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This article studies the asset pricing implication of imprecise knowledge about rare

events. Modeling rare events as jumps in the aggregate endowment, we explicitly

solve the equilibrium asset prices in a pure-exchange economy with a representative

agent who is averse not only to risk but also to model uncertainty with respect to rare

events. The equilibrium equity premium has three components: the diffusive- and

jump-risk premiums, both driven by risk aversion; and the ‘‘rare-event premium,’’

driven exclusively by uncertainty aversion. To disentangle the rare-event premiums

from the standard risk-based premiums, we examine the equilibrium prices of options

across moneyness or, equivalently, across varying sensitivities to rare events. We find

that uncertainty aversion toward rare events plays an important role in explaining the

pricing differentials among options across moneyness, particularly the prevalent

‘‘smirk’’ patterns documented in the index options market.

Sometimes, the strangest things happen and the least expected occurs. In

financial markets, the mere possibility of extreme events, no matter how

unlikely, could have a profound impact. One such example is the so-called

‘‘peso problem,’’ often attributed to Milton Friedman for his comments
about the Mexican peso market of the early 1970s.1 Existing literature

acknowledges the importance of rare events by adding a new type of risk
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(event risk) to traditional models, while keeping the investor’s preference

intact.2 Implicitly, it is assumed that the existence of rare events affects the

investor’s portfolio of risks, but not their decision-making process.

This article begins with a simple yet important question: Could it be

that investors treat rare events somewhat differently from common, more
frequent events? Models with the added feature of rare events are easy to

build but much harder to estimate with adequate precision. After all, rare

events are infrequent by definition. How could we then ask our investors

to have full faith in the rare-event model we build for them?

Indeed, some decisions we make just once or twice in a lifetime—

leaving little room to learn from experiences, while some we make every-

day. Naturally, we treat the two differently. Likewise, in financial markets

we see daily fluctuations and rare events of extreme magnitudes. In deal-
ing with the first type of risks, one might have reasonable faith in the

model built by financial economists. For the second type of risks, how-

ever, one cannot help but feel a tremendous amount of uncertainty about

the model. And if market participants are uncertainty averse in the sense

of Knight (1921) and Ellsberg (1961), then the uncertainty about rare

events will eventually find its way into financial prices in the form of a

premium.

To formally investigate this possibility of ‘‘rare-event premium,’’ we
adopt an equilibrium setting with one representative agent and one perish-

able good. The stock in this economy is a claim to the aggregate endow-

ment, which is affected by two types of random shocks. One is a standard

diffusive component, and the other is pure jump, capturing rare events

with low frequency and sudden occurrence. While the probability laws of

both types of shocks can be estimated using existing data, the precision for

rare events is much lower than that for normal shocks. As a result, in

addition to balancing between risk and return according to the estimated
probability law, the investor factors into his decision the possibility that

the estimated law for the rare event may not be correct. As a result, his

asset demand depends not only on the trade-off between risk and return,

but also on the trade-off between uncertainty and return.

In equilibrium, which is solved in closed form, these effects show up in

the total equity premium as three components: the usual risk premiums

for diffusive and jump risks, and the uncertainty premium for rare events.

While the first two components are generated by the investor’s risk

2 For example, in an effort to explain the equity-premium puzzle, Rietz (1988) introduces a low probability
crash state to the two-state Markov-chain model used byMehra and Prescott (1985). Naik and Lee (1990)
add a jump component to the aggregate endowment in a pure-exchange economy and investigate the
equilibrium property. More recently, the effect of event risk on investor’s portfolio allocation with or
without derivatives are examined by Liu and Pan (2003), Liu, Longstaff, and Pan (2003) and Das and
Uppal (2001). Dufresne and Hugonnier (2001) study the impact of event risk on pricing and hedging of
contingent claims.
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aversion, the last one is linked exclusively to his uncertainty aversion

toward rare events. To test these predictions of our model, however,

data on equity returns alone are not sufficient. Either aversion coefficient

can be adjusted to match an observed total equity premium, making it

impossible to differentiate the effect of uncertainty aversion from that of
risk aversion.

Our model becomes empirically more relevant as options are included

in our analysis. Unlike equity, options are sensitive to rare and normal

events in markedly different ways. For example, deep-out-of-the-money

put options are extremely sensitive to market crashes. Options with

varying degrees of moneyness therefore provide a wealth of information

for us to examine the importance of uncertainty aversion to rare events.

For options on the aggregate market (e.g., the S&P 500 index), two
empirical facts are well documented: (1) options, including at-the-money

(ATM) options, are typically priced with a premium [Jackwerth and

Rubinstein (1996)]; (2) this premium is more pronounced for out-of-the-

money (OTM) puts than for ATM options, generating a ‘‘smirk’’ pattern

in the cross-sectional plot of option-implied volatility against the option’s

strike price [Rubinstein (1994)].

As a benchmark, we first examine the standard model without uncer-

tainty aversion. Calibrating the model to the equity return data, we
examine its prediction on options.3 We find that this model cannot pro-

duce the level of premium that has been documented for at-the-money

options. Moreover, in contrast to the pronounced ‘‘smirk’’ pattern docu-

mented in the empirical literature, this model generates an almost flat

pattern. In other words, with risk aversion as the only source of risk

premium, this model cannot reconcile the premium observed in the equity

market with that in ATM options, nor can it reconcile the premium

implicit in ATM options with that in OTM put options.
Here, the key observation is that moving from equity to ATM options,

and then to deep-OTM put options, these securities become increasingly

more sensitive to rare events. Excluding the investor’s uncertainty

aversion to this specific component, and relying entirely on risk aversion,

one cannot simultaneously explain the market-observed premiums

implicit in these securities: fitting it to one security, the model misses out

on the others. Conversely, if risk aversion were the only source for the pre-

miums implicit in options, then one had to use a risk-aversion coefficient

3 It should be noted that our model cannot resolve the issue of ‘‘excess volatility.’’ That is, the observed
volatility of the aggregate equity market is significantly higher than that of the aggregate consumption,
while in our model they are the same. In calibrating the model with or without uncertainty aversion, we
face the problem of which volatility to calibrate. Since the main objective of this calibration exercise is to
explore the link between the equity market and the options market, we choose to calibrate the model
using information from the equity market. That is, we examine the model’s implication on the options
market after fitting it to the equity market.
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for the rare events and another for the diffusive risk to reconcile the

premiums implicit in these securities simultaneously.4

In comparison, the model incorporating uncertainty aversion toward

rare events does a much better job in reconciling the premiums implicit in

all these securities with varying degree of sensitivity to rare events. In
particular, the models with uncertainty aversion can generate significant

premiums for ATM options as well as pronounced ‘‘smirk’’ patterns for

options with different degrees of moneyness.5

Our approach to model uncertainty falls under the general literature

that accounts for imprecise knowledge about the probability distribution

with respect to the fundamental risks in the economy. Among others,

recent studies include Gilboa and Schmeidler (1989), Epstein and Wang

(1994), Anderson, Hansen, and Sargent (2000), Chen and Epstein (2002),
Hansen and Sargent (2001), Epstein and Miao (2003), Routledge and Zin

(2002), Maenhout (2001), and Uppal and Wang (2003). The literature on

learning provides an alternative framework to examine the effect of

imprecise knowledge about the fundamentals.6 Given that rare events

are infrequent by nature, learning seems to be a less important issue in

our setting. Furthermore, given that rare events are typically of high

impact, thinking through worst-case scenarios seems to be a more natural

reaction to uncertainty about rare events.
The robust control framework adopted in this article closely follows

that of Anderson, Hansen, and Sargent (2000). In this framework, the

agent deals with model uncertainty as follows. First, to protect himself

against the unreliable aspects of the reference model estimated using

existing data, the agent evaluates the future prospects under alternative

models. Second, acknowledging the fact that the reference model is indeed

the best statistical characterization of the data, he penalizes the choice of

the alternative model by how far it deviates from the reference model. Our
approach, however, differs from that of Anderson, Hansen, and Sargent

(2000) in one important dimension.7 Specifically, our investor is worried

4 By introducing a crash aversion component to the standard power-utility framework, Bates (2001)
recently proposes a model that can effectively provide a separate risk-aversion coefficient for jump
risk, disentangling the market price of jump risk from that of diffusive risk. The economic source of
such a crash aversion, however, remains to be explored.

5 It is true that in such a model one can fit to one security using a particular risk-aversion coefficient and
still have one more degree of freedom from the uncertainty-aversion coefficient to fit the other security.
The empirical implication of our model, however, is not only about two securities. Instead, it applies to
options across all degrees of moneyness.

6 Among others, David and Veronesi (2000) and Yan (2000) study the impact of learning on option prices,
and Comon (2000) studies learning about rare events. For learning under model uncertainty, see Epstein
and Schneider (2002) and Knox (2002).

7 Another important difference is that we provide a more general version of the distance measure between
the alternative and reference models. The ‘‘relative entropy’’ measure adopted by Anderson, Hansen, and
Sargent (2000) is a special case of our proposed measure. This extended form of distance measure is
important in handling uncertainty aversion toward the jump component. Specifically, under the ‘‘relative
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about model misspecifications with respect to rare events, while feeling

reasonably comfortable with the diffusive component of the model. This

differential treatment with respect to the nature of the risk sets our

approach apart from that of Anderson, Hansen, and Sargent (2000) in

terms of methodology as well as empirical implications.
Recently, there have been observations on the equivalence between a

number of robust-control preferences and recursive utility [Maenhout

(2001) and Skiadas (2003)]. A related issue is the economic implication

of the normalization factor introduced to the robust-control framework

byMaenhout (2001), which we adopt in this article. Although by introduc-

ing rare events and focusing on uncertainty aversion only to rare events,

our article is no longer under the framework considered in these articles, it

is nevertheless important for us to understand the real economic driving
force behind our result. Relating to the equivalence result involving recur-

sive utility, we consider an economy that is identical to ours except that,

instead of uncertainty aversion, the representative agent has a continuous-

time Epstein and Zin (1989) recursive utility. We derive the equilibrium

pricing kernel explicitly, and show that it prices the diffusive and jump

shocks in the same way as the standard power utility. In particular, the

rare-event premium component, which is linked directly to rare-event

uncertainty in our setting, cannot be generated by the recursive utility.8

Relating to the economic implication of the normalization factor, we

consider an example involving a general form of normalization. We

show that although the specific form of normalization affects the specific

solution of the problem, the fact that our main result builds on uncertainty

aversion toward rare events is not affected in any qualitative fashion by

the choice of normalization.

