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ABSTRACT Sequences of fast-folding model proteins (48
residues long on a cubic lattice) were generated by an evolu-
tion-like selection toward fast folding. We find that fast-
folding proteins exhibit a specific folding mechanism in which
all transition state conformations share a smaller subset of
common contacts (folding nucleus). Acceleration of folding
was accompanied by dramatic strengthening of interactions in
the folding nucleus whereas average energy of nonnucleus
interactions remained largely unchanged. Furthermore, the
residues involved in the nucleus are the most conserved ones
within families of evolved sequences. Our results imply that for
each protein structure there is a small number of conserved
positions that are key determinants of fast folding into that
structure. This conjecture was tested on two protein super-
families: the first having the classical monophosphate binding
fold (CMBF; 98 families) and the second having type-III
repeat fold (47 families). For each superfamily, we discovered
a few positions that exhibit very strong and statistically
significant ‘‘conservatism of conservatism’’—amino acids in
those positions are conserved within every family whereas the
actual types of amino acids varied from family to family. Those
amino acids are in spatial contact with each other. The
experimental data of Serrano and coworkers [Lopez-
Hernandez, E. & Serrano, L. (1996) Fold. Des. (London) 1,
43–55]. for one of the proteins of the CMBF superfamily
(CheY) show that residues identified this way indeed belong to
the folding nucleus. Further analysis revealed deep connec-
tions between nucleation in CMBF proteins and their func-
tion.

One of the most important goals of bioinformatics is to learn
how to recognize, through alignment of numerous homologous
sequences, the structural and functional features of the pro-
teins that they encode. The bioinformatics approach is based
on the idea of ‘‘recognition’’ and identification of features of
a new sequence common to those of another sequence for
which structure and function are known. However, this ap-
proach encounters significant difficulties because of a lack of
understanding of what features of sequences have evolved to
encode stability and fast folding, which ones are functional and
which ones may be ‘‘adventitious’’ because of insufficient
divergence of sequences from their common ancestor.

Better understanding of general principles that govern ki-
netics and thermodynamics of protein folding can help to
reveal the signatures of protein sequences that are related to
folding. Understanding of these ‘‘signatures’’ is of a great
importance for creating more unambiguous approaches to fold
recognition, especially in the most difficult cases of low
sequence homology.

A computationally tractable lattice model of protein folding
was developed recently in which folding of protein-like chains
of realistic lengths (up to 175 monomers; refs. 1 and 2) has

been demonstrated. Because the conformational space of such
chains is comparable with that of real proteins, and the model
solves its ‘‘Levinthal paradox’’ efficiently, there are good
reasons to believe that folding mechanism(s) used by model
proteins may be similar, in their essential features, to the
mechanism(s) of real protein folding. The fact that the ther-
modynamics of model proteins is qualitatively similar to the
thermodynamics of real proteins (cooperative folding transi-
tion) provides additional confidence in the validity of simple
models of folding.

One important result of theoretical studies is the conjecture
that protein code is multiple degenerate, i.e., that many
sequences may encode a given structure (3–5). This is fully
consistent with reality, which shows that very different se-
quences that have no obvious common evolutionary roots or
functional relation fold to structurally similar conformations
(evolutionary convergence). This observation poses a major
challenge to bioinformatics. In spite of a very low similarity of
sequences, one needs to recognize a ‘‘signal’’ (of physical or
evolutionary origin) that calls for similarity of their tertiary
structures.

A natural first step in this direction is to study lattice model
proteins that represent a replica of the universe of real proteins
as far as the basics of folding are concerned (2, 6, 7). It is
natural, in the realm of the lattice model, to mimic protein
evolution to obtain a large ‘‘database’’ of sequences that fold
fast into the same native conformation. In the world of model
proteins, we can simulate convergent evolution-like selection
that presses for the generation of fast-folding sequences and
creates families of model proteins that fold rapidly into the
same native structure and analyze their persistent features,
which for the studied model reflect the requirement of fast
folding and stability for the evolved sequences. The “signals”
from lattice model studies can be tested directly on sequencey
structure databases of real proteins. This is the approach taken
in the present paper.

