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How to Derive a Protein Folding Potential? A New
Approach to an Old Problem
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In this paper we introduce a novel method of deriving a pairwise potentialHarvard University
Department of Chemistry for protein folding. The potential is obtained by an optimization procedure
12 Oxford Street, Cambridge that simultaneously maximizes thermodynamic stability for all proteins in
MA 02138, USA the database.

When applied to the representative dataset of proteins and with the
energy function taken in pairwise contact approximation, our potential
scored somewhat better than existing ones. However, the discrimination
of the native structure from decoys is still not strong enough to make the
potential useful for ab initio folding. Our results suggest that the problem
lies with pairwise amino acid contact approximation and/or simplified
presentation of proteins rather than with the derivation of potential. We
argue that more detail of protein structure and energetics should be taken
into account to achieve energy gaps. The suggested method is general
enough to allow us to systematically derive parameters for more
sophisticated energy functions. The internal control of validity for the
potential derived by our method is convergence to a unique solution upon
addition of new proteins to the database. The method is tested on simple
model systems where sequences are designed, using the preset ‘‘true’’
potential, to have low energy in a dataset of structures. Our procedure is
able to recover the potential with correlation r 1 91% with the true one
and we were able to fold all model structures using the recovered
potential. Other statistical knowledge-based approaches were tested using
this model and the results indicate that they also can recover the true
potential with high degree of accuracy.
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Introduction

The problem of how to determine the correct
energetics is paramount to the complete solution of
the protein folding problem.

Two avenues to determine energy functions
(force-fields) for proteins have been pursued. The
first uses more or less rigorous or semi-empirical
classical or quantum mechanical calculations to
determine, from the first principles, and/or fitting
to spectroscopic experimental data, the forces
acting between amino acids in a vacuum or in
solution (Vasques et al., 1994). This approach is
rigorous but it encounters formidable compu-
tational difficulties. Most importantly, it can be
realized only within the framework of detailed,
atomistic description of amino acids. However,
detailed atom resolution models of proteins are not
feasible for folding simulations due to obvious
computational difficulties.

An alternative, more practical, approach is to
introduce simplified, coarse-grained models of
proteins where amino acids are represented in a
simplified way, as one of few interacting centers
which may have some internal degrees of freedom
as well but which are generally much simpler than
real amino acids (Levitt, 1976; Ueda et al., 1978;
Miyazawa & Jernigan, 1985; Wilson & Doniach,
1989; Skolnick & Kolinsky, 1990; Shakhnovich et al.,
1991). Such models are more tractable computation-
ally in both threading approaches (Finkelstein &
Reva, 1991; Jones et al., 1992) and ab initio
simulations (Kolinsky & Skolnick, 1993, 1994).
However, the serious problem with simplified
representations of proteins is that it is difficult to
describe protein energetics at the coarse-grained
level of structure description. What ‘‘force-fields’’
should act between these simplified interacting
centers, which remain identified with natural
amino acids, such that native structures, for these
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model proteins, still correspond to pronounced
energy minima for their respective sequences? To
address this problem Tanaka & Scheraga (1976)
proposed an approach which was later developed
by Miyazawa & Jernigan (1985) in their seminal
contribution (the ‘‘MJ’’ method). The MJ method is
based on a statistical analysis of protein structures
and frequencies of contacts, defined in the realm of
simplified protein representation. Frequencies of
individual amino acid contacts were derived and
compared with frequencies expected in the random
mixture of amino acids and the solvent. Next, a
quasichemical approximation was employed relat-
ing these properly normalized frequencies with
‘‘potentials’’ via the relation:

uij = −T ln fij

where i and j denote amino acid types; fij are
normalized frequencies of contacts between them
extracted from the database of existing structures.
The definition of the energy scale denoted as
‘‘temperature’’ (T ) in the quasichemical approxi-
mation of MJ is a delicate problem. It was
addressed in a recent work by Finkelstein et al.
(1993, 1995) who also showed that quasichemical
approximation may be a reasonable one under the
assumption that protein sequences are random. In
the recent study Mirny & Domany (1996) showed
that quasichemical approximation is also valid if
contacts are independent and uniformly dis-
tributed. The subsequent development of the
knowledge-based approach based on quasichemi-
cal approximation included efforts to incorporate
distance-dependent forces (Sippl, 1990), better
representation of amino acid geometry and
approximation of multiple-body interactions
(Kolinsky & Skolnick, 1993, 1994), dihedral angles
(Kolaskar & Prashanth, 1979; Nishikawa & Matsuo,
1993; Rooman et al., 1992; DeWitte & Shakhnovich,
1994), and better treatment of solvent–protein
interactions (Park & Levitt, 1996). A detailed
analysis of knowledge-based potentials and
examples of their successful and unsuccessful
application is given by Kocher et al. (1994).
Approaches to derive potentials from quasichemi-
cal approximation, especially the most difficult
issue of reference state, are discussed by (Godzik
et al., 1995). Real potential is believed to distinguish
the native structure by making its energy
much lower than energy of all other conformations,
i.e. it provides stability of the native structure.
Protein sequences should also fold fast to their
respective native conformations. It was shown, for
simple models of proteins, that these two con-
ditions, thermodynamic stability and kinetic acces-
sibility, are met when the native state is a
pronounced energy minimum for the native
sequence, compared to the set of misfolded
conformations (Sali et al., 1994; Shakhnovich, 1994;
Gutin et al., 1995). Therefore it is reasonable to
suggest that the essential property of the correct,
‘‘true’’, folding potential is that the energy of a
native sequence folded into its respective native

conformation should be much lower than the
energy of this sequence in every alternative
conformation.

An approach to derivation of protein folding
potentials that takes this requirement explicitly into
account was proposed by Goldstein et al. (1992;
GSW) and Maiorov & Crippen (1992). Goldstein
et al. maximized the quantity Tf /Tg , which is
equivalent to the maximization of energy gap
between the native state and bulk of decoys. They
showed that, for each individual protein, the
problem of potential optimization has a simple
analytical solution; however their approach en-
countered a serious problem in averaging the
potential over different structures in the database.
Indeed, a potential optimized for one protein is not
necessarily (and in fact never!) optimal for another
protein, while the goal is to find a potential which
is good, or optimal, simultaneously for many
proteins. Goldstein et al. (1992) found an ad hoc
procedure of averaging over a protein database
which offered good results in their tests.

Here, we suggest a systematic method for
deriving a potential which delivers a pronounced
energy minimum to all proteins in their native
conformations and hence should provide fast
folding and stability of model proteins. The
method is general and is not limited to any
form of potential or any model of a protein.
Another important feature of this approach is
that it has internal criteria of self-consistency:
when the derived potential does not change
significantly upon addition of new proteins to the
database, it corresponds to meaningful, nontrivial
energetics.