The rest of the article is organized as follows. Section 1 sets up the

framework of robust control for rare events. Section 2 solves the optimal
portfolio and consumption problem for an investor who exhibits

aversions to both risk and uncertainty. Section 3 provides the equilibrium

results. Section 4 examines the implication of rare-event uncertainty on

option pricing. Section 5 concludes the article. Technical details, including

proofs of all three propositions, are collected in the appendices.

entropy’’ measure, the robust control problem is not well defined for the jump case. For pure-diffusion
models, however, our extended distance measure is equivalent to the ‘‘relative entropy’’ measure.

8 This result also serves to strengthen our calibration exercises involving options. The recursive utility
considered in our example has two free parameters: one for risk aversion and the other for elasticity of
intertemporal substitution. Similarly, in our framework, the utility function also has two parameters: one
for risk aversion and the other for uncertainty aversion. In this respect, we are comparing two utility
functions on equal footing, although the economic motivations for the two utility functions are distinctly
different. We show that the recursive utility cannot resolve the smile puzzle. The intuition is as follows.
Although it has two free parameters, the standard recursive utility has one risk-aversion coefficient to
price both the diffusive and rare-event risks, while the additional parameter associated with the inter-
temporal substitution affects the risk-free rate. In effect, it does not have the additional coefficient to
control the market price of rare events separately from the market price of diffusive shocks.
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1. Robust Control for Rare Events

Our setting is that of a pure exchange economy with one representative

agent and one perishable consumption good [Lucas (1978)]. As usual,

the economy is endowed with a stochastic flow of the consumption

good. For the purpose of modeling rare events, we adopt a jump-diffusion
model for the rate of endowment flow fYt, 0� t�Tg. Specifically, we fix
a probability space (V,F ,P) and information filtration (F t), and

assume that Y is a Markov process in R solving the stochastic differential

equation

dYt ¼ mYtdtþ sYtdBt þ ðeZt�1ÞYt�dNt, ð1Þ

where Y0> 0, B is a standard Brownian motion and N is a Poisson

process. In the absence of the jump component, this endowment flow

model is the standard geometric Brownian motion with constant mean
growth rate m� 0 and constant volatility s> 0. Jump arrivals are dictated

by the Poisson processNwith intensity l> 0. Given jump arrival at time t,

the jump amplitude is controlled by Zt, which is normally distributed with

mean mJ and standard deviation sJ. Consequently, the mean percentage

jump in the endowment flow is k ¼ expðmJ þ s2
J=2Þ� 1, given jump

arrival. In the spirit of robust control over worse-case scenarios, we

focus our attention on undesirable event risk. Specifically, we assume

k� 0. At different jump times t 6¼ s, Zt and Zs are independent, and all
three types of random shocks B, N, and Z are assumed to be independent.

This specification of aggregate endowment follows from Naik and Lee

(1990). It provides the most parsimonious framework for us to incorpo-

rate both normal and rare events.9

We deviate from the standard approach by considering a representative

agent who, in addition to being risk averse, exhibits uncertainty aversion

in the sense of Knight (1921) and Ellsberg (1961). The infrequent nature of

the rare events in our setting provides a reasonable motivation for such a
deviation. Given his limited ability to assess the likelihood or magnitude

of such events, the representative agent considers alternative models to

protect himself against possible model misspecifications.

To focus on the effect of jump uncertainty, we restrict the representative

agent to a prespecified set of alternative models that differ only in terms of

the jump component. Letting P be the probability measure associated

with the reference model [Equation (1)], the alternative model is

defined by its probability measure P(j), where jT¼ dP(j)/dP is its

9 One feature not incorporated in this model is stochastic volatility. Given that our objective is to evaluate
the effect of imprecise information about rare events and contrast it with normal events, adding stochastic
volatility is not expected to bring in any new insight.
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Radon–Nikodym derivative with respect to P,

djt ¼
�
eaþbZt � bmJ � 1

2b
2s2

J � 1
�
jt�dNt �ðea � 1Þljtdt, ð2Þ

where a and b are predictable processes,10 and where j0¼ 1. By construc-
tion, the process fjt, 0� t�Tg is a martingale of mean 1. The measure

P(j) thus defined is indeed a probability measure.

Effectively, j changes the agent’s probability assessment with respect to

the jump component without altering his view about the diffusive compo-

nent.11 More specifically, under the alternative measure P(j) defined by j,

the jump arrival intensity lj and the mean jump size kj change from their

counterparts l and k in the reference measure P to

lj ¼ lea, 1þ kj ¼ ð1þ kÞebs2
J : ð3Þ

A detailed derivation of Equation (3) can be found in Appendix A.

The agent operates under the reference model by choosing a¼ 0 and

b¼ 0, and ventures into other models by choosing some other a and b. Let

P be the entire collection of such models defined by a and b. We are now

ready to define our agent’s utility when robust control over the set P is his
concern. For ease of exposition, we start our specification in a discrete-

time setting, leaving its continuous-time limit to the end of this section.

Fixing the time period at D, we define his time-t utility recursively by

Ut ¼
c
1�g
t

1�g
Dþ e�rD inf

PðjÞ2P

1

f
cðEj

t ðUtþDÞÞEj
t h ln

jtþD

jt

� �� �
þ Ej

t ðUtþDÞ
� �

and UT ¼ 0, ð4Þ

where ct is his time-t consumption, r> 0 is a constant discount rate, and
cðEj

t ðUtþDÞÞ is a normalization factor introduced for analytical tractabil-

ity [Maenhout (2001)]. To keep the penalty term positive, we let

c(x)¼ (1� g)x for the case of g 6¼ 1 and c(x)¼ 1 for the log-utility case.

The specification in Equation (4) implies that any chosen alternative

model P(j) 2 P can affect the representative agent in two different ways.

On the one hand, in an effort to protect himself against model uncertainty

associated with the jump component, the agent evaluates his future pro-

spectEj
t ðUtþ1Þ under alternative measures P(j) 2 P. Naturally, he focuses

10 That is to say, at and bt are fixed just before time t. See, for example, Andersen, Borgan, Gill and Keiding
(1992).

11 It is also important to notice that while the agent is free to deviate his probability assessment about the
jump component, he cannot change the state of nature. That is, an event with probability 0 in P remains
so in P(j). In other words, our construction of j in Equation (2) ensures P and P(j) to be equivalent
measures.
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on other jump models that provide prospects worse than the reference

models P, hence the infimum over P(j) 2 P in Equation (4). On the other

hand, he knows that statistically P is the best representation of the existing

data. With this in mind, he penalizes his choice of P(j) according to how

much it deviates from the reference P. This discrepancy or distance
measure is captured in this article by Ej

t ½hðlnðjtþ1=jtÞÞ�, where for some

b> 0 and any x2R,

hðxÞ ¼ xþ bðex � 1Þ: ð5Þ

Intuitively, the further away the alternative model is from the reference

model P, the larger the distance measure. Conversely, when the alternative

model is the reference model, we have j� 1 with a distance measure of 0.
Finally, to control this trade-off between ‘‘impact on future prospects’’

and ‘‘distance from the reference model,’’ we introduce a constant para-

meter f> 0 in Equation (4). With a higher f, the agent puts less weight on

how far away the alternative model is from the reference model and,

effectively, more weight on how it would worsen his future prospect. In

other words, an agent with higher f exhibits higher aversion to model

uncertainty.

The agent’s utility function in Equation (4) is similar to that in
Anderson, Hansen, and Sargent (2000). Our approach, however, differs

from theirs in two ways. First, we restrict the agent to a prespecified set P
of alternative models that differ from the reference model only in their

jump components. As a result, the uncertainty aversion exhibited by the

agent only applies to the jump component of the model. This distinction

becomes important as we later take the model to option pricing because

options are sensitive to diffusive shocks and jumps in different ways.

In fact, we can further apply this idea and modify the set P so the
agent can express his uncertainty toward one specific part of the jump

component. For example, by restricting b¼ 0 in the definition of j in

Equation (2), we build a subset Pa � P of alternative models that is

different from the reference model only in terms of the likelihood of

jump arrival. Applying this subset to the utility definition of Equation (4),

we effectively assume that the agent has doubt about the jump-timing

aspect of the model, while he is comfortable with the jump-magnitude

part of the model. Similarly, by letting a¼ 0 in Equation (2), we build a
class Pb of alternative models that is different from the reference model

only in terms of jump size. An agent who searches over Pb instead of P
finds the jump-magnitude aspect of the model unreliable, while having

full faith in the jump-timing aspect of the model. Finally, by letting a¼ 0

and b¼ 0, we reduce the set P0 to a singleton that contains only the

reference model. Effectively, this is the standard case of a risk-averse

investor.
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Second, we extend the discrepancy (or distance) measure of Anderson,

Hansen, and Sargent (2000) to a more general form. Specifically, our

‘‘extended entropy’’ measure is reduced to their ‘‘relative entropy’’

when b approaches to zero. Given that h(x) is convex and h(0)¼ 0, the

result of Wang (2003) can be used to provide an axiomatic foundation for
our specification (his Theorem 5.1, part a). As it will become clear later,

this extended form of distance measure is important in handling uncer-

tainty aversion toward the jump component. In particular, the minimiza-

tion problem specified in Equation (4) does not have an interior global

minimum for the ‘‘relative entropy’’ case.12 For pure diffusion models,

however, it is easy to show that our extended distance measure is equiva-

lent to the ‘‘relative entropy’’ case.