First, we use a simple lattice model whereby a protein
conformation is represented by a walk on a cubic lattice.
Residues are located at the nodes of the lattice. The energy of
a protein conformation is the sum of energies of all pairwise
interactions between residues, which are not sequence neigh-
bors:

E 5 O
i.j11

N

U~ai, aj!Dij,

where Dij equals 1 if residues i and j are located in adjacent
nodes of the lattice and 0; otherwise, ai denotes the identity of
residue i, and U(u, v) is the energy of interaction between
residue types u and v. In this work, we use a matrix of
interactions U(u, v) derived by Miyazawa and Jernigan (8).
Protein folding is simulated by a dynamic Monte Carlo (MC)
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algorithm (9–11) at constant temperature T 5 0.16. Each
simulation run starts from a random chain conformation. A
run is terminated when the native conformation is reached,
and the number of MC steps required to reach the native
conformation is counted as folding first passage time (FPT).

Evolution is simulated by a series of successive random point
mutations and a selection procedure, which accepts a mutation
if it makes folding to the same native state faster and rejects
it otherwise (12). To eliminate dramatically decelerating mu-
tations at minimal computational cost, we use a system of five
successive filters applied as follows. Each mutant is subject to
100 MC runs. After every 20 runs, the MFPT is estimated. If
the estimated MFPT exceeds the MFPT of the ‘‘wild-type’’
sequence by .5%, then the mutation is rejected. This system
of filters effectively eliminates mutations that dramatically
slow down folding and accepts the majority of neutral and
accelerating mutations. As a final filter, the MFPT is evaluated
over 400 runs, and if the MFPT of the mutated sequence is
lower than the MFPT of the current, wild-type sequence, a
mutation is accepted. Finally, after a mutation is accepted, 400
additional runs are carried out to obtain an unbiased estimate
of the MFPT, which serves as a new wild-type MFPT. The
MFPT can be determined only to an approximation. This
factor introduces ‘‘noise’’ into the algorithm, which occasion-
ally allows for the occasional acceptance of decelerating
mutations. This factor allows to explore the sequence space in
a systematic manner by occasionally accepting a mutation that
slows down folding with subsequent compensating mutations,
which is equivalent to allowing (with some probability) mul-
tiple mutation.

We applied the selection algorithm to generate fast-folding
sequences of a 48-mer lattice model protein (Fig. 1). The initial
sequence folded into its native structure (Fig. 1) in about 9 3
107 MC steps (approximately as fast as the fastest random
sequences; ref. 13). We performed long (109 steps) equilibrium
MC run to make sure that the initial sequence had the
structure shown in Fig. 1 as its native state (global energy
minimum). However, it was designed relatively ‘‘weakly’’: its

z-score (which is often used as a measure of protein stability;
refs. 14 and 16) was 27.6, i.e., it was much higher than for the
best designed sequences (15) (for them z ' 213). After '400
accepted mutations, the steady–state was reached with folding
time fluctuating '3 3 105 steps. (Fig. 2). For the vast majority
of evolved sequences, the native structures (global energy
minima) were identical to the one shown in Fig. 1. However,
for a few sequences, structures that were very close (not more
than one small loop rearrangement) to the native state of the
original sequence (Fig. 1) were identified as global minima.

Thus, we obtained the database of sequences whose folding
rates differ more than two orders of magnitude. We aligned the
evolved fast-folding sequences to seek the features that dis-
tinguish them from slow-folders. For this analysis, we took only
sequences generated at the later steady–state stage of evolu-
tionary selection. Indeed, we find that only 10 residues totally
were conserved in .500-evolved fast-folding sequences (see
Fig. 1). Two other residues mutated only once. Mutations at all
of the other positions were frequent. What is so special about
those conserved residues?

In our earlier work (15), a nucleation mechanism of folding
was found for model 48-mers having the same native structure
as shown in Fig. 1, but with sequences designed using the MC
algorithm in sequence space, to provide high thermodynamic
stability to the native conformation. Nucleation mechanism
implies that certain amino acids (folding nucleus) form their
contacts predominantly in the transition state. We found as
shown in ref. 15 that the location of the folding nucleus was the
same for sequences designed using different sets of potentials
(though sequences were of course quite different), suggesting
that it may be determined predominantly by the structure (15).

