the random
energy model. BelowNc, diffusion times are mostly influ-
enced by high barriers and deep valleys that are at the ex-
trema of energy landscape histogram. The typical diffusion
times are given by

t̄0,N , expF4bsÎln
N

2Î2p
G

for an uncorrelated profile, and

t̄0,N , jc
2expF4bsÎ2 ln

N

jc
Î2p

G ,

for a correlated one. AboveNc, most obstacles to the particle
motion lie in the central region, so that Eq.s23d produces a
valid estimation for a typical diffusion time: the system be-
comes self-averaging.

These regimes appear to be relevant for biological sys-
tems and provide qualitative insight into the kinetics of
protein-DNA interaction.
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APPENDIX A: MEAN FIRST-PASSAGE TIME DERIVATION

The MFPT from the 0th site to theNth site is defined as
the mean number of steps the particle has to make in order to
reach theNth site for the first time. The derivation here fol-
lows the one in Ref.[35].

Let Pi,jsnd denote the probability to start at theith site and
to reach thej th site for the first time in exactlyn steps. Then,

for example, any path contributing toPi,i+1snd should end
with a step from theith site to the right, i.e.,

Pi,i+1snd = piTisn − 1d, sA1d

whereTisnd is defined as the probability of returning to the
ith site aftern stepswithout stepping to the right of it. Now,
all the paths contributing toTisn−1d shouldstart with a step
to the left, i.e., to thesi −1dth site with probabilityqi, and
then returning to theith site in the remainingn−2 steps,not
necessarily for the first time. Any path possessing these prop-
erties consists of paths that originate from thesi −1dth site
and reach theith site for the first time inmø sn−2d steps and
paths that originate from theith site and return to theith site
in sn−m−2d steps without stepping to the right of it. Thus,
the probabilityTisn−1d can be written as

Tisn − 1d = qio
m,l

Pi−1,ismdTislddm+l,n−2. sA2d

We now introduce generating functions

P̃i,jszd = o
n=0

`

znPi,jsnd, T̃iszd = o
n=0

`

znTisnd. sA3d

One can easily show(see, e.g., Ref.[38]) that

P̃0,Nszd = p
i=0

N−1

P̃i,i+1szd. sA4d

Knowing P̃i,i+1szd, one calculates the MFPT straightfor-
wardly as

t̄0,N =

o
n

nP0,Nsnd

o
n

P0,Nsnd
= F d

dz
ln P̃0,NszdG

z=1

= o
i=0

N−1F d

dz
ln P̃i,i+1szdG

z=1
. sA5d

Using Eqs.(A1) and(A2), we obtain the following recursion

relation for P̃i,i+1szd:

P̃i,i+1szd =
zpi

1 − zqiP̃i−1,iszd
. sA6d

To solve fort̄0,N, we must introduce boundary conditions. Let
p0=1,q0=0, which is equivalent to introducing a reflecting
wall at i =0. This boundary condition clearly influences the
solution for short times and distances. However, as numeri-
cal simulations suggest, its influence relaxes quite fast, so
that for longer times, the result is clearly independent of the
boundary. The benefit of settingp0=1 becomes clear when
we observe that

P̃0,1s1d = 1, ⇒ ∀ i P̃i,i+1s1d = 1. sA7d

Hence,
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t̄0,N = o
i=0

N−1

P̃i,i+1s1d. sA8d

The recursion relation forPi,i+1s1d is readily obtained from
Eq. (A6):

P̃i,i+18 s1d =
1

pi
+

qi

pi
P̃i−1,i8 s1d = 1 +vif1 + P̃i−1,i8 s1dg sA9d

with vi ;qi /pi. Thus, the expression fort̄0,N is obtained in
the closed form as

t̄0,N = N + o
k=0

N−1

vk + o
k=0

N−2

o
i=k+1

N−1

s1 + vkd p
j=k+1

i

v j . sA10d

APPENDIX B: POTENTIAL PROFILE GENERATION

Given the pseudoenergy partition function

Zsld =E DfUge−lHfUg, sB1d

the average pseudoenergy is

kHl = U−
]

] l
ln ZsldU

l=1
, sB2d

and the variance is

ksDHd2l = kH2l − kHl2 = U ]2

] l2ln ZsldU
l=1

. sB3d

Straightforward calculation for the pseudoenergy given by
Eqs.(9a) and (9b) yields

Zsld = p
q

1
Î2plsa + gq2d

. sB4d

Since a discrete chain of lengthL has exactlyL modes, each
contributing a factor ofl−1/2, we have

ln Zsld = −
L

2
ln l + A, sB5d

whereA does not depend onl. Thus,

kHl = L/2, ksDHd2l = L/2. sB6d

Hence, typical potential profiles have pseudoenergies in
the rangeL /2±ÎL /2. This result together with Gaussian sta-
tistics of energy levels of Eq.(10) forms the basis of the
algorithm we employ for building the energy profiles. First, a
random and uncorrelated potential profile obeying Gaussian
statistics with the required variances2 is generated on a
one-dimensional lattice. Next, we look for a permutation of
lattice sites that produces a typical pseudoenergyHfUg for a
given correlation lengthjc (or, equivalently, for given values
of a and g). This is accomplished by a Metropolis-type al-
gorithm that converges to a prescribed value of pseudoen-
ergy picked at random from Gaussian distribution around
kHl; see Fig. 10.
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