Our utility specification also differs from Anderson, Hansen, and
Sargent (2000) in the normalization factor c, which we adopt from

Maenhout (2001) for analytical tractability. A couple of issues have been

raised in the literature regarding this normalization factor. One relates to

its effect on the equivalence between a number of robust-control pre-

ferences and recursive utility [see Maenhout (2001) and Skiadas (2003)];

the other relates to its effect on the link between the robust-control frame-

work and that of Gilboa and Schmeidler (1989) [see Pathak (2000)]. In this

respect, the utility function adopted in this article is not a multiperiod
extension of Gilboa and Schmeidler (1989). It is, however, a utility func-

tion motivated by uncertaintyaversion toward rare events.13 Applying this

utility to the asset-pricing framework of this article, the most important

issue for us to resolve is that the asset-pricing implication involving rare-

event premiums is indeed driven by uncertainty aversion toward rare

events and not by recursive utility or a particular form of the normal-

ization factor. We clarify these issues by showing that (1) our main result

regarding rare-event premiums cannot be generated by a continuous-time
Epstein and Zin (1989) recursive utility (Appendix D); (2) the choice of

normalization factor does not affect, in any qualitative fashion, the fact

that our main result involving rare-event premiums builds on uncertainty

aversion toward rare events (Appendix E).

Finally, the continuous-time limit of our utility specification

[Equation (4)] can be derived as

Ut ¼ inf
fa;bg

Ej
t

Z T

t

e�rfs�tg 1

f
cðUsÞHðas, bsÞ þ

c1�g
s

1�g

� �
ds

� �� �
, ð6Þ

12 Roughly speaking, the penalty function in Anderson, Hansen, and Sargent (2000) is not strong enough to
counterbalance the ‘‘loss in future prospect’’ for an agent with risk-aversion coefficient g> 1. As a result,
the investor’s concern about a misspecification in the jump magnitude makes him go overboard to the
case of total ruin.

13 See Wang (2003) for an axiomatic foundation in a static setting.
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where H is the component associated with the distance measure and can

be calculated explicitly as14

Hða, bÞ ¼ l 1þ aþ 1

2
b2s2

J � 1

� �
ea þ bð1þ ðeaþb2s2

J � 2ÞeaÞ
� �

: ð7Þ

Given this, the investor’s objective is to optimize his time-0 utility
function U0.

2. The Optimal Consumption and Portfolio Choice

As in the standard setting, there exists a market where shares of the

aggregate endowment are traded as stocks. At any time t, the dividend

payout rate of the stock is Yt, and the ex-dividend price of the stock is

denoted by St. In addition, there is a risk-free bond market with instanta-

neous interest rate rt. The investor starts with a positive initial wealth W0,

trades competitively in the securities market, and consumes the proceeds.
At any time t, he invests a fraction ut of his wealth in the stock market,

1� ut in the risk-free bond, and consumes ct, satisfying the usual budget

constraint.

Having the equilibrium solution in mind, we consider stock prices of the

form St¼A(t)Yt and constant risk-free rate r, where A(t) is a deterministic

function of t with A(T )¼ 0. Under the reference measure P, the stock

price follows,

dSt ¼ mþ A0ðtÞ
AðtÞ

� �
Stdtþ sStdBt þ ðeZt � 1ÞSt�dNt: ð8Þ

And the budget constraint of the investor becomes

dWt ¼ rþ ut m�rþ 1þ A0ðtÞ
AðtÞ

� �� �
Wtdtþ utWtsdBt

þ ut�Wt�ðeZt � 1ÞdNt � ctdt:

ð9Þ

Given this budget constraint, our investor’s problem is to choose hiscon-

sumption and investment plans fc, ug so as to optimize his utility. Let Jt be
the indirect utility function of the investor,

Jðt,WÞ ¼ sup
fc;ug

Ut, ð10Þ

where Ut is the continuous-time limit of the utility function defined by

Equation (4). The following proposition provides the Hamilton–Jacobi–

Bellman (HJB) equation for J.

14 See the proof of Proposition 1 in Appendix for the derivation.
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Proposition 1. The investor’s indirect utility J, defined by Equation (10),

has the terminal condition J(T, W)¼ 0 and satisfies the following HJB

equation,

sup
c;u

�
uðcÞ�rJðt,WÞ þAJðt,WÞ þ inf

a;b

�
leaðEZðbÞ½Jðt,Wð1þ ðeZ�1ÞuÞÞ�

�Jðt,WÞÞ þ 1

f
cðJÞl

�
1þ

�
aþ 1

2
b2s2

J�1

�
ea

þbð1þ ðeaþb2s2
J �2ÞeaÞ

���
¼ 0, ð11Þ

where EZ(b)(.) denotes the expectation with respect to Z under the alter-

native measure associated with b. That is, for any function f,

EZðbÞðf ðZÞÞ ¼ EðebZ�bmJ � 1
2b

2s2
J f ðZÞÞ: ð12Þ

The term A J(t,W) in the HJB equation [Equation (11)] is the usual

infinitesimal generator for the diffusion component of the wealth dynamics,

AJ ¼ Jt þ rþ u m� rþ A0ðtÞ þ 1

AðtÞ

� �� �
WJW � cJW þ s2

2
u2W 2JWW , ð13Þ

where Jt is the derivative of the indirect utility J with respect to t, and JW and

JWW are its first and second derivatives with respective to W.

The intuition behind the HJB equation [Equation (9)] exactly parallels

that of its discrete time counterpart, Equation (4). Specifically, compared
with the standard HJB equation for jump diffusions, the HJB equation in

Equation (11) has two important modifications. First, the risk associated

with the jump component is evaluated at all possible alternative models

indexed by (a, b), reflecting the investor’s precaution against model uncer-

tainty with respect to the jump component. Second, it incorporates an

additional term in the last two lines of Equation (11), penalizing the choice

of the alternative model by its distance from the reference model. The

following proposition provides the solution to the HJB equation.

Proposition 2. The solution to the HJB equation is given by

Jðt,WÞW
1� g

1� g
f ðtÞg, ð14Þ

where f(t) is a time-dependent coefficient satisfying the ordinary differential

Equation (B.4) in Appendix B with the terminal condition f(T)¼ 0. The

optimal consumption plan is given by c�t ¼ W �
t =f ðtÞ, where W

� is the optimal
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wealth process. Finally, the optimal solutions u�, a�, and b� satisfy

�
m� rþ 1þ A0ðtÞ

AðtÞ

�
� gus2 þ leaEZðbÞ½ð1þ ðeZ � 1ÞuÞ�gðeZ � 1Þ� ¼ 0,

ð15Þ

1�g

f

�
aþ 1

2
b2s2

J þ 2bðeaþb2s2
J � 1Þ

�
þ EZðbÞ½ð1þ ðeZ � 1ÞuÞ1�g� � 1 ¼ 0,

ð16Þ

1� g

f
bs2

Jð1þ 2beaþb2s2
J Þ þ q

qb
EZðbÞ½ð1þ ðeZ � 1ÞuÞ1�gÞ ¼ 0, ð17Þ

where EZ(b)(.) defined in Equation (12) is the expectation with respect to Z

under the alternative measure associated with b.

3. Market Equilibrium

In equilibrium, the representative agent invests all his wealth in the stock

market ut¼ 1 and consumes the aggregate endowment ct¼Yt at any time

t�T. The solution to market equilibrium and the pricing kernel are

summarized by the following proposition.

Proposition 3. In equilibrium, the total (cum-dividend) equity premium is

Total equity premium ¼ gs2 þ lk� lQkQ, ð18Þ

where k ¼ expðmJ þ s2
J=2Þ� 1 is the mean percentage jump size of the

aggregate endowment, and lQ and kQ are defined by15

lQ ¼ l exp

�
�gmJ þ

1

2
g2s2

J þ a� � b�gs2
J

�
,

kQ ¼ ð1þ kÞexpððb� � gÞs2
JÞ� 1,

ð19Þ

and a� and b� are the solution of the following nonlinear equations:

aþ 1

2
b2s2

J þ 2bðeaþb2s2
J � 1Þ þ f

1� g
ð½ð1þ kÞeðb�1

2gÞs2
J �1�g � 1Þ ¼ 0 ð20Þ

bð1þ 2baþb2s2
J Þ þ f½ð1þ kÞeðb�1

2gÞs2
J �1�g ¼ 0: ð21Þ

15 As will become clear in the next section, lQ and kQ are the risk-neutral counterparts of l and k.
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The equilibrium riskfree rate r is

r ¼ r þ gm� 1

2
gðg þ 1Þs2 þ l�ð1�ð1þ k�Þ�g

e
1
2gð1þgÞs2

J Þ þ x�, ð22Þ

where l� ¼ l exp(a�) and k� ¼ ð1þ kÞexpðb�s2
JÞ� 1, and where

x� ¼ � 1� g

f
l

�
1þ

�
a� þ 1

2
ðb�Þ2s2

J � 1

�
ea

�

þ bð1þ ðea�þðb�Þ2s2
J � 2Þea� Þ

�
: ð23Þ

Finally, the equilibrium pricing kernel is given by

dpt ¼ � rptdt� gsptdBt þ ðea�þðb��gÞZ�b�mJ�1
2ðb�Þ

2
s2
J � 1Þpt� dNt

�lðea��gðmJþb�s2
J
Þþ1

2g
2s2

J � 1Þptdt: ð24Þ

To understand how the investor’s uncertainty aversion affects the equi-
librium asset prices, let us first take away the feature of uncertainty

aversion by setting a� 0 and b� 0, or f ! 0. Our results in Equations

(18) and (22) are then reduced to those of Naik and Lee (1990)— the

standard case of a risk-averse investor with no uncertainty aversion. In this

case, the total equity premium is attributed exclusively to risk aversion:

Diffusive risk premium ¼ gs2,

Jump-risk premium ¼ lk� �ll�kk,
ð25Þ

where �ll and �kk are the counterparts of lQ and kQ when the uncertainty

aversion f is set to zero:

�ll ¼ lexp

�
�gmJ þ

1

2
g2s2

J

�
, �kk ¼ ð1þ kÞexpð�gs2

JÞ� 1: ð26Þ

Quite intuitively, both types of risk premiums approach zero when the

risk-aversion coefficient g approaches zero and are positive for any risk-

averse investors (g> 0).