The striking result of the present study is that all of the
residues conserved in the steady–state part of the evolution-
like selection of fast folders happened to be in the positions
identified in ref. 15 as the folding nucleus for that structure.
The probability that the nucleus residues are conserved in
evolved fast-folding sequences just by chance is negligible
('10210). Two other residues that mutated only once also
belong to the nucleus.

FIG. 1. The native conformation of the studied 48-mer. Broken
lines show the contacts in the folding nucleus defined and determined
as explained in refs. 17 and 15. ‘‘Cold’’ positions in which no mutations
were observed over the whole steady–state part of the evolution (last
500 sequences) are shown in white.

FIG. 2. The progress of the evolutionary algorithm showing accel-
eration of folding (MFPT in MC steps) for the 48-mer model. (Inset)
The first 50 accepted mutations.
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To verify further the kinetic importance of conserved po-
sitions for evolved fast-folding sequences, we searched for their
folding nucleus directly by using the method described in ref.
17. We found that the folding nucleus of evolved fast-folding
sequences was identical to the folding nucleus of sequences
which were designed (using the MC algorithm in sequence
space) to fold into the same structure (17). Further, we applied
the same method to determine the folding nucleus in the
slow-folding sequence from which we started our selection.
The search for the specific folding nucleus for these sequences
gave negative results, i.e., no contacts were found whose
appearance were necessary and sufficient for subsequent rapid
descent to the native conformation. This result suggests that
the original slow-folding sequences did not fold via a specific
nucleus mechanism. From that, we conclude that in the present
simulations, a specific nucleus mechanism evolved as a result
of ‘‘Darwinian’’ evolutionary pressure toward fast folding.

These results point out that a possible explanation for fast
folding of evolved sequences, may be in the special properties
of their folding nucleus. Strikingly, we observed that after the
first 30 or so mutations, the average energy of a nucleus
contact dropped from 20.16 to 20.34, whereas the average
energy of all nonnucleus native contacts was unchanged (with-
in the noise level of sequence fluctuations) (see Fig. 3). Thus,
we found that a pronounced acceleration of folding was
accompanied by dramatic stabilization of nucleus contacts
(shown by broken lines in Fig. 1) whereas the overall stability
did not change significantly as compared with the sequence
from which we started the selection.

This conclusion is in remarkable agreement with the results
of the recent study by Ladurner et al. (18) who presented
evidence that a small protein CI2 may have been optimized for
folding rate (stability of the nucleus) rather than overall
stability.

These model results bear a straightforward analogy to
folding and evolution of real proteins. Each run of the evolu-
tionary selection algorithm that starts from a new ‘‘weakly
designed’’ sequence generates a set of fast-folding ‘‘evolution-

ary related’’ sequences, that diverged from the same root
sequence, i.e., a protein family. The fact that, for a small
number of sequences in the family, their native states are not
identical but structurally very similar to the native state of the
‘‘root sequence’’ makes this analogy with protein families even
closer. Different runs of selection algorithm generate different
families of model proteins that have unrelated sequences but
fold to the same structure, i.e., a protein superfamily. Do
different families have anything in common at all? Our theory
predicts a peculiar phenomenon of a ‘‘conservatism of con-
servatism’’ (CoC): amino acids belonging to the positions
equivalent to the nucleus in structurally aligned superfamily
are conserved within each family. We stress that amino acids
of different types may be placed into nucleus positions in
different families, so that amino acid alignment across the
families may not reveal any special (nucleation) positions. It is
the structural alignment of intrafamily conservatism profiles
that may carry the signal about common nucleation in families
of proteins that fold into similar three-dimensional structures.