The proposed new method of potential deri-
vation should be rigorously tested and compared
with existing approaches. However, there is a
serious problem with testing parameters derived by
any approach: the lack of objective rigorous criteria
of success because true potentials are not known
(and they are not likely to exist since real proteins
differ from their simplified representations). A
reasonable criterion is whether the derived poten-
tials are useful for fold recognition and ab initio
folding. The results of numerous tests by many
groups (see the comprehensive analysis in the
special issue of Proteins (Lattman, 1995)) show that,
while existing knowledge-based potentials often do
a decent job in fold recognition, they are not
sufficiently accurate for ab initio folding. Strong
evidence that the ‘‘bottleneck’’ in ab initio folding is
in the energy function rather than in the search
strategy is that ab initio procedures fail because
decoys with energy lower than energy of the native
conformations are found in test cases (Covell, 1994;
Elofson et al., 1995). Conversely, in inverse folding
tests, the native structure, in most cases (though not
always), has lower energy than decoys (Wodak &
Rooman, 1993; Lemer et al., 1995; Miyazawa &
Jernigan, 1996).

The best way to assess different procedures of
derivation of potentials is to use, as a test case, a
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model system where the correct form of the
Hamiltonian (say, pairwise contact potential) is
given, and the true potential is known. Different
procedures to extract potentials can be applied, and
then the true and derived potentials can be
compared. Further more, the derived potentials can
be used in a model system for threading or ab initio
folding to compare their performance with that of
the true potentials and thus to close the circle.

Such a comprehensive analysis is possible in the
realm of lattice models. Thomas & Dill (1996) took
the first step in this direction when they considered
two-dimensional short lattice chains composed of
monomers of two types.

Here, we test our procedure for derivation of
potentials as well as other approaches using both:
(1) representative set of the native proteins obtained
from the Brookhaven protein databank (PDB); and
(2) three-dimensional lattice model proteins com-
posed of 20 types of amino acids.

A sequence design algorithm has been recently
developed which generates sequences with
specified relative energy (Z-score, Bowie et al.,
1991) in a given conformation (Shakhnovich &
Gutin, 1993a,b; Abkevich et al., 1995a). We use this
method to carry out the following rigorous
procedure for testing our and alternative ap-
proaches to derive potential. (1) Select at dataset of
the native protein conformations. We use a
representative subset of the native structures
obtained from PDB for real proteins and a set of
random compact lattice conformations for the
lattice model. (2) Using some potential to serve as
the true potential for the model, design sequences
to have selected conformations as native ones, thus
creating a model protein databank. (3) Using
different procedures, we extract ‘‘knowledge-based
potentials’’. (4) Compare derived potentials with
the true potential. Test the performance of the
derived potentials in ab initio folding simulations
(for the lattice model) and threading (for real
proteins), using model proteins from the built
dataset that has not been used to derive potentials.

This approach to test the potentials allows one to
systematically test by different parameter deri-
vation procedures how large the database size must
be to successfully derive parameters. Furthermore,
we can create databanks of model proteins with
various levels of stability that make it possible to
determine how well optimized protein sequences
must be to allow successful parameter derivation.

We apply the procedure described above (except
ab initio folding tests) not only to lattice model
proteins but to also real proteins. With a set of true
parameters, we design sequences for a representa-
tive set of protein conformations, derive the
optimized potential, and evaluate the maximal
value of Z-score for a given model Hamiltonian.
This value is compared with scores for native
sequences with the same optimized potential. This
comparison sheds light not only on the advantages
and pitfalls of the parameter derivation procedure
but, more importantly, it determines which models

can serve better for prediction of protein confor-
mations.

In subsequent chapters of this paper we will
carry out this program.

Results

Lattice model

We consider a conformation of a protein chain as
a self-avoiding walk on a cubic lattice. Two amino
acids that are not nearest neighbors in sequence and
are located in the next vertices of the lattice are
considered in contact. Energy of a conformation is
given by equation (6).

Dataset of stable and folding proteins

The dataset of lattice proteins consists of 200
randomly chosen compact conformations of 27-mer
on a 3 × 3 × 3 cube (Shakhnovich & Gutin, 1991;
Shakhnovich et al., 1991; Sali et al., 1994; Socci &
Onuchic, 1994). We derive the potential using the
first 100 of the lattice proteins and then test the
derived potential for the remaining 100 lattice
proteins from the dataset. We use the potential
obtained by Miyazawa & Jernigan (1985) as the true
one. Using the true potential for each native
conformation in the dataset, we design a sequence
which minimizes Z-score for this conformation (see
above). The stability and folding of each designed
sequence are tested by the Monte Carlo folding
simulations. Each starts from a random coil
(Shakhnovich et al., 1991; Sali et al., 1994) and
continues until it reaches its respective native
conformations.

Derivation of potential

To obtain the potential which minimizes Z-scores
for model proteins, we use Monte Carlo procedure
in the space of potentials (see Methods). Starting
from different random potentials, the Monte Carlo
search converges fast, and the resulting potential
does not depend on the starting random potential.
The procedure converges to a unique potential even
at zero optimization temperature Topt = 0. This
shows that there is only one minimum in the space
of potentials in our model. This guarantees that the
derived potential provides the global minimum to
the target function �Z�harm.

Derived versus true potential

The potentials obtained from this method are
compared with the real one in several ways. Fig-
ure 1 presents 210 values of interactions in the
derived potential versus the same values for the true
potential. Correlation r = 0.84 shows that our
method is able to reconstruct the true potential.

The values of energy for attractive interactions
(U(j, h) < 0) are predicted much better than the
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Figure 1. Derived potential versus true potential for the
lattice model.

Figure 2. Z-score of model proteins with the derived
potential verus Z-score with the true potential.

energy values of repulsive interactions
(U(j, h) > 0). Attractive interactions stabilize the
native conformations and appear much more
frequently among native contacts. Repulsive
interactions, in contrast, are very rare among
native contacts and therefore the statistics is
much poorer for them. Some repulsive contacts
cannot be found in the dataset of model proteins.
In contrast, contacts between all amino acids
are present among native contacts in real proteins
(see below). The absence of contacts between some
types of amino acids in the model dataset is
the result of a very strong sequence design. The
design finds a sequence that provides very high
stability of the native conformation in the given
model, and by doing so it eliminates repulsive
contacts which destabilize the native conformation.
This observation is the first indicator that native
sequences do not appear to be well designed
for stability in terms of our model contact pairwise
potential, 4.5 Å cutoff of residue-residue inter-
actions etc.).