When the investor exhibits uncertainty aversion (f> 0), there is one

additional component in the equity premium:

Rare-event premium ¼ �ll�kk� lQkQ: ð27Þ

It is important to emphasize that while the magnitude of this part of the
equity premium depends on the risk-aversion parameter of the investor, it

is the uncertainty aversion of the investor that gives rise to this premium.

Specifically, the rare-event premium remains positive even when we take
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the limit g ! 0, while it becomes zero when the investor’s model uncer-

tainty aversion f approaches zero. The following two examples highlight

this feature of the rare-event premium by considering the extreme case

where the investor is risk neutral (g¼ 0).

In the first case, the investor is worried about model misspecification
with respect to the jump arrival intensity, that is, how frequently the jumps

occur. He performs robust control by searching over the subset Pa defined

by a 2 R and b� 0. Setting b¼ 0 and g¼ 0, Equation (20) reduces to

aþ 2bðea � 1Þ þ fk ¼ 0: ð28Þ

For the case of adverse event risk (k< 0), we can see from Equation (28)
that a�> 0 if and only if the investor exhibits uncertainty aversion (f> 0).

The rare-event premium in this case is

�ll�kk� lQkQ ¼ lkð1� ea
� Þ,

which is positive if and only if f> 0.

In the second case, the investor is worried about model misspecification

with respect to the jump size. This time, he performs robust control by
searching over the subset Pb defined by b 2 R and a� 0. Setting a¼ 0 and

g¼ 0, Equation (21) reduces to

b ¼ �f
ð1þ kÞebs2

J

1þ 2beb
2s2

J

, ð29Þ

which indicates that b�< 0 when there is uncertainty aversion (f> 0). The

rare-event premium in this case is

�ll�kk� lQkQ ¼ lkð1þ kÞeb�s2
J ,

which is again positive if and only if f> 0.

These two cases are the simplest examples of our more general results.

In addition to providing some important intuition behind our results, they

also deliver a quite important point. That is, the aversion toward model

uncertainty is independent of that toward risk, and the effect of uncer-

tainty aversion becomes most prominent with respect to rare events.
Indeed, the fact that our model allows such separation of total equity

premium into risk and rare-event components is crucial for our analysis.

As emphasized in the introduction, our contention is that investors treat

rare events differently from more common events and such differential

treatment will be reflected in asset prices. The decomposition of the equity

premium characterized in Proposition 3 allows us to study the effect on

prices and can potentially lead to empirically testable implications with

respect to the different components of the equity premium.
To elaborate on the last point and set the stage for the next section, we

note that if there is no model uncertainty, or if the investor is uncertainty
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neutral (f¼ 0), then according to Equations (25) and (26), both diffusive

and jump-risk premiums are linked by just one risk-aversion coefficient g.

This constraint can, in fact, be tested using equity and equity options,

which have different sensitivities to the diffusive and jump risks. In such

an equilibrium, the pricing kernel that links the equity to the equity
options is controlled by just one risk-aversion coefficient g. On the other

hand, empirical studies [e.g., Pan (2002) and Jackwerth (2000)] using time-

series data from both markets (the S&P 500 index and option) indicate

that the pricing kernel linking the two markets cannot be supported by

such an equilibrium.16 In particular, the ‘‘data-implied g’’ for the jump

risk is considerably larger than that for the diffusive risk.

We close this section by discussing the asset-pricing implication of the

normalization factor c in more detail. For this, we focus on the equili-
brium pricing kernel derived in Equation (24), which can be rewritten as

pt ¼ e�rte�x�tj�t Y
�g
t , ð30Þ

where x� is a constant defined in Equation (3) and where j� is the Randon–

Nikodym derivative that defines the optimal alternative measure P(j�).

The shocks to the pricing kernel consist of two parts: Yt
�g generates the

diffusive- and jump-risk premiums; and j�t generates the rare-event pre-

mium. It is easy to see that the presence of a nontrivial j� in the pricing

kernel derives from the investor’s consideration over alternative measures

regarding rare events. In other words, in our specific setting, rare-event

premiums can be traced to the investor’s uncertainty aversion toward

rare events.

To understand the extent to which different normalization factors affect

this link, in Appendix E we consider an example with a more general form
of the normalization factor. We show that the particular form of normal-

ization affects (1) the risk-free rate through its direct impact on intertem-

poral substitution; (2) the optimal solution of j�. For the more general

cases, the optimal j� cannot be solved in closed form, although the

uncertainty aversion aspect of the utility will lead j� toward measures

giving worse prospects than the reference measure.

More importantly, we show that, regardless of the specific choice of

normalization, the shocks to the pricing kernel still consist of Y
�g
t and j�t

as in Equatin (30). Similar to our earlier discussion, the presence of a

nontrivial j� in the pricing kernel can be traced back to the investor’s

consideration over alternative measures regarding rare events. Thus, while

16 This relies on our specification of the aggregate consumption process. If one is willing to relax this
specification, then one can always find an equilibrium to support any given pricing kernel, including the
empirical pricing kernel that links the equity and equity options markets. For example, for a power utility
with risk-aversion coefficient g, one can back out a consumption process by equating marginal utility to
the empirical pricing kernel.
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a more general normalization factor might provide a more complicated j�,

the important link between rare-event premia and uncertainty aversion

toward rare events still survives.17

4. The Rare-Event Premiums in Options

To further disentangle the rare-event premiums from the standard risk
premiums, we turn our attention to the options market. Using the equili-

brium pricing kernel p (Proposition 3), we can readily price any derivative

securities in this economy. Specifically, let Q be the risk-neutral measure

defined by the equilibrium pricing kernel p such that erTpT /p0¼ dQ/dP. It

can be shown that the risk-neutral dynamics of the ex-dividend stock price

follows:

dSt ¼ ðr� qÞStdtþ sStdB
Q
t þ ðeZt � 1ÞSt�dNt � lQkQdt, ð31Þ

where r is the risk-free rate and q is the dividend payout rate,18 and where

under Q, BQ is a standard Brownian motion and Nt is a Poisson process
with intensity lQ. Given jump arrival at time t, the percentage jump

amplitude is lognormally distributed with the risk-neutral mean kQ. Both

risk-neutral parameters lQ and kQ are defined earlier in Equation (19).

European-style option pricing for this model is a modification of the

Black and Scholes (1973) formula, and has been established in Merton

(1976). For completeness of the article, the pricing formula is provided in

Appendix C.

What makes the option market valuable for our analysis is that, unlike
equity, options have different sensitivities to diffusions and jumps. For

example, a deep OTM put option is extremely sensitive to negative price

jumps but exhibits little sensitivity to diffusive price movements. This

nonlinear feature inherent in the option market enables us to disentangle

the three components of the total equity premium (Proposition 3) that

are otherwise impossible to separate using equity returns alone. This

‘‘observational equivalence’’ with respect to equity returns is further

illustrated in Table 1.

17 Unless, of course, one considers a normalization factor that effectively prevents the investor from
choosing alternative measures, resulting in a trivial optimal solution of j�� 1.

18 For the rest of our analysis, we will set the risk-free rate at r¼ 5% and the dividend yield at q¼ 3%. In
other words, we are not using the equilibrium interest rate and the dividend yield. This is without much
loss of generality. Specifically, the parameter r can be used to match the desired level of r. The dividend
payout ratio q is slightly more complicated, since it is in fact time varying in our setting. For an
equilibrium horizon T that is sufficiently large compared with the maturity of the options to be
considered, we can use the result for the infinite horizon case, and take q¼ 1/a, where a, given by
Equation (B.6), can be calibrated by the free parameter m. Finally, as our analysis focuses on comparing
the prices of options with different moneyness, the effect of r and q will be minor as long as the same r and
q are used to price all options.
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Table 1 details a simple calibration exercise with parameters for the

reference model P set as follows. For the diffusive component, the vola-

tility is set at s¼ 15%. For the jump component,19 the arrival intensity is

l¼ 1/3, and the random jump amplitude is normal with mean mJ¼�1%

and standard deviation sJ¼ 4%. It should be noted that our model cannot

resolve the issue of ‘‘excess volatility.’’
As a result, we face the problem of which set of data the model should

be calibrated to: the aggregate equity market or the aggregate consump-

tion. For example, if we were to fit the model directly to the data on

aggregate consumption, the equity volatility would be around 2%, and the

equity options would be severely underpriced simply because of this low

volatility level. Given that the main objective of this calibration exercise is

to explore the link between the equity market and the options market,

calibrating the model to the aggregate equity market seems to be a more
reasonable choice. For this reason, the set of model parameters are chosen

to fit the data on the S&P 500 index market.