This crucial prediction from our simulations was tested on
several protein superfamilies including the classical mono-
phosphate binding fold (CMBF) (19) and the type III repeat
fold superfamilies. We will present the results for CMBF in
some detail as most statistically reliable. There are 198 low
homology families in the CMBF superfamily, according to the
families of structurally similar proteins (FSSP) database (20)
of proteins. For 98 of them, HSSP intrafamily alignments, are
sufficiently large and divergent (21). Most importantly, folding
of one protein from the CMBF superfamily, CheY, was studied
using protein-engineering methods, and its folding transition
state was characterized (22).

First, we used the families of structurally similar proteins
database (20) to identify families of proteins that are struc-
turally, but not by sequence, related to CheY. Next, for each
family, we determined the degree of conservation (sequence
entropy, see refs. 15 and 21) for each position within each
family, using the homology-derived secondary structure of
proteins (HSSP) database (21). Finally, the 98 intrafamily
conservatism profiles were aligned according to the structural
alignment between families. Fig. 4a (circles) shows the in-
trafamily sequence entropy at each position, averaged over all
of the 98 families (in cases of gaps for some families at some
positions the average is taken only over families where amino
acids were present). Strikingly, we see that indeed there exist
a few positions at which amino acids are conserved within each
family, i.e., CoC. It is crucial to establish whether this conclu-
sion is statistically significant. This is even more important
given the fact that the structural alignments have gaps at some
positions and therefore the average sequence entropy shown in
Fig. 4a is calculated over a different number of occurrences for
different positions. A zero hypothesis against which the ob-
tained results must be tested is that the values of intrafamily
sequence entropies are not correlated between families. If the
zero hypothesis was correct, the probability distribution of
average sequence entropies plotted in Fig. 4a (circles) would
be Gaussian according to the Central Limit theorem. The
average and dispersion of such Gaussian distribution can be
evaluated in the straightforward way from the average value
and dispersion of intrafamily conservatism at each position, as
prescribed by the Central Limit theorem (23). It is natural to
expect that the degree of intrafamily conservatism at each
position in the structure should depend on its solvent acces-
sibility, with buried positions being more likely to be conserved
than exposed ones. To take this factor into account, we
calculated the average value and dispersion of intrafamily
conservatism, as a function of solvent accessibility, for all of the
proteins in the protein data bank (using the whole HSSP
database). These numbers were taken as the average value and
dispersion for intrafamily conservatism at each position with a
given solvent accessibility in the CMBF superfamily. Then the

FIG. 3. Evolution of the average energy (per contact) of the
nonnucleus native contacts and of the average energy of nucleus
contacts. Nucleus contacts are shown by dashed lines in Fig. 1. (Inset)
The first 50 accepted mutations.
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average and dispersion of the Gaussian probability density
distribution of average conservatism was calculated for each
position in CMBF superfamily according to the Central Limit
theorem.

We evaluate the statistical significance of CoC at each
position in terms of the probability that the apparent value of
average conservatism is just by chance, as it would have been
under the zero hypothesis. The results are presented in Fig. 4b.
We see that for most positions the observed average conser-
vatism indeed can be very well explained by the zero hypothesis
that intrafamily conservatism is a function of solvent accessi-
bility only. The overall correlation coefficient between ob-
served average conservatism and the one expected under the
zero hypothesis is 0.87. However, strikingly, we find a number
of positions that have pronounced, statistically significant
CoC. Specifically, the following positions exhibit .99% sta-
tistically significant CoC: F8, V10, V11, D12, D13, F14, S15,
M17, V54, I55, D57, W58, N59, M60, V86, A88, and E89 (here
and below we provide the notation for the residues for the
CMBF superfamily in terms of positions in CheY.)

It follows from the lattice simulations that one of the reasons
for CoC may be the optimization of kinetics (folding nucleus).
A number of observations show that is indeed the case for the
CMBF superfamily. First, the folding nucleus interpretation of
CoC implies that amino acids at the positions that exhibit CoC
must be in contact with each other. Indeed, F8, V10, V11, D12,
D13, M17, R18, D57, M60, and V86 form a tightly packed

cluster: their Cb atoms are not farther than 7.5 Å from each
other. Remarkably, D12 and D57 exhibiting very strong CoC
with statistical significance close to 1 2 1026 are in perfectly
tight contact, their Cb atoms being ,4.5 Å apart. (Fig. 5) with
side chains almost parallel.