Ab initio folding with derived potentials

Ability of the derived potential to fold model
proteins is tested by their ab initio folding. Folding
simulations are carried out using the standard
Monte Carlo method for polymers on a cubic
lattice. A discussion of the lattice Monte Carlo
simulation technique, and its advantages and
caveats, is detailed in many publications (see
e.g. Sali et al., 1994; Socci & Onuchic, 1994).
Each simulation starts from a random coil
conformation, proceeds at constant temperature
and lasts about five times longer than the mean
folding time.

All of the tests are performed for the proteins that
were not used in the derivation procedure. First we
compare Z(Uder) values provided by derived
potential with Z(Utrue) values for the true potential.
Figure 2 presents Z(Uder) as a function of Z(Utrue).

Derived potential provides almost the same or even
lower values of Z-score for all proteins.

We define folding time for each protein as a mean
first passage time, i.e. time when the native
conformation is first reached. Time is measured in
MC steps. Forty runs are performed for each
protein for both true and derived potentials.
Simulations are run at temperature T = 0.7. Fig-
ure 3 presents the scatter plot of folding time
obtained for the derived potential vs folding time
for the true potential. All proteins that fold with the
true potential fold also with the derived potential
and exhibit approximately the same folding time.

The folding test proves that the derived potential
is able to provide fast folding for all proteins with
well-designed sequences.

Figure 3. Folding time with derived potential versus
folding time with the true potential for the lattice model.
100 lattice model proteins not used for derivation of
potentials were taken for Monte-Carlo folding simu-
lations. Folding ‘‘time’’ is measured in Monte-Carlo steps
required to reach the native conformation.
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Figure 4. Effect of the database size, used for derivation
of the potential, on average energy gap (A) and
convergence test (B), for lattice model proteins.

Figure 5. Convergence of potential for lattice model
proteins. Correlation between potentials derived from all
100 model proteins and potential derived from Nprot < 100
proteins is shown as a function of Nprot.

increases, we compare the potential obtained for
Nprot proteins with the one obtained for all 100
proteins. The correlation between these potentials
as a function of Nprot is shown in Figure 5. Clearly,
as the number of proteins in the database increases,
the correlation between the derived potentials
approaches 1 and, hence, the potential converges to
a unique solution.

The results of this procedure clearly demonstrate
the stability of our procedure. It is also important
that the potential, which is highly correlated with
the true potential (r = 0.8), can be obtained with only
40 . . . 50 proteins, which is of the order of the size
of the database of non-homologous stable disulfide-
free proteins available from the PDB. Convergence
of the derivation procedure also guarantees that
obtained potential does not depend on the number
of specific properties of the proteins used for the
derivation if the database is large enough.

Are there enough parameters? Are there too
many parameters?

An important issue is whether the number of
parameters adjusted in the potential is sufficient to
provide a large enough gap for all proteins with
designed sequences. For example, two-letter (HP)
models are too non-specific to make the native
structure unique: for any sequence, many confor-
mations of three-dimensional HP heteropolymers
have the same energy as the native conformation
has. The native state in such models is not unique
in most cases; correspondingly no sequence,
random or designed, can have any energy gap in
the HP models (Yue et al., 1995).

On the other hand, the number of parameters
should not be too large. If the number of
parameters is too large it is always possible to find
a ‘‘potential’’ for which all members of the database
used in the derivation have low energies, but the

Effect of the database size

How sensitive is the derived potential to the
number of proteins used in the derivation? How
many proteins are required to obtain a potential
similar to the true potential? To address these
questions we perform a derivation of potential for
databases with various numbers of proteins.

For the database containing Nprot proteins we
derive a potential using the technique described
above and compute the average score (energy gap)
=F= = =�Z�harm= provided by the derived potential.
(Figure 4A). We also compute the correlation of the
true potential and the one obtained for Nprot

proteins (see Figure 4B).
For few (1 . . . 5) proteins one can obtain a

potential that provides a very large energy gap for
these proteins. This potential, however, fails to
provide a reasonable gap for other proteins and is
not similar (r = 0.2 . . . 0.5) to the true potential. As
the number of proteins in the database increases,
the average energy gap decreases approaching a
rather high constant value of (=F= = 1.6). The
correlation between the derived and true potentials
approaches a constant value, r = 0.85. To ensure
that the derived potential converges to a meaning-
ful value as the number of proteins in the database
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resulting potential is unrelated to the true potential
and does not provide low energy to proteins
which are not members of the derivation data-
base.

More specifically, the question is whether the
problem of finding parameters is under-determined
or over-determined, i.e. how the number of
independent functions to minimize Z-scores
of individual proteins is related to the number of
independent parameters. For an over-determined
problem the number of functions/constraints is
greater than the number of parameters and, hence,
there is no solution that minimizes all the functions
well. This is not the case for our designed
sequences, since there is true potential which
provides a large enough gap for all proteins. Below
we address this question for native sequences of
real proteins. If the problem is under-determined,
then the number of functions/constraints is less
than the number of parameters and one can find an
infinite number of solutions minimizing all func-
tions. This is the case when the number of proteins
in the database is small. As we have shown above,
the potential derived for a few proteins provides an
average energy gap greater than that provided by
the true potential, but it shares no similarity with
the true potential.

However, as the number of proteins in the
database increases, an average gap approaches that
for the true potential and the derived potential
becomes very similar to the true one. To ensure that
we do not have too many parameters we have
devised a control procedure with randomly
shuffled sequences.

Randomly shuffled sequences: an
essential control

As a control we carried out the derivation
procedure for our database of model proteins using
shuffled sequences instead of the designed ones for
each protein. In this case one should not expect that
there exists any potential which makes all the
native structures to be of low energy for randomly
shuffled sequences, i.e. in this case our procedure
should not lead to any meaningful solution. What
happens in this case?

Again, for a few (1 . . . 5) proteins one can find a
potential which provides a large enough energy
gap (=F= = 0.8 . . . 1.2) for randomly shuffled se-
quences (see Figure 4A). However, in contrast to
the designed sequences, average energy gap drops
substantially to a marginal level of =F= = 0.2 as the
number of proteins in the database increases.
Clearly, there is no correlation between the true
potential and potential derived for a database with
shuffled sequence (see Figure 5). There is also no
correlation (r = 0.0) between potentials obtained for
100 proteins with shuffled sequences and potentials
obtained for Nprot < 100 of these proteins. Hence, the
procedure does not converge to any potential for
proteins with randomly shuffled sequences.

Consequently, no pairwise potential can provide

stability simultaneously to all of the native
conformations with the shuffled sequences.

Comparison of the results for designed sequences
with the control case of shuffled sequences suggests
that the problem of finding a pairwise potential is
not under-determined, i.e. 210 parameters of the
potential are sufficient to provide a large gap for
designed sequences and are not sufficient to
provide a large gap for any pair of sequence and
conformation.