Given this reference model, three different scenarios are considered for

the representative agent’s risk aversion g and uncertainty aversion f. As

shown in Table 1, each scenario corresponds to an economy with a distinct

level of uncertainty aversion f and yields a distinct composition of the

diffusive-risk premium, the jump-risk premium, and the rare-event pre-

mium. For example, the rare-event premium is zero when the representa-
tive agent exhibits no aversion to model uncertainty, and increases to

1.94% per year when the uncertainty aversion coefficient becomes

f¼ 20. These predictions of our model, however, cannot be tested if we

focus only on the equity return data. As shown in Table 1, for a fixed level

of uncertainty aversion f, one can always adjust the level of risk aversion

g so that the total equity premium is fixed at 8% per year, although the

economic sources of the respective equity premiums differ significantly

from one scenario to another. To be able to decompose the total equity

Table 1.
The three components of the equity premium, jump case 1

Aversion Premium (%)

Jump parameters f g Diffusive risk Jump risk Rare event Total premium

l¼ 1/3 0 3.47 7.80 0.20 0
10 3.15 7.09 0.19 0.72 8%

mJ¼�1% 20 2.62 5.91 0.15 1.94

19 The jump parameters are close to those reported by Pan (2000) for the S&P 500 index. Alternative jump
parameters will be considered in later examples.
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premium into its three components, we need to take our model one step

further to the options data.

To examine the option pricing implication of our model, we start with

the same reference model and the same set of scenarios of uncertainty

aversion as those considered in Table 1. For each scenario, we use our

equilibrium model to price one-month European-style options, both calls
and puts, with the ratio of strike to spot prices varying from 0.9 to 1.1. As

it is standard in the literature, we quote the option prices in terms of the

Black-Scholes implied volatility (BS-vol) and plot them against the respec-

tive ratios of strike to spot prices. The first panel of Figure 1 reports the

‘‘smile’’ curves generated by the three equilibrium models with varying

degrees of uncertainty aversion. We can see that although all three scenar-

ios are observationally equivalent with respect to the equity market, their

implications on the options market are notably different.

4.1 The case of only risk aversion

Let us first consider the case of zero uncertainty aversion, where risk

aversion is the only source of premiums in both equity and options.

Calibrating the risk-aversion coefficient g to match the equity premium,

Figure 1
The equilibrium ‘‘smile’’ curves
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let us first examine the model’s implication for the ATM option (puts and

calls with a strike-to-spot ratio of 1). From the first panel of Figure 1, we

see that the model prices such options at a BS-vol of 15.2%, which is very

close in magnitude to the total market volatility
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ lðm2

J þ s2
JÞ

q
¼

15:2%. The market-observed BS-vols for such ATM options, however,

are known to be higher than the volatility of the underlying index returns.

In other words, there is a premium implicit in such ATM options that is

not captured by this model with only risk aversion.

Next, we examine this model’s implication for options across money-

ness. Moving the strike-to-spot ratio from 1 to 0.9, we arrive at a 10%

OTM put option, which is priced by the model at 15.6% BS-vol. That is,
moving 10% out of the money, the BS-vol increases from 15.2 to 15.6%.

The market-observed ‘‘smile’’ curves, however, are much steeper than

what is captured by this model.

In other words, the market views the OTM put options to be more

valuable than what this model predicts. There is an additional component

implicit in such OTM put options that is not captured by this model with

only risk aversion.

Moving from equity to ATM options and to OTM put options, we are
looking at a sequence of securities that are increasingly sensitive to rare

events. At the same time, the model with only risk aversion misprices this

sequence of securities with increasing proportion. As we can see from our

next example, one plausible explanation is that the rare-event component

is not priced properly in this model with only risk aversion.

4.2 The case of uncertainty aversion toward rare events

Let us now consider the two cases that incorporate the representative

agent’s uncertainty aversion. As shown in Table 1, in both cases the
total equity premium has three components, two of which are driven by

the representative agent’s risk aversion g and one driven by his uncer-

tainty aversion f. Comparing the case of f¼ 20 with the previously

discussed case of f¼ 0, our first observation is that, even for ATM

options, the two models generate different equilibrium prices. Specifically,

for the case of zero uncertainty aversion, the BS-vol implied by an ATM

option is 15.2%, but for the case of uncertainty aversion f¼ 20, the BS-vol

implied by an ATM option is 15.5%. This implies that, while both cases
are observationally equivalent when viewed using equity prices, the model

incorporating uncertainty aversion (f¼ 20) predicts a premium of about

2% for one-month ATM options. This result is indeed consistent with the

empirical fact that options, even those that are at the money, are priced

with a premium.20

20 See, for example, Jackwerth and Rubinstein (1996) and Pan (2002).
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This additional premium, which is linked exclusively to the investor’s

uncertainty aversion toward rare events, becomes even more pronounced

as we move to OTM puts, which, compared with ATM options, have

more sensitivity to adverse rare events. The first panel in Figure 1 shows

that a 10% OTM put option is priced at 17.2% BS-vol, compared with
15.6% BS-vol in the case of f¼ 0. That is, for every dollar invested in a

one-month 10% OTM put option, typically used as a protection against

rare events, the investor is willing to pay 10 cents more because of his

uncertainty aversion toward the adverse rare events.

As shown in Pan (2002), both empirical facts — ATM options priced

with a premium and OTM put options priced with an even higher pre-

mium, resulting in a pronounced ‘‘smirk’’ pattern — are indeed closely

connected. If only risk aversion is used to explain these empirical facts,
one direct implication is that the ‘‘data-implied g’’ for the jump risk has to

be considerably larger than that for the diffusive risk. By incorporating

uncertainty aversion in this article, however, we are able to explain

these empirical facts without having to incorporate an exaggerated risk-

aversion coefficient for the jump risk. By doing so, we offer a simple

explanation for the significant premium implicit in options, especially

those put options that are deep out of the money. That is, when it comes

to rare events, the investors simply do not have a reliable model. They
react by assigning rare-event premiums to each financial security that is

sensitive to rare events. Options with varying moneyness are sensitive to

the rare events in a variety of ways, bearing different levels of rare-event

premiums. Our analysis shows that a significant portion of the pro-

nounced ‘‘smirk’’ pattern can be attributed to this varying degree of rare-

event premiums implicit in options.

Finally, to show the robustness of our results, we modify the two key

jump parameters, l and mJ, in the reference model considered in Table 1.
In Table 2, we consider jumps that happen once every 25 years, with a

mean magnitude of �10%, capturing the magnitude of major market

corrections. In Table 3, jumps happen once every 100 years with a magni-

tude of �20%, capturing the magnitude of an event as rare as the 1987

crash. The option pricing implications of these models are reported in the

Table 2.
The three components of the equity premium, jump case 2

Aversion Premiums (%)

Jump parameters f g Diffusive risk Jump risk Rare event Total premium

l¼ 1/25 0 3.47 7.81 0.19 0
10 2.88 6.47 0.15 1.38 8%

mJ¼�10% 20 1.61 3.62 0.08 4.30
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lower two panels in Figure 1. As we can see, although all three reference

models incorporate rare events that are very different in intensity

and magnitude, the impact of uncertainty aversion remains qualitatively
similar.

4.3 Implications of alternative utility specifications
4.3.1 The case of recursive utility. Our specification involves two free

parameters (in addition to the time discount coefficient r): the risk-aver-

sion coefficient g and the uncertainty-aversion coefficient f. Compared

with the standard power utility, we have one more free parameter. One

may argue that with one more free parameter, it is no surprise that the

‘‘smirk’’ patterns can be generated. To compare our model against alter-

native utility functions at equal footing, we consider the case of contin-

uous-time Epstein and Zin (1989) recursive utility, which also has two free
parameters: the risk-aversion coefficient g and the coefficient for the

intertemporal substitution d. This comparison is also of interest because

of the equivalence result documented in the literature for diffusion models

[Maenhout (2001) and Skiadas (2003)].

In Appendix D we show that the recursive utility results in a more

complex risk-free rate, but for the purpose of pricing risks it has the

same implication as a standard power utility. This result is quite intuitive

given that the recursive utility is designed to separate intertemporal sub-
stitution from risk aversion. If our interest lies in how the diffusive risk is

priced relative to the rare events, we need look no further than the special

case of power utility, which indeed captures the risk aversion component

of the recursive utility. Other than their differential implications for risk-

free rates, the option-pricing implication of a recursive utility is very much

the same as that of a power utility. In Appendix D, the risk-neutral jump

parameters lQ and kQ, which are important for option pricing, are derived

explicitly and are shown to be identical to those of a power utility case.
In addition to serving as a robust check against alternative utility

functions, this example also helps clarify, for our setting, the issue of

equivalence between the robust-control framework and recursive utility.

Specifically, we show with an explicit example, that the robust-control

Table 3.
The three components of the equity premium, jump case 3

Aversion Premiums (%)

Jump parameters f g Diffusive risk Jump risk Rare event Total premium

l¼ 1/100 0 3.47 7.81 0.19 0
10 2.36 5.31 0.12 2.58 8%

mJ¼�20% 20 0.68 1.54 0.03 6.43
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framework in our setting is not equivalent to the continuous-time Epstein

and Zin (1989) recursive utility. This, however, does not contradict the

equivalence results established by Maenhout (2001) and Skiadas (2003),

since we add a new dimension to the problem: rare events and uncertainty

aversion only toward rare events.

4.3.2 The case of habit formation. An alternative preference of interest is

the external habit formation model of Campbell and Cochrane (1999),

which is shown to generate rich dynamics for asset prices from consump-

tion data. This utility specification is of particular interest because it is
capable of resolving the ‘‘excess volatility’’ and equity-premium puzzle,

which our model does not explain. It is therefore important for us to

understand if such habit-formation models can explain the option-smirk

puzzle. To some extent, this analysis also serves to clarify the key differ-

ence between the equity-premium puzzle and the option-smirk puzzle.