Convincing evidence that CoC is related to the folding
nucleus comes from the experimental study of Serrano and
coworkers (22), who measured f values for a large number of
amino acids in CheY. They reported 10 positions for which the
measured f values are higher than 0.5. Of those, six (V10, V11,
D12, D13, V54, and D57) belong to the group with .99%
statistically significant CoC. Of the remaining amino acids
from this group, the f value for I55 is also high (0.3), and for
F14 it is reported to be 20.03. However, this number is not very
reliable because the change in free energy upon F14A muta-
tion is very small (0.8 kcalyM). A88, which is located in the
interface between the b strand and a long loop, does not
belong to the nucleus cluster (it contacts only K109). It is
possible that A88 plays an important role in defining the
so-called ‘‘topology’’ of the structure, being one of the impor-
tant bending residues (24). f values for the remaining positions
of the group with higher than 99% significant CoC (F8, S15,
M17, W58, N59, M60, V86, E89, and K109) were not reported
in ref. 21. Four amino acids not exhibiting high CoC have high
f value [residues V33, A36, D38 (D38G mutation, ref. 22), and
A42]. However, V33 and D38 also exhibit some CoC (with 95%
statistical significance). A36 and A42 do not show significant

FIG. 4. Analysis for the CMBF superfamily. Ninety-eight families were used (the list is available from authors on request). All listed proteins
are structurally homologous to CheY with Z . 3 and RMSD , 4A, according to the families of structurally similar proteins (FSSP) database (19).
We used a coarse-grained six-letter amino-acid alphabet whereby amino acids were grouped according to their physical properties into following
six classes: ‘‘aliphatic 1 Cys’’: A, L, I, V, M, C; ‘‘aromatic’’: F, Y, W, H; small nonpolar: G, P; polar: T, S, Q, N; basic: R, K; and acidic: E, D. The
analysis using all 20 types of amino acids gives results that are qualitatively similar. Horizontal axes denote position in the CheY, which was taken
as reference. (a, circles) CoC analysis: intrafamily sequence entropy averaged over all 98 families (excluding gaps), calculated as SCoC(l) 5 (F51

M

Sintra
F (l)yM. Here, the sum is taken over all of the 98 families used in the analysis, excluding gaps. Intrafamily sequence entropy for every position,

for a given family, F, is calculated as follows: Sintra
F (l) 5 2(i51

6 pi
F(l)log pi

F(l), where pi
F(l) represents the normalized frequency of observing residue

of class i (i 5 1–6) at position l in all homologous sequences belonging to the family F. The sum is taken over all possible residue classes. (a, squares)
sequence entropy calculated across all families. To obtain this quantity, we evaluated frequencies of occurrence of amino acids of each class i at
each position l for all families [pi

across(l)] and then calculated sequence entropy for a position l as Sacross(l) 5 2(i51
6 pi

across(l)log pi
across(l). (b) The

probability that equal or lower SCoC will be observed under zero hypothesis that conservatism of a residue in the structure is related primarily to
its degree of buriedness.
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CoC; these two positions may belong to ‘‘an extended folding
nucleus’’, which is likely to vary from family to family and
therefore may not be detected by the CoC analysis. The
probability that 6 of 10 nucleus residues belong to the set of the
17 most significant CoC positions by chance is close to 1023.

An alternative explanation of the observed statistically
significant CoC may be along the lines of the ‘‘profile’’ analysis
proposed in ref. 14, which suggests that there may be structure-
dependent, self-consistent ‘‘one-particle’’ potential which
would, in all families, in certain positions, bias evolution
toward certain types of amino acids. If such a factor exists, then
simple alignment across families would reveal the amino acid
preferences. The plot of conservatism across the families is
presented in Fig. 4a (squares). There are only two positions in
the CMBF superfamily in which amino acids noticeably are
conserved across the families (F8, V54). These positions are
central to the hydrophobic core of the protein. There is a
noticeable but not very high CoC at those two positions. We
see that environment factors, such as accessibility, certainly
play a role in determining amino acid conservatism, but these
factors alone cannot explain the observed strong CoC in the
CMBF superfamily. Another example is the superfamily of
proteins having the structure of type III repeats of fibronectin.
A protein from this superfamily, tensacin was shown to fold via
a simple two-state mechanism (25, 26).