Note that the procedure is able to distinguish
between designed and randomly shuffled se-
quences without prior information about the
potential used for the design. Designed sequences
show the convergence of average energy gap =F= to a
level of F = 1.4 as the number of proteins increases.
Potential is converging which is seen from high
correlation between potentials obtained for differ-
ent number of proteins in the dataset. In contrast,
no convergence to a single potential is observed for
proteins with randomly shuffled sequences (see
Figure 5). The target function F approaches small
values of 0.2 as the number of proteins in the data
base increases. Where are the native proteins on
this scale? Do they behave more like designed or
like randomly shuffled sequences?

Native proteins

The model

We build a database of proteins with less than
25% of sequence homology, longer than 50 and
shorter than 200 amino acids. The database contains
104 proteins listed below (in pdb-code names): 1hcr
1cad 1enh 1aap 1ovo 1fxd 1cse 1r69 1plf 2sn3 1bov
1mjc 1hst 1hyp 1ubq 4icb 1pk4 1poh 1aba 1lmb
1cyo 1brs 1fna 1mol 1stf 1gmp 1frd 1hsb 1ida 1plc
1aya 1onc 1sha 1fus 1psp 1fdd 256b 1acx 1bet 1fkb
1pal 2sic 1brn 2trx 1ccr 2msb 1dyn 1c2r 1etb 1gmf
2rsl 1paz 1rpg 1acf 2ccy 3chy 135l 1aiz 1rcb 1adl
1bbh 1slc 1eco 2end 4fxn 1ith 1cdl 1flp 2asr 1ilr 1lpe
1hbi 1bab 1lba 1mba 8atc 1ash 2fx2 2hbg 2mta 1f3g
1ndc 1aak 1cob 4i1b 1mbd 2rn2 1esl 1hfc 1hlb 1pnt
1hjr 4dfr 119l 3dfr 2cpl 5p2l 1rcf 9wga 2alp 1fha
1bbp 2gcr 1hbq. We use this database to derive the
potential that maximizes the average energy gap
=�Z�harm=. We define a contact between two amino
acids as when the distance between their nearest
heavy atoms is less than cutoff value 4.5 Å. In
contrast to the lattice model, real proteins have a
different length and a different number of contacts.
These factors affect the value of Z-score. To account
for the increase of Z with protein length we
introduce the following normalization:

Znorm =
Z

znnat

where nnat is the number of native contacts.
Normalized values of Znorm are used to compute
Fnorm = �Znorm�harm harmonic mean. Our criterion
overemphasizes poor scores and therefore is very
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Figure 6. Z-score of native proteins with different
potentials. Proteins are arranged in order of increasing
length; this explains the systematic trend of decrease of
Z-score as protein ID no. increases.

Figure 7. Native proteins. A, Effect of the database size
on the energy gap; B, convergence test: correlation
between the potential derived using smaller database and
the potential derived using all 104 proteins in the
database.

sensitive to proteins in the database that are more
random-like; hence their presence in the dataset can
distort the resulting potential. To avoid this
difficulty we selected proteins for the dataset,
which we believe are stabilized by similar physical
forces (hydrophobic, electrostatic, H-bonds, etc.)
and avoided proteins stabilized by other factors
such as disulfides or coordinated metals, heme
groups, etc.

Figure 6 presents values of Z-score obtained for
the derived potential. Although our method finds
the potential that maximizes the average energy
gap (=Z=) simultaneously for all proteins, the values
of the gap obtained for real proteins are rather
small. This indicates that in the framework of the
model we use (contact pairwise potential, 4.5 Å
cutoff of residue–residue interactions etc) no
pairwise potential can provide high stability
simultaneously to all native proteins.

How good is the model for native proteins?

The potential derived from native proteins
converges to a certain value of Z-scores. Is this
value large or small? To answer this question we
should compare this value with two limiting cases:
(1) when the functional form of energy function is
‘‘exact’’, and sequences are well-designed for this
energy function; and (2) with randomly shuffled
sequences.

For each protein in the dataset of native proteins,
we design a sequence using MJ potential as the true
potential preserving amino acid composition of the
native sequence. Then we derive a potential for a
subset containing Nprot proteins from the database.
The derivation is performed for the proteins built
of: (1) the native structures with their native
sequences, (2) the native structure with sequences
designed for them; (3) and the native structures
with randomly shuffled sequences.

Figure 7 presents average normalized energy gap
values =Fnorm= obtained for all three sets of sequences
as a function of the number of proteins in the
database. Similar to the lattice model (see Fig-

ure 4A), designed sequences reach high values of
the gap =F= = 1.2 whereas for random sequences
=F= = 0.2. Derivation of potential for native se-
quences yields =F= = 0.56, which is considerably less
than the gap provided for the same structures with
designed sequences.

Another important property of designed se-
quences is that the derived potential converges to
a single potential as the number of proteins in the
database increases. Randomly shuffled sequences,
in contrast, lack this convergence. The criterion of
this convergence is the correlation between
potentials derived using 100 proteins and potentials
derived using Nprot < 100 proteins. The correlation
between potentials obtained for the database of
native proteins as a function of the number of
proteins in the database is shown in Figure 7B.

In contrast to randomly shuffled sequences,
native sequences as well as designed sequences
provide convergence to a single potential as the
number of proteins used for the derivation
increases. Hence, we are able to find a potential
which, for the given model, maximizes the energy
gap for all native proteins simultaneously. This
result clearly demonstrates that the model energy
function used in this study of proteins is
meaningful and reflects some essential interactions,
but not all, since there is a pronounced difference
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Figure 8. Derived potential versus true potential for the
native proteins.

does not affect the quality of the reconstruction of
the true potential.

Can poorly designed proteins fold?

As we have demonstrated above, native proteins
are rather poorly designed in terms of the pairwise
potential. The best possible pairwise potential
provides a rather small energy gap to the native
proteins, which is characterized by the typical value
of Znorm = 0.5 . . . 0.7. Well designed proteins have,
in contrast, Znorm = 1.2 . . . 1.4 and may be able to
fold to their native conformation, as lattice model
simulations suggest. The question is whether
poorly designed sequences can fold as well.

To address this question we turn to the ‘‘ideal’’
lattice model and build a dataset of 200 poorly
designed proteins. Proteins in this dataset are
designed to have Znorm = 0.5 . . . 0.7. Then we
derived potential for this dataset as described
above and performed folding simulations for all
sequences using true and derived potential. The
result is that no protein was able to fold to its native
conformation neither with derived nor with the
true potential.