At the heart of the option-smirk puzzle is the differential pricing of

options with varying sensitivities to rare-event risk. For a preference to

generate the observed level of option smirk, the associated equilibrium
pricing kernel should have the ability to price rare-event risk separately

from the diffusive risk.21 Standard formations of the habit model such as

that in Campbell and Cochrane, in contrast, assume that the shock to

habit is perfectly correlated with the shock to consumption (the endow-

ment). As such, the habit-model-implied pricing kernel, though following

a richer dynamic process than in the standard CRRA model, effectively

does not price the diffusive and jump components of the endowment

process differently.22 We therefore conjecture that, as formulated and
calibrated in recent studies, the habit model will not generate the observed

smile in option prices. Indeed, as preliminary evidence in support of our

conjecture, we took the model-implied option prices computed by Bansal,

Gallant and Tauchen (2002) from their calibrated habit model and

21 This is best illustrated by comparing our model against a model with constant relative risk aversion
(CRRA) preference with no uncertainty aversion toward rare events. As shown in Equation (30), the
equilibrium pricing kernel of our model is proportional to j�t Y

�g
t , while that of the CRRA preference is

proportional to Y
�g
t . The additional term j�t in our model is the key to our model’s ability to generate

option smirks. Economically, it adds a layer to the market price of rare-event risk that is above and
beyond that associated with risk aversion, and this extra degree of freedom arises from uncertainty
aversion toward rare-event risk.

22 Specifically, the pricing kernel generated by the habit formation preference of Campbell and Cochrane
can be shown to be proportional to S

�g
t Y

�g
t , where St is the surplus consumption ratio and Yt is the

aggregate consumption (which equals aggregate endowment in equilibrium). In their external habit
specification, the dynamics of s¼ log(S) follows

st ¼ ð1�fÞ�ssþ fst�1 þ lðst�1Þðyt � yt�1 � gÞ,
22 where f, �ss, and g are parameters, y¼ log Y, and l(st�1) is the sensitivity function. Effectively, by
introducing an external habit through the surplus consumption ratio S, the habit formation preference
of Campbell and Cochrane generates an equilibrium pricing kernel proportional to Y

�g0
t�1

t , where g0
t�1 ¼

gð1þ lðst�1ÞÞ is the implied state-dependent risk-aversion coefficient.
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converted the prices to BS-vols using a constant risk-free rate of 5% and

dividend payout rate of 2%. These calculations generate inverted options

smirks contrary both to the data and to the implications of our model with

rare-event premiums.23

Moving beyond the standard formation of habit, one could add an
exogenous shock to the habit so that it is not perfectly correlated with

the consumption shock. For example, one could allow the jump compo-

nent of the endowment to affect the habit more severely than the diffusive

component. These models would do better in explaining the option smirks

than the standard habit models. It would be important, however, to

develop an economic explanation for why the habit shock has the requisite

correlation patterns with the diffusive and jump components of endow-

ments to generate the option smirks. In contrast, option smirks arise
naturally in our model because of uncertainty aversion toward rare events.

4.4 Features of the underlying shocks vs. the pricing kernel

The various utility specifications examined in our calibration exercises

effectively lead us to various forms of pricing kernels, which in turn play

an important role in pricing options and shaping the smile curves. Given

that option prices also depend on the underlying stock dynamics, it is

therefore natural to question the role played by the underlying stock

dynamics in generating smile curves.
We would like to point out that to resolve the puzzle associated with

smile curves, modifying the underlying stock dynamics alone is not ade-

quate because any return process, however sophisticated, has to fit to the

actual dynamics observed in the underlying stock market. Once this con-

straint is enforced, there is little room for different specifications of the

return process to maneuver in order to generate the kind of smile curves

observed in the options market. This point can be best made by examining

the data from both markets nonparametrically. As reported by Jackwerth
(2000), the option-implied risk-neutral return distribution is much more

negatively skewed than the actual return distribution observed directly

from the underlying stock market. In other words, the option-implied

crash is both more frequent and more severe than that observed from

the stock market.

Therefore, the pricing kernel, which links the two distributions,plays an

important role in resolving this puzzle and reconciling the information

from the two markets. Conversely, the empirical literature on the
joint estimation of stock and option markets presents a great deal of

23 It should be mentioned that both interest rate and dividend yield are stochastic in their models. For the
purpose of understanding option smirks, however, the stochastic nature of risk-free rate or dividend yield
should not play an important role. The inverted option smirk pattern implied by their equilibrium option
prices stays true when different risk-free rates and dividend yields are used.
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information regarding the empirical features of pricing kernels. Less,

however, is known about what features of utility functions generate pri-

cing kernels consistent with those considered in the empirical literature.

In this article, we provide such a link between utility function and

pricing kernel. Specifically, we start with a utility specification motivated
by uncertainty aversion toward rare events, and arrive at an equilibrium

pricing kernel of the form,

pt ¼ e�rte�x�tj�t Y
�g
t :

As can be seen from our calibration exercises, the presence of a nontrivial
optimal j� in the pricing kernel plays an important role in generating the

‘‘smirk’’ patterns in options across moneyness. At the same time, as

discussed at the end of Section 3, the presence of the optimal j�t in the

pricing kernel can be traced back to the utility specification that corre-

sponds to uncertainty aversion toward rare events.

Finally, we would like to point out that there are potential alternative

explanations for ‘‘smirk’’ patterns. For example, a nontrivial j�t could

show up in the pricing kernel simply because the investor has a very
pessimistic prior about the jump component. That is, he starts with the

prior that the jump intensity is l� and the mean percentage jump is k�.

Although observationally equivalent, the economic source behind this

interpretation is very different from ours. In our model, the optimal l�

and k� arise endogenously from robust control due to uncertainty aversion

toward rare events. In the Bayesian interpretation, l� and k� are a part of

the investor’s prior. It is important to point out that without using

information from the options market, it is hard for the investor to come
up with such a prior.

5. Conclusion

Motivated by the observation that models with rare events are easy to

build but hard to estimate, we have developed a framework to formally

investigate the asset pricing implication of imprecise knowledge about
rare events. We modeled rare events by adding a jump component in

aggregate endowment and modified the standard pure-exchange economy

by allowing the representative agent to perform robust control [in the

sense of Anderson, Hansen, and Sargent (2000)] as a precaution against

possible model misspecification with respect to rare events. The equili-

brium is solved explicitly.

Our results show that the total equity premium has three components:

the diffusive risk premium, the jump-risk premium, and the rare-event
premium. In such a framework, the standard model with only risk aver-

sion becomes a special case with overidentifying restrictions on the three
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components of the total equity premium. While such restrictions do not

appear if we fit the model to the equity data alone, these restrictions do

become important as we apply the model to a range of securities with

varying sensitivity to rare events. Our calibration exercise on equity and

equity options across moneyness provides one such example. Our results
suggest that uncertainty aversion toward rare events and, consequently,

rare-event premiums play an important role in generating the ‘‘smirk’’

pattern observed for options across moneyness.

Appendix A: Changes of Probability Measures for Jumps

We first derive the arrival intensity lj of the Poisson process under the new probability

measure P(j). Let

dM ¼ dNt � ldt

be the compensated Poisson process, which is a P-martingale. Applying the Girsanov

theorem for point processes [see, e.g., Elliott (1982)], we have

dMPðjÞ ¼ dMt �EðeaþbZt�bmJ�1
2b

2s2
J � 1Þldt ¼ dMt �ðea � 1Þldt ¼ dNt � ljdt

where lj¼l exp(a), as given in Equation (3).

Next we derive the mean percentage jump size kj under P(j). Let

dM ¼ ðeZ � 1ÞSt�dNt � kStldt

be the compensated pure-jump process, which is a P-martingale. Applying the Girsonov

theorem, we have

dMPðjÞ ¼ dMt �E½ðeaþbZt�bmJ�1
2
b2s2

J � 1ÞðeZ � 1Þ�Stldt

¼ ðeZ � 1ÞSt�dNt � kjStl
jdt

where kj¼ (1þk) exp(bs2
J)�1, as given in Equation (3).

Appendix B: Proofs of Propositions

Proof of Proposition 1. Given zero bequest motive, it must be that J(T,W)¼ 0. The deriva-

tion of the HJB equation involves applications of Ito’s lemma for jump-diffusion processes.