We considered 47 families having type III repeat fold (20).
A few positions exhibited strong CoC with statistical signifi-
cance exceeding 99%. Those are A17, V19, W21, L33, V69,
L71, A83, and F87 (notation of amino acids as in tenascin, 1ten
is used), which are in close contact with each other. An
interesting feature of the nucleus for that superfamily is that
in many families it contains 100% conserved Trp. However,
the location of the 100% conserved Trp in the nucleus may
vary from family to family because of peculiar ‘‘cyclic permu-
tations’’: the 100% invariant Trp appears in position 21 of
tenascin, but in other type III structures, it appears in other
possible nucleation positions; e.g., in both CD8 and 1BEC, it
is in the position equivalent to L33 of tenascin (W35 in CD8
and W32 in 1bec); whereas in the second domain of cd4, it
appears as the structural equivalent of V69 in tenascin (W157
in the second domain of cd4). Sometimes strong nucleus
contacts in type III repeat structure are supplementedy
replaced by a disulfide bond (e.g., the nucleus contact W21-

L71 is replaced by disulfide C23-C92 in 1bec or by C23-C94 in
cd8).

It is important to note that the Mg21 binding site of CheY
involves D12, D13, and D57 (27), and D57 is phosphorylated
in the process of signal transduction by CheY (27). At the same
time, those residues belong to the folding nucleus as revealed
by experiments (22) and CoC analysis. Such a dual role of these
residues in CheY explains why the similarly charged amino
acids were placed in the folding nucleus of CheY (mutation to
A of either D12 or D57 stabilizes the protein and makes it fold
faster; ref. 22). This fact may call into question the conclusions
about the connection between CoC and nucleation. However,
not all of the members of the CMBF superfamily have their
active site at the same position: e.g., in p21ras, the Mg21

binding site is located at the different site. However, interest-
ingly, the putative nucleation sites in p21ras, G10, G15, and
V81, corresponding to D12, M17, and D57 in CheY are used
to conformationally constrain the P-loop, which participates in
the binding of the phosphate (28). It is important to note that
residues that are involved directly in Mg21 or phosphate
binding in kinases (e.g., S17 and D57 in p21Ras and R19 and
E35 in CheY) do not show any CoC (Fig. 4). Additionally, we
note that, although strong CoC was found in the type III repeat
superfamily, it is not related to function of those proteins that
usually participate in protein–protein interactions (receptors,
antibodies, etc.).

Recently, Ptitsyn (29) analyzes families of CytC proteins and
came to the similar conclusions that there may be a number of
residues that are conserved for folding, rather than functional,
reasons. A possible explanation for the correlation between
the active site and folding nucleus in CheY superfamily may
come from the observation that vast majority of proteins from
that superfamily bind a cofactor (in contrast to type III repeat
superfamily). If strong binding of a cofactor is important, then
rigid fixation of coordinating amino acids in space by the
structure of the protein may be crucial. In that case, folding
nucleus may indeed serve as an ideal location for the active
site. Indeed, folding nucleus generally appears to be most
protected from local unfolding fluctuations (see Fig. 8 of ref.
17), and that is the case for CheY (30).

The results and analysis presented here point out that, for
each protein structure, there is a small number of positions that
are most crucial for fast folding into that structure. Protein
sequences that fold fast into that structure may have evolved
by placing such amino acids into those strategic nucleus
positions that provide stabilization of the nucleus.

We are grateful to Luis Serrano for discussions of CheY folding, to
A. Murzin for useful discussions of CMBF superfamily, to O. B. Ptitsyn
for communicating his results on cytochrome sequences before pub-
lication and for illuminating discussions, and to V. Kotelyansky for
fruitful discussions of type III repeats. This work was supported by
National Institutes of Health Grant RO1-52126.
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