In all cases there was a conformation which has
an energy below the energy of the native
conformation. Hence: (1) the native conformation is
not the global energy minimum for a poorly
designed protein; (2) poorly designed proteins are
unable to fold to their native conformations in ab
initio folding simulations.

Fold recognition of poorly designed proteins

Sampling techniques that are more constrained to
protein-like conformations (Finkelstein & Reva,
1991; Jones et al., 1992; Wodak & Rooman, 1993)
can, however, recognize the native and native-like
folds among a small enough pool of alternative
conformations. The success of different pairwise
potentials for the fold recognition shows that this
sampling technique works quite well even for
poorly designed proteins. Using our set of poorly
designed sequences we perform fold recognition
tests for all lattice model proteins by threading
sequences of each protein through 200 alternative
conformations. Only three out of 200 sequences
recognize a non-native conformation as those of the
lowest energy. This result is in contrast to previous
observations that for every protein in this set native
conformation is not the global energy minimum.
Hence, the only reason why fold recognition works
for 197 proteins is that a set of decoys is not too
large and representative, so that the native
conformation had the lowest energy.

Not surprisingly, the comparison of the results of
ab initio folding simulations and fold recognition
indicates that folding is a much more complicated
problem than fold recognition, since a much larger
energy gap is required for successful folding
compared to fold recognition.

The question whether poorly designed proteins

between F-values for designed and random
sequences.

Since our method of derivation maximizes
=Z=-scores for all proteins, no potential can provide
a greater =Z=-score for the studied Hamiltonian
(pairwise interaction potential) than this method.
Our results demonstrate that very moderate
=Z=-scores can be obtained using a pairwise
potential for native proteins and no potential can
increase values of =Z= for them. However, other
models utilizing different protein structure rep-
resentations or different forms of potential can be
more efficient in providing a large enough energy
gap for native proteins. Using our procedure one
can compare different models quantitatively and
select the one which provides the largest energy
gaps for native proteins.

Can we derive a potential from the dataset of
poorly designed sequences?

Using the lattice model and native proteins, we
demonstrated that our procedure is able to
reconstruct sufficiently accurate true potential if
sequences in the database are well designed. Is this
requirement too restrictive? How well can we
reconstruct potential for proteins with poorly
designed sequences?

To mimic the poor design of native proteins
observed in our model, for each protein structure,
we design sequences that provide the same value of
energy gap as the native sequence. Design is
performed using MJ potential as the true one. Next
we derive the potential for these poorly designed
sequences and compare them with the true
potential.

Figure 8 presents the scatter plot of interaction
energies for the obtained potential plotted against
the same values of the true potential. The result
shows that our procedure reconstructs potential for
poorly designed sequences very well providing a
correlation of rpoor = 0.91 with the true potential.
The poor design of native sequences in our model
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Table 1. Comparison of different procedures for derivation of potential
Correlation Fraction of proteins

Potential �Z� with true potential able to fold (%)

True potential 7.68 1.00 100
This work 8.61 0.83 (0.82) 96
Goldstein et al. (1992) 8.45 0.78 (0.71) 94
Hinds & Levitt (1994) 7.18 0.86 (0.84) 99
Miyazawa & Jernigan (1985) 7.09 0.75 (0.68) 95

Correlations are computed for potentials obtained using all 200 proteins. Correlations
shown in brackets are for potentials obtained using 100 proteins.

can be used for recognition of the native fold in
threading experiments has yet to be studied
systematically.

Comparison with other potentials and
techniques for extraction of potential

Several knowledge-based techniques for deri-
vation of potentials from native protein structures
have been suggested. It is important to compare our
potential with other pairwise potentials, and our
method of derivation with other methods. Figure 6
presents Z-scores computed for proteins of our
database using our potential and two other
potentials taken from the literature. Clearly our
potential provides significantly lower values of
Z-score for all proteins in the database. Two other
potentials perform well as well as providing rather
low Z-scores. Although potentials are obtained
using different techniques, the overall profiles of
Z-score for this dataset of proteins are very similar
for all three potentials, i.e. when a protein has low
Z-score with one potential it usually has low
Z-score with another potential. High correlations
between Z-score values provided by these three
potentials for the same set of proteins
(rMJ,GKS = 0.83 rGKS,MS = 0.86 and rMJ,MS = 0.83) indicate
that high or low value of Z-score is a property of
a protein itself irrespective of potential used.
Different proteins are known to have different
stability, i.e. different quality of design, which is
displayed by high or low values of Z-score.

Comparison with other techniques for extraction
of potential

It is important to compare not only potentials
themselves but also the techniques for derivation of
potential. Our ideal lattice model is very useful for
this purpose. We apply different techniques to the
same set of lattice proteins and test obtained
potentials in the same way as we did this for our
technique.

Here we compare four techniques for derivation
of potential. The first two are widely used statistical
knowledge-based methods to derive energy of
residue–residue and residue–solvent interactions.
Knowledge-based techniques are reproduced fol-
lowing Miyazawa & Jernigan (1985, 1996) (MJ)
and Hinds & Levitt (1994; HL). The third tested
technique is the procedure suggested by Goldstein

et al. (1992; GSW). This procedure is somewhat
similar to our method since the potential is
obtained to maximize ratio Tc /Tf , which is similar
to the Z score we use. Goldstein et al. found analytic
expression for potential which maximizes Tc /Tf

for one protein. To find the potential for a set
of proteins they used averaging, which is not
justified but it yielded good results. We followed
the procedure described by (Goldstein et al. (1992)
to test their technique. Note that both the GSW
procedure and ours are optimization techniques,
whereas HL and MJ are statistical knowledge-based
ones.

The results for different techniques are summar-
ized in Table 1. Our potential is aimed to minimize
harmonic mean Z score and, as expected, provides
a lower value of �Z�harm than other potentials. GSW
procedure gives only slightly higher values of mean
Z, which proves that both optimization techniques
are powerful enough to provide a large energy gap
for proteins of a dataset. Knowledge-based tech-
niques provide a large energy gap as well. The
drastic difference between knowledge-based tech-
niques and optimization techniques becomes
transparent when we compare Z-scores obtained
for different derived potentials with Z-scores
provided by the true potential (see Figure 9). Both
optimization techniques provide Z-scores which
are lower than Z for the true potentials. Knowl-
edge-based techniques, in contrast, provide Z-
scores higher than those for the true potential.
Hence, knowledge-based potentials provide a
smaller energy gap than the true potential does,
whereas potentials obtained by optimization de-
liver an energy gap which is greater than those for
the true potential. The decrease of energy gap by
knowledge-based potentials can be crucial for ab
initio folding, especially for weakly designed
proteins which have rather small gap even with the
true potential.