The derivation is standard except for the penalty term. In particular, we need to calculate the

continuous-time limit of the ‘‘extended entropy’’ measure. For this, we first let

Ej
t

�
h

�
ln
jtþD

jt

��
¼Et

�
jtþD

jt
h

�
ln
jtþD

jt

��
¼Et

�
jtþD

jt
ln
jtþD

jt

�
þbEt

�
jtþD

jt

�
jtþD

jt
�1

��

¼ 1

j
EtðjtþDlnjtþD�jtlnjtÞþb

1

j2t
Etðj2tþD�j2t Þ, ðB:1Þ

where we use the martingale property Et(jtþD)¼ jt of the Radon–Nikodym process fjg.
Applying Ito’s lemma to the processes fjlnjg and fj2g separately, a straightforward
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calculation shows that

lim
D!0

1

D

1

jt
EtðjtþDln jtþD � jtln jtÞ ¼ l

�
1þ

�
aþ 1

2
s2
Jb

2 � 1

�
ea
�

lim
D!0

1

D

1

j2t
Etðj2tþD � j2t Þ ¼ lð1þ ðeaþb2s2

J � 2ÞeaÞ: &

Proof of Proposition 2. We conjecture that the solution to the HJB equation is indeed of the

form in Equation (14). The first-order condition for c becomes

c ¼ f ðtÞ�1
W : ðB:2Þ

Substituting Equations (14) and (B.2) into the HJB equation, we have

sup
c;u

�
g

1�g

1þ f 0ðtÞ
f ðtÞ � r

1�g
þ rþ u

�
m� rþ A0ðtÞ þ 1

AðtÞ

�
� 1

2
gs2u2

þ inf
a;b

�
1

f
l

�
1þ

�
aþ 1

2
b2s2

J � 1

�
ea þ bð1þ ðeaþb2s2

J � 2ÞeaÞ
�

þ 1

1� g
leaðEZðbÞ½ð1þ ðeZ � 1ÞuÞ1�g � � 1Þ

��
¼ 0:

The first-order conditions in u, a, and b give Equations (15–17), respectively. Substituting

the solutions u�, a�, and b� back to equation (B.3), we obtain the ordinary differential

equation for f(t),

g

1�g

1þ f 0ðtÞ
f ðtÞ � r

1� g
þ rþ u�

�
m� rþ A0ðtÞ þ 1

AðtÞ

�
� 1

2
gs2ðu�Þ2

þ 1

f
l

�
1þ

�
a� þ 1

2
ðb�Þ2s2

J � 1

�
ea

� þ bð1þ ðea�þðb�Þ2s2
J � 2Þea� Þ

�

þ 1

1�g
lea

� ðEZðb�Þ½ð1þ ðeZ � 1Þu�Þ1�g � � 1Þ ¼ 0

&

Proof of Proposition 3. Applying the equilibrium condition u¼ 1 to the first-order condi-

tions (16) and (17), we immediately obtain Equations (20) and (21) for the optimal a� and b�.

Next, the equilibrium conditions of St¼Wt and ct¼Yt imply A(t)¼ f(t). The ordinary

differential Equation (B.4) becomes

A0ðtÞ ¼ AðtÞ
a

� 1, ðB:5Þ

where the constant coefficient a is defined by

1

a
¼ r�ð1� gÞmþ s2

2
gð1� gÞ�lea

� ðeð1�gÞðmJþb�s2
J
Þþ1

2
ð1�gÞ2s2

J � 1Þ

� 1� g

f
l½1þ ða� þ 1

2
ðb�Þ2s2

J � 1Þea� þ bð1þ ðea�þðb�Þ2s2
J � 2Þea� Þ�:

ðB:6Þ

Under the terminal condition A(T )¼ 0, A(t) can be solved uniquely,

AðtÞ ¼ a

�
1� exp

�
�T � t

a

��
:

The first-order condition (15) evaluated at u¼ 1 gives,

mþ 1

a
¼ rþ gs2 � lea

��
eð1�gÞb�s2

Jþð1�gÞ2
s2
J
2
þð1�gÞmJ � e�gb�s2

Jþg2
s2
J
2
�gmJ

�
: ðB:7Þ

(B.4)
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Using Equations (B.5) and (B.7), it is a straightforward calculation to show that the equity

premium (cum-dividend) and the risk-free rate are as given in Equations (18) and (22).

Finally, to see that p is indeed a pricing kernel, one can first show, via a straightforward

deviation, that p produces the equilibrium risk-free rate and the total equity premium for the

stock. Next, one can solve the same equilibrium problem by adding a derivative security

(nonlinear in stock) with zero net supply and show that the equilibrium risk premium for the

derivative security can indeed be produced by p. &

Appendix C: The Option-Pricing Formula

The following result can be found in Merton (1976), and is included for the completeness of

the article. LetC0 denote the time-0 price of a European-style call option with exercise priceK

and time t to expiration. It is a straightforward derivation to show that

C0 ¼ e�l0t
X1
j¼0

ðl0tÞj

j!
BSðS0,K, rj , q,sj , tÞ ðC:8Þ

where l0 ¼lQ (1þ kQ), and for j¼ 0, 1, . . . ,

rj ¼ r� lQkQ þ j lnð1þ kQÞ
t

, s2
J ¼ s2 þ js2

J

t
,

and where BS(S0,K, r, q,s, t) is the standard Black-Scholes option pricing formula with

initial stock price S0, strike price K, risk-free rate r, dividend yield q, volatility s, and time

t to maturity. To price a put option with the same maturity and strike price, one can use the

put-call parity.

Appendix D: The Case of Recursive Utility

This appendix provides the equilibrium pricing kernel and the asset-pricing implication for

an agent with a continuous-time Epstein and Zin (1989) recursive utility facing the endow-

ment process Y defined in Equation (1).

D.1. Stochastic differential utility
For a consumption process c, the representative agent’s utility U is determined by

U ¼ V0,

with

Vt ¼ Et

�Z T

t

f ðcs,VsÞds
�
: ðD:9Þ

As pointed out by Duffie and Epstein (1992b) (p. 365), for the case of Brownian information,

the above utility characterizes the continuous-time version of recursive utility; for non-

Brownian information, such as the jump-diffusion case we are considering here, the above

utility characterizes only a subclass of the continuous-time version of recursive utility. We

will further specialize to the following case, which has the feature of separating intertemporal

substitution from risk aversion [p. 420, Duffie and Epstein (1992a), see also Epstein and Zin

(1989) for a discrete-time version],

f ðc,VÞ ¼ r

1� d

c1�d �ðð1� gÞVÞ
1�d
1�g

ðð1� gÞVÞ
1�d
1�g

�1
, ðD:10Þ
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where g the risk-aversion coefficient and 1/d is the elasticity of intertemporal substitution.

When d¼g, the utility function reduces to the standard time-and-state additive power utility

and r is the constant discount rate.

D.2 The pricing kernel
Duffie and Epstein (1992b) and Duffie and Skiadas (1994) show that the pricing kernel for a

single-agent economy with stochastic differential utility formulation defined by Equation

(D.9) is given by

pt ¼ exp

�
�
Z t

0

fV ðcs, JsÞds
�
fcðct, JtÞ, ðD:11Þ

where c is the agent’s optimal consumption and J is his indirect utility function, and where fc
and fV are first derivatives of f with respect to c and V, respectively. Applying this result to

our case, and setting the optimal consumption to the endowment Y, we obtain the equili-

brium pricing kernel,

pt ¼ exp

�Z t

0

r
1�g

1� d

��
1� 1� d

1� g

�
Y 1�d

s

ðð1� gÞJsÞ
1�d
1�g

� 1

�
ds

�
rY�d

t ðð1�gÞJtÞ
d�g

1�g, ðD:12Þ

where the indirect utility function J is the solution to

Jt ¼ Et

�Z T

t

f ðYs, JsÞds
�
: ðD:13Þ

To obtain the pricing kernel, we need to compute J, and we do so by conjecturing that

Jt ¼
1

1� g
ðlðtÞYtÞ1�g , ðD:14Þ

where l(t) is a deterministic function of time. Substituting Equation (D.14) into Equation

(D.13), one can verify that the indirect utility is indeed of the conjectured form with l(t)

defined by

lðtÞ ¼
�
r
eAð1�dÞðT�tÞ � 1

ð1� dÞA

� 1
1�d

, ðD:15Þ

where

A ¼ � r

1� d
þ g

1� l
, g ¼ ð1� gÞ

�
m�g

s2

2

�
þ ðeð1�gÞmJþ

ð1�gÞ2
2

s2
J � 1Þ: ðD:16Þ

Substituting Jt into Equation (D.12), we obtain the equilibrium pricing kernel for the

economy,

pt ¼ exp

�Z t

0

r
1�g

1� d

�
d� g

1� g
lðsÞd�1 � 1

�
ds

�
rlðtÞd�g

Y�g
t : ðD:17Þ

D.3 Asset pricing
Setting d¼g in Equation (D.17), we are back to the case of power utility, and the pricing

kernel derived in Equation (D.17) for the recursive utility reduces to the familiar form24:

pt¼ r exp(�rt) Y
�g
t . Setting the power-utility case as the benchmark, we can see that the

24 The constant coefficient r in pt should not cause any confusion, since pricing kernels are determined only
up to a multiplicative constant. Had we defined the normalized aggregator f in a slightly different form
than that in Equation (D.10), this extra factor could have been taken care of. We chose to work with the
current form of f, since it was the original form provided by Duffie and Epstein (1992a).
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recursive utility results in a more complex risk-free rate, which could be time varying, through

the pricing kernel’s dependence on l(t). Its effect on the market prices of endowment shocks,

however, remains identical to the power-utility case. This can be seen from the fact that in

both cases the pricing kernel depends on the endowment through Y�g.

This result is quite intuitive, given that the recursive utility introduced in Equation (D.10) is

designed to separate intertemporal substitution from risk aversion. If our interest is on how

the diffusive endowment shocks are priced differently from the rare events, we need look no

further than the special case of power utility, which captures the risk-aversion component of

the recursive utility. The intertemporal component of the recursive utility does affect pre-

ferences, but only through the risk-free rate.

From this, one can already obtain an intuitive understanding on how the recursive utility

will affect option pricing. Specifically, the diffusive shocks and rare events will be priced in a

very similar fashion to the benchmark case of power utility. As we discussed earlier, the

power-utility case is not adequate to explain the observed pricing kernel in the empirical

literature. In particular, it cannot generate the level of differential pricing of the diffusive

Brownian shocks vs. the shocks due to rare events. In this respect, although the recursive

utility has two preference parameters g and d, which bring it to equal footing with the

uncertainty aversion case considered in this article, the recursive utility is not capable

of generating the type of pricing kernels consistent with those reported in the empirical

literature.

D.4 An explicit example
To be more concrete, we work out an explicit example by considering an economy with an

infinite horizon (T ! 1). For the purpose of option pricing, this is an appropriate con-

sideration, since the maturity of an option is typically short compared with the lifespan of the

economy. This specialization gives us the added convenience of a constant riskfree rate, since,

when A< 0, we have

limT!1lðtÞ ¼
�
� r

ð1� dÞA

�1=ð1�dÞ
: ðD:18Þ

Applying Ito’s lemma to the pricing kernel (D.17) specialized for this economy, we have

dpt

pt

¼ �rdt�gsdBt þ ðe�gZ � 1ÞdNt � lðe�gmJþ1
2
g2s2

J � 1Þdt, ðD:19Þ

where s, mJ, sJ, l are the diffusion and jump parameters affecting the endowment process

(see Section 1), and where the risk-free rate r can be derived:

r ¼ r þ gm� gð1þ gÞ
2

s2 � lðe�gmJþ1
2
g2s2

J � 1Þ þ
�
1� 1� d

1� g

�
g, ðD:20Þ

where m is the drift parameter for the endowment process (see Section 1) and g is as defined

in Equation (D.16). From this, we can see that the elasticity of intertemporal substitution

affects the pricing kernel only through its affect on the risk-free rate. This is consistent with

our general discussion in Section D.3.

For the purpose of option pricing, let us consider a stock that has the same set of risk

exposures as the endowment shock and pays out dividend at a constant rate of q:

dSt

St

¼ msdtþ sdBt þ ðeZt � 1ÞdNt �lkdt, ðD:21Þ

where k is the mean percentage jump size as defined in Section 1 and ms is the ex-dividend

expected stock return. In order to determine the equilibrium expected equity return ms and
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option prices, we take advantage of risk-neutral pricing. Under the risk-neutral measure Q

defined by the equilibrium pricing kernel p, it must be that

dSt

St

¼ ðr� qÞdtþ sdB
Q
t þ ðeZt � 1ÞdNQ

t �lQkQdt, ðD:22Þ

where r is the risk-free rate solved in Equation (D.20), q is the dividend payout ratio, and lQ

and kQ are the risk-neutral jump intensity and the mean percentage jump size, respectively.

Using Equations (D.19), (D.21), (D.22), and the Girsanov theorem, it is straightforward to

show that

lQ ¼ lexp

�
�gmþ 1

2
g2s2

J

�
, kQ ¼ ð1þ kÞexpð�gs2

JÞ� 1, ðD:23Þ

and

ms ¼ r� qþ gs2 þ lk� lQkQ: ðD:24Þ

In terms of pricing risky assets (equity and options), the recursive utility provides exactly the

same market prices of risks as the power utility. This can be seen by comparing the above

results to those reported in Proposition 3, Equations (18) and (19) for an investor without

uncertainty aversion.

Appendix E: On Normalization

In this appendix, we examine the economic impact of the normalization factor c of our utility

specification and investigate the economic driving force behind our main result: normal-

ization vs. uncertainty aversion.

It is clear that in a one-period model, the choice of the normalization factor amounts to

constant scaling and will not affect the model-uncertainty aspect of the utility specification.

In a multiperiod setting, the normalization does play a role in affecting preferences. To

demonstrate that it is indeed uncertainty aversion not normalization that is driving our result,

we provide the following concrete example, which extends our setting by allowing for a

general form of the normalization factor.

Consider a representative agent who maximizes his utility in the following discrete-time

setting,

Ut ¼ uðctÞ þ e�rminjfLðEj
t ½vðjtþ1Þ�,Ej

t ½Utþ1�Þ þ Ej
t ½Utþ1�g, ðE:25Þ

where l� 0 and L(0, � )¼ 0. Mapping back to our utility specification in Equation (4), we

have u(c)¼ c1�g/1�g) and

LðEj
t ½vðjtþ1Þ�,Ej

t ½Utþ1�Þ ¼
1

f
cðEj

t ½Utþ1�ÞEj
t ½vðjtþ1Þ�, ðE:26Þ

where cðEj
t ½Utþ1�Þ is the normalization factor, Ej

t ½vðjtþ1Þ� is the discrepancy or distance

measure, and f is the uncertainty aversion parameter.

Assuming the existence of an optimal solution to the agent’s problem, we let j� be the

Radon–Nikodym derivative that defines the optimal alternative measure P(j�), and c� be the

optimal consumption, which, in our setting, equals the representative agent’s endowment in

equilibrium. We will show, at the end of this appendix, that the pricing kernel is of the form

ptþ1 ¼ pte
�rðL�

Ut þ 1Þj�tþ1

u0ðc�tþ1Þ
u0ðc�t Þ

and p0 ¼ 1, ðE:27Þ
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where we use the notation

L�
Ut ¼ LU ðEj�

t ½vðj�tþ1Þ�;Ej�

t ½Jtþ1�Þ, ðE:28Þ

where LU is the derivative of L with respect to the second argument of L and J is the indirect

utility function. Note that in Anderson, Hansen, and Sargent (2000), L�
Ut ¼ 0, while in

our case,

L�
Ut ¼

1�g

f
Ej�

t ½vðj�tþ1Þ�:

The pricing kernel (E.27) can in fact provide quite a general understanding of the asset-

pricing implication of our utility specification. Broadly speaking, premiums associated with

risk aversion are incorporated through u0ðc�tþ1Þ=u0ðc�t Þ and premiums associated with uncer-

tainty aversion are incorporated through j�tþ1. The normalization factor shows up in the

pricing kernel via L�
Ut, which is known at time t and can only affect the risk-free rate. In other

words, there is no direct impact of the normalization factor on the market prices of risk or

uncertainty (of course, it does have an indirect effect through the optimal j).

Recall that the main result of our article builds on a nontrivial solution of j�tþ1 and its

presence in the pricing kernel. From the above analysis, we can see that the driving force for

this result is clearly the minimization part of the utility specification, which is motivated by

uncertainty aversion. Specifically, taking away the minimization part of Equation (E.25) by

not allowing investors to choose alternative measures, we will have a trivial solution of j�� 1,

regardless of the choice of the normalization factor. On the other hand, taking away the

normalization factor, L no longer depends on Ej
t ½Utþ1�, and we have LU¼ 0. The exact

functional form of the optimal j�tþ1 might become more complicated (to the extent that we

will not be able to solve our problem in closed form), we will still have a nontrivial j�tþ1

present in the pricing kernel. In other words, the fact that our main result builds on

uncertainty aversion is not affected in any qualitative fashion by the choice of normalization.

The pricing kernel in Equation (E.27) can also help us obtain some intuition regarding the

equivalence result between robust control and recursive utility. For example, in Maenhout

(2001), the setting is that of a pure diffusion with only one Brownian motion. We have

j�t ¼ expð�a�Bt � 1=2ða�Þ2tÞ, for some optimal value of a�. Given that the Brownian motion

is the only shock driving the aggregate endowment Yt¼Y0 exp(s Bt �1/2 s2 tþmt), it is easy

to show that the random component of j�tþ1 can be written as Y�u
tþ1 where u¼ a�/s. In

addition, the marginal utility contributes u0ðYtþ1Þ ¼ Y
�g

tþ1 to the pricing kernel. Combining

the two, the component of the pricing kernel associated with risk aversion is of the form

Y
�ðgþuÞ
tþ1 , while the component associated with intertemporal substitution is of the form

1þ L�
Ut. From this, we can see the possibility of, for the purpose of asset pricing, this specific

robust-control problem being equivalent to a recursive utility with the risk-aversion coeffi-

cient gþ u. In a more general setting with multiple sources of random shocks, however, the

optimal j�t might not be a function Yt. For example, in our setting, j� picks up only the

Poisson component, not the Brownian component. For such cases, the equivalence to

standard recursive utility does not generally apply.

Finally, we show that the pricing kernel is indeed of the form in Equation (E.27). Let J be

the indirect utility function, which is a function of the state variables including the wealth

process W and other state variables X affecting the endowment process Jt¼ J(t,Wt,Xt). In

the following analysis, we will suppress arguments t and Xt in function J for notational

simplicity. The principle of optimality implies25

JðWtÞ ¼ maxct uðctÞ þ e�rminjfLðEj
t ½vðjtþ1Þ�,Ej

t ½JðWtþ1Þ�Þ þ Ej
t ½JðWtþ1Þ�g


 �
, ðE:29Þ

25 We suppress the portfolio part of the optimization problem to focus on the pricing kernel. It should be
clear that our results will not be affected.

An Equilibrium Model of Rare-Event Premiums

161



where, given any security with time tþ 1 return denoted by Rtþ 1, we have,

Wtþ1 ¼ ðWt � ctÞRtþ1: ðE:30Þ

The first-order condition of Equation (E.29) for ct gives

u0ðc�t Þ� e�rðLU ðEj�

t ½vðj�tþ1Þ�,Ej�

t ½Jtþ1�Þ þ 1ÞEj�

t ðJW ðWtþ1ÞRtþ1Þ ¼ 0, ðE:31Þ

where JW denotes the derivative of the indirect utility J with respect to wealth W. Using the

fact that both u0ðc�t Þ and L�
Ut ¼ LU ðEj�

t ½vðj�tþ1Þ�,E
j�

t ½Jtþ1�Þ are in the time-t information set,

we can rewrite the above first-order condition as

1 ¼ Ej�

t

�
e�r L

�
Ut þ 1

u0ðc�t Þ
JW ðWtþ1ÞRtþ1

�
¼ Et

�
e�r L

�
Ut þ 1

u0ðc�t Þ
j�tþ1JW ðWtþ1ÞRtþ1

�
: ðE:32Þ

Using the envelope theorem, we have

JW ðWtþ1Þ ¼ u0ðc�tþ1Þ: ðE:33Þ

Using the above results, we can now verify that the p defined in Equation (E.27) is indeed a

valid pricing kernel in that,

Et

�
ptþ1

pt

Rtþ1

�
¼ 1, ðE:34Þ

for any security with return Rtþ1.
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