All tested techniques are also quite efficient in
reconstruction of the true potential, exhibiting,
however, different patterns of distortion of the
original potential. Both optimization techniques
tend to underestimate repulsive interactions (see
Figure 1). Knowledge-based techniques, in contrast,
provide good estimates of energies of repulsive
interactions, suffering from underestimation of
attractive interactions (see Figure 10). Attractive
interactions are responsible for stabilization of the
native conformation and underestimation of attrac-
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Figure 9. Z-score for 100 test lattice proteins with potentials derived by different techniques from 100 database lattice
proteins. HL, Hinds & Levitt; MJ, Miyazawa & Jernigan, GSW, Goldstein et al.; MS, this work.

tive interactions leads to the observed (Figure 9)
increase in Z-score for knowledge-based potentials.

Another deformation of the true potential by MJ
technique is that it yields strong non-specific
attraction between residues, which is seen as low
negative average interaction between residues
(�UMJ� = −1.07 when s(U) is set to 1). This
non-specific attraction favors more compact confor-
mation irrespective of amino acid sequence. This
effect can mislead ab initio folding and fold
recognition. The origin of this non-specific attrac-
tion is in residue–solvent interactions taken into
account by MJ procedure. Estimate of the number
of solvent–solvent interactions is responsible for the
non-specific attraction.

Although all derivation procedures reconstruct
the true potential with systematic deviations, all
potentials are able to provide a large enough energy
gap for well designed model sequences.

Discussion

In this work we proposed and tested a novel
systematic approach to the long-standing problem
of how to find the correct potential for protein
folding.

In contrast to widely used knowledge-based
statistical technique, which relies on hardly
justifiable assumption of Boltzmann statistics, we
use optimization in space of parameters to search
for a potential which maximizes stability of all
native proteins in the dataset.

The procedure was tested using the ideal model
where sequences were designed with some known,
true potential and the recovered potential turned
out to be quite close to the true one. The key feature
of ideal models (both lattice and off-lattice) is that
the form of the energy function (two-body contact
Hamiltonian) is ‘‘exact’’, and the goal of the
parameter search is to determine 210 numbers,
parameters of this Hamiltonian. We showed that
our procedure recovers the parameters reliably and
uniquely. It is important to note that it is not crucial
for our method that sequences in the database are
well-designed: in fact derivation of potentials using
the database of weakly designed sequences (i.e.
having relatively high Z-score) yielded potentials
which were similarly quite close to the true
potential. This is in contrast to the control case of
assigning randomly shuffled sequences to struc-
tures: for them our procedure did not converge to
any meaningful potential. In this case addition of
any new ‘‘protein’’ (in fact a structure with a
random sequence assigned to it) changed the
potential dramatically, consistent with the notion
that there is no potential which delivers low energy
to all structure-random sequence pairs. In contrast,
even for weakly designed sequences there is the
potential for which these sequences have low (but
perhaps not the lowest) energy in their correspond-
ing native conformations, and such potential is
readily recovered by our optimization technique.

Figure 10. Potential obtained by statistical knowledge
based technique versus true potential for the lattice
model.
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The method has internal controls of self-consist-
ency. First is that the optimization procedure in
parameter space converges rapidly and at all
algorithmic temperatures to a unique solution (no
multiple-minima problem in space of parameters).
This suggests that the obtained solution delivers a
global minimum of Z-scores for studied proteins:
no other potential can provide, on average, lower
Z-scores for the same structures and sequences in
the same model.

Another important test of self-consistency of the
proposed method is convergence of potentials
when the database size grows. This clearly points
out that the problem is not under-determined as
well as it indicates clearly that there indeed exists
a potential with which all structures have low
energy. This criterion is especially important and
useful when we consider more complicated, than
pairwise contact, energy functions (see below).

The ideal models provide an ideal opportunity to
compare our new method with other approaches,
in particular with the methods based on quasi-
chemical approximation. Comparison of the true
potential with the ones derived by the Miyazawa &
Jernigan (1996) and Hinds & Levitt (1994) methods
(including most demanding ab initio folding tests)
shows that procedure based on the quasichemical
approximation can extract potential with impres-
sive accuracy. This conclusion is in contrast with
the assertion of Thomas & Dill (1996), who also
tested MJ procedure using lattice model and argued
that the extracted potential is not an accurate
approximation of the true potential. We believe that
the most important criterion of success of extracted
potential is how it performs in ab initio folding or
threading tests. Thomas and Dill’s test is similar in
spirit to threading because they addressed the issue
of how often the global energy minimum structure
remains as such with extracted potentials, judged
by exhaustive enumeration of conformations. They
considered all sequences (having unique native
state) for 14-mers and 16-mers with random
sequences. However, the native conformations of
random sequences (as well as other sequences
having no or minimal energy gap) are extremely
unstable with respect to any uncertainties in
potentials (Bryngelson, 1993). This is in contrast
with folding sequences (with energy gaps) which
were shown to be much more robust with respect
to uncertainties in potentials (Pande et al., 1995).
Unfortunately, there are no sequences in HP model
which have energy gaps (Thomas & Dill, 1996), and
one cannot even design such sequences in HP
model.

Therefore we believe that the major reason for the
conclusion reached by Thomas & Dill (1996) is that
they used the model where native conformation is
unstable with respect to even minor uncertainties in
potentials. It is important to note also that models
where sequences do not have energy gaps are
equally unstable with respect to point mutations
(Shakhnovich & Gutin, 1991). The remarkable
stability of proteins with respect to many point

mutations is further strong evidence that real
proteins should have a pronounced energy gap, a
property absent in HP models.

Building a set of alternative conformations to
compute Z-score is an important part of this work.
All results discussed here have been obtained
under the following assumptions regarding the
presentation of alternative conformations: (1) all
alternative conformations have the same compact-
ness as the native conformation; (2) all contacts
are equally probable; and (3) they are statistically
independent in the set of alternative conformations.
These assumptions allowed us to compute Z-score
for a protein without building the set of alternative
conformations explicitly. In fact, in order to
compute the Z-score for pairwise potential one
needs to calculate the average frequency of a
contact and covariance of two contacts in the set
of alternative conformations. The first assumption
states that the number of contacts in alternative
conformations is the same as in the native one.
Assuming compactness of alternative confor-
mations we eliminate the effect of non-specific
attraction/repulsion in the recognition of the native
conformation. Non-specific attraction introduced
into potential favors most compact conformations
irrespective of amino acid sequence, which can
give rise to false positives: very compact low
energy conformations for any protein in the fold
recognition test. One should be careful about a
non-specific term in a potential as it can substan-
tially affect the results of ab initio folding or fold
recognition. On the other hand, these non-specific
terms can be readily eliminated by shifting the
parameters by a given value (Shakhnovich, 1994;
Gutin et al., 1995).

By assuming equal probability for all contacts we
neglect the slight prevalence of contacts between
amino acids close to each other along the
polypeptide chain, which exists even in random
coil. However, since alternative conformations have
the same compactness as the native one local
contacts are not expected to dominate in these
conformations (Abkevich et al., 1995). Different
probabilities of local and non-local contacts can be
taken into account by assigning higher probabilities
to local contacts in the set of unfolded confor-
mations used in calculation of Z-score.

Our assumption of independent contacts is
strictly valid only for point-size non-connected
objects. Chain connectivity enforces positive corre-
lation between contacts i, j and i, j + l for small
l = 1, 2 . . . On the other hand, excluded volume of
amino acids leads to anti-correlation between
contacts, i, j and i, k since amino acid i can have
only a limited number of contacts due to excluded
volume interactions. Several other factors can
contribute to correlation between contacts in
opposite ways and the final outcome of these effects
has yet to be understood.

The set of alternative conformations built in this
way turned out to be adequate for estimating the
energy gap, in our model, since lattice proteins
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which have low enough Z-scores are able to fold
fast to their native conformations.

In general, while deriving a potential for a
particular task and sampling procedure (fold
recognition, design of an inhibitor, ab initio folding
etc), one has to construct a set of alternative
conformations which will be used as decoys during
the sampling.

Alternative conformations used in this work
correspond more closely (though not exactly) to
sampling by folding under the condition of average
attractive interaction between amino acids, while
fold recognition is likely to have a different set of
decoys. This set of decoys should be used in our
procedure of derivation of potentials for fold
recognition. It can be implemented by explicit
generation of alternative conformations for a given
protein by threading its sequence through other
protein structures of the database. Frequency of
contacts and contact correlations computed for
alternative conformations built in this way are to be
used for computing Z-scores and derivation of
potential. While derived, the potential will provide
the highest possible Z-score for fold recognition.
This work is in progress.

Now we turn to the discussion of the results
obtained for real proteins. First of all we see that
pairwise contact approximation is not meaningless
for real proteins, i.e. certain aspects of their
energetics are captured by that model. The clear
evidence for that is that our procedure converges to
a unique potential, and the Z-scores of proteins
with that potential are considerably lower than for
randomly shuffled sequences. This suggests that
such a simplified Hamiltonian still carries some
‘‘signal’’. In this sense the derived two-body
potentials are useful since they are able to
discriminate between native conformation and
decoys, when the number of decoys is not too large.

However, the Z-scores obtained for proteins
within the pairwise contact Hamiltonian approxi-
mation are not sufficiently low to provide high
stability (or large energy gap) for all proteins
simultaneously. Hence all knowledge-based poten-
tials can have only limited success in folding or
recognition of the native fold among alternative
conformations. This result can help in the
understanding of the origin of problems arising
with various structure prediction techniques. Our
results suggest that limited success in folding
simulations in the simple model with pairwise
potentials may be due not to incorrect potentials
(i.e. 210 numbers) but rather due to the deficiency
of the model itself, and no other potentials within
the same model of pairwise contact interactions can
provide better results uniformly for numerous
tested proteins (of course there can be successes
with potential which are optimized to fold just one
protein; Hao & Sheraga, 1996a,b); however, as our
analysis shows, such potential (speaking in our
terms, derived by optimization from the database
of one protein) will fail when used to fold another
protein.

Several models have been suggested for protein
folding which vary in accuracy of structure
representation and in complexity of the energy
function. What is the optimal number of parameters
of the energy function? How does the number of
parameters affect the results of the procedure to
extract potentials? To address these questions we
developed a convergence test which allows us to
estimate stability of the obtained potential with
respect to the dataset of proteins used. This test
indicates whether the number of parameters used
to maximize the energy gap (210 in the case of
contact pairwise potential) is large enough to
provide the gap for all protein simultaneously and
is small enough not to over-fit the data and adopt
any random sequence to a protein structure in the
database. Our results indicate that 210 parameters
of contact pairwise potential are not too many
(potential converges as the size of the database
increases), but the model itself is not sufficiently
realistic to provide the large gap for real proteins.
More accurate presentation of energy function
(possibly including local conformational prefer-
ences, distance dependent interactions, multibody
interactions etc.) is likely to be necessary to achieve
better discrimination between the native structure
and decoys. The presented method allows us to
assess systematically the validity of different
models and therefore can serve as a powerful tool
in the search for the most adequate model for
protein folding.

Methods

Derivation of potential

Energy function assigns a value of the energy to a
given conformation for a given amino acid sequence:

E = E(Sequence, Conformation, U) (1)

where U is the set of parameters of potential to be derived
from known native protein structures.

We use the Z-score as a measure of how pronounced
is the energy minimum corresponding to the native
conformations (with respect to a set of alternative
conformations; Bowie et al., 1991):

Z =
EN − �E�conf

sconf(E)
(2)

This is the deviation of the energy of the native
conformation from the average energy of alternative
conformations measured in units of standard deviation.
The average energy �E� and variance s(E) are computed
for a set of alternative conformations (see below). The
absolute value of the Z-score is the natural measure of the
energy gap.

Our goal is to find a potential U that minimizes
Z-scores (maximizes the energy gap) simultaneously for
all proteins in the dataset. This is achieved by building
a target function which is an appropriate combination of
individual Z scores and then optimizing this function
with respect to U. One should carefully choose a
combination of Z-scores to optimize. If the target function
to be optimized is naively chosen, for example a sum of
Z-scores, then low values of the target function can be
obtained if Z is small enough for some proteins and large
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for all others. To avoid this kind of a problem, one has
to minimize maxm (Z(m)), which is, however, very difficult
to deal with because of its discontinuity. We chose a
harmonic mean of Z(m) scores as a function to be
minimized:

�Z�harm =
M

s
M

m = 1

1/Zm

(3)

A harmonic mean is a smooth approximation of
maxm (Z(m)) since terms with the smallest absolute value of
Z(m) scores contribute most to the harmonic mean.

To maximize the energy gap for all proteins in a
dataset, we search for a potential U which maximizes the
value of function F(U) = −�Z�harm. The value F is directly
related to the energy gap. Hence below we refer to F as
an energy gap, with the understanding that it is not
exactly identical to it, but that these two quantities have
a monotonic interdependence.

We also apply some constraints to the potential U:

�U� = 0 (4)

s2(U) = �(�U� − U)2� = 1 (5)

The first constraint sets an average interaction between
amino acids to zero, i.e. eliminates non-specific attrac-
tion/repulsion between amino acids. Non-specific attrac-
tion/repulsion favors more/less compact conformations
irrespective the amino acid sequence. We use the first
constraint to avoid this kind of bias.

The second constraint sets the dispersion of interaction
energies to one. If energy is a linear function of
parameters, multiplication of U by an arbitrary constant
does not change the values of Z-score. By setting
s(U) = 1, we choose units of energy.

Potential U is obtained by maximizing of F(U) using a
procedure for non-linear optimization. The potential
obtained in this way is (by procedure) the one which
provides the largest energy gaps simultaneously to all
proteins in the dataset as far as �Z�harm is an accurate
approximation of maxm (Z(m)).

One of the most important parts of the method is
the set of alternative conformations used to compute
Z-scores. In general, one has to use the same set of
conformations for sampling and for computing Z-
scores. For example, to optimize the potential for
threading, one has to compute Z-scores using a set of
alternative conformations obtained by threading a
sequence through a representative set of protein
structures. To find a potential, one needs to generate
a set of alternative conformations, and then, use
this set to compute individual Z-scores. This pro-
cedure is computationally inexpensive since the set
of conformations obtained by threading does not
depend on the potentials used. However, when
dynamic sampling techniques (Monte Carlo, molecular
dynamics, growth procedures etc.), are used for
ab initio folding, the set of alternative conformations
is not known in advance and, more importantly,
depends on the potential applied. In this case one
has to make some assumptions about the ensemble of
alternative conformations that will enable one to
compute average energy �E�conf and variance of
energy sconf(E) over the ensemble of alternative
conformations. In this study we show how to optimize
pairwise potential for ab initio folding of a simple
model and for threading.

Derivation of parameters for pairwise potential

Pairwise potential

We consider pairwise contact potential, i.e. the energy
of a conformation is a sum of the energies of pairwise
contacts between monomers, which are not nearest
neighbors in sequence:

E(j, D) = s
1Ei < jEN

U(ji , jj )Dij (6)

where Dij = 1 if monomers i and j are in contact and Dij = 0
otherwise. Various definitions of contacts can be used
(Kocher et al., 1994). ji defines the type of amino acid
residue in position i. Potential is given by U matrix,
where U(j, h) is energy of a contact between amino acids
of types j and h.

Optimization of potential

The optimization of F(U) = −�Z�harm is performed by
the Metropolis Monte Carlo procedure in space of
potentials, i.e. at each step a cell U(j, h) of the matrix U
is chosen randomly and a small random number r
e[−0.1, 0.1] is added to U(j, h). This change is accepted if
it increases F(U) and rejected with probability:

1 − exp(−
dF

Topt
)

if it decreases F(U). Topt is the temperature of
optimization. Optimization of potentials starts from a
completely random potential and stops when the target
function changes less than on e = 0.01 for the last 20,000
steps.

Computation of Z-score

For a given sequence j, potential U and generated set
of alternative conformations D(k), k = 1, . . . K one can
compute Z of the native conformation DN:

Z(j, DN) =
E(j, DN) − �E(j, D(k))�k

s(E(j, D(k)))k
(7)

where index k denotes averaging over alternative
conformations.

Instead of computing the energy of a sequence in each
alternative conformation whenever we need Z, we
compute the average quantities for the set of confor-
mations and use these averages to compute Z-scores for
any sequence and any potential. These average quantities
are computed only once, which saves a significant
amount of computer time.

The energy of an individual conformation for a
pairwise Hamiltonian is given by equation (6). Hence, the
average energy for the set of conformation is:

�E(j, D(k))�k = s
1 E i < j E N

U(ji , jj )�Dij�k (8)

where �Dij� is the average density of contacts between
residues number i and j in the set of alternative
conformations:

�Dij�k = 1
K s

K

k = 1

D(k)
ij (9)
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Note that one can compute the matrix of average
density of a contact �Dij� only once for a set of
conformations and later use this matrix to compute the
average energy for a sequence j and any potential U
(see equation (8)).

Similarly for s(E),

s2(E(j, D(k)))k = �E2�k − �E�2
k

= s
1 E i < j E N

s
1 E l < m E N

U(ji , jj )U(jl , jm )Tij,lm

(10)

where Ti,j,l,m is a contact correlator,

Tij,lm = �D(k)
ij D(k)

lm �k − �D(k)
ij �k�D(k)

lm �k (11)

which depends only on the set conformations and can be
computed in advance for a given set. Once �Dij� and Tij,lm

are computed, one can easily compute the value of
Z-score for a given sequence j, conformation DN and
potential U:

Z(j, DN, U) =

s
1 E i < j E N

U(ji , jj )(DN
ij − �Dij�k )

X s
1 E i < j E N

s
1 E l < m E N

U(ji , jj )U(jl , jm )Tij,lm

(12)

Alternative conformations

For each protein in the dataset, we build an ensemble
of alternative conformations which contains confor-
mations with the same compactness as the native one, i.e.
the same number of residue-residue contacts. In fact,
instead of generating a huge number of conformations,
we assume that: (1) the contacts in the alternative
conformations are distributed independently and uni-
formly and that (2) the number of contacts is the same as
in the native conformation. These assumptions allow one
to compute the average density of contacts �Dij� and
correlator Tij,lm as:

�Dij� = n
ntotal

(13)

and

Tij,lm = g
G

G

F

f

1
n2

total

1
ntotal

− 1
n2

total

if ij $ lm

if ij = lm
(14)

where n is the number of contacts in the native
conformation, and ntotal is the total number of topologi-
cally possible contacts.

Following this, the value of Z score can be computed
for each protein in the dataset and a given potential U
using equation (12). Lattice model simulations show that
sequences with low values of Z are able to fold fast to
their native conformations (Abkevich et al., 1994; Gutin
et al., 1995).

To test our derivation method and compare it with
other techniques, we first turn to a simple lattice model
which allows us to test a potential by performing
ab initio folding of protein starting from a random
conformation. Next, we apply our method to derive
the parameters from the dataset of well-resolved protein
structures.

Sequence design

The aim of our sequence design is to find a sequence
(for a given potential) that delivers a low Z-score to a
given conformation. The procedure starts from a random
sequence with a given amino acid composition. Although
different sequences have different amino acid compo-
sition, the composition in the dataset corresponds to
those of the native proteins (Creighton, 1993).

At each step we choose two residues at random
and attempt to permute them. A change of Z-score
(dZ) associated with this permutation is computed. If
this permutation decreases the value of Z-score (dZ < 0),
then this permutation is accepted, otherwise (dZ > 0) the
permutation is rejected with probability:

1 − exp0− dZ
Tsel 1

The procedure stops when either no changes in sequence
have occurred in the last 1000 Nt steps or if a preset value
of Z-score is reached (Ztarget). Using this procedure and
setting different values Ztarget, we are able to generate
sequences that provide the required value of Z-score for
a given conformation.
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