

All-Optical Processing for Ultrafast Data Networks Using Semiconductor Optical Amplifiers

Jade P. Wang

Ph.D. Thesis Defense

Thesis Committee: Professor Erich P. Ippen, Dr. Scott A. Hamilton, Professor Rajeev J. Ram

MIT Lincoln Laboratory

PhD Defense-1 JPW 6/11/2008

- Transmission over optical fiber
 - Wavelength division multiplexing (WDM) : multiple wavelength channels per fiber
 - Erbium-doped fiber amplifiers (EDFAs): multi-wavelength amplification
 - Electronic regenerators with O/E/O conversion & demultiplexing
- Electronic routers with O/E/O conversion & demultiplexing

Increasing Demand for Capacity

- Steady growth estimated at 50%-100% / year
- Increasing video traffic (YouTube, IPTV, Video on Demand)
- High-end users: storage networks, data centers, grid computing, scientific processing
- Growing number of internet users around the world

Increasing channel bit rates and number of channels

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

- Motivation/Background: Why all-optical processing?
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

- Ultrafast performance
 - Capable of 100-Gb/s bitwise switching, 640-Gb/s wavelength conversion
- Channel-rate processing
 - No demultiplexing to lower bit-rates
- Fewer O/E/O conversions
- Network flexibility
 - Payload transparency to bit rate & modulation format

Decrease size, power, weight

- Motivation/Background: Routing and Regeneration
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

Routers: All Electronic

- Challenges with increasing bit rates:
 - Limited electronic switch speeds (10-40 Gb/s)
 - Requires multiple lower-speed channels
 - Duplication of low-speed O/E/O, buffers, switches
 - Requires conversion and storage of every bit

Routers: All-Optical Header Processing

- All-optical payload path:
 - High-speed optical switching capable of channel-rate processing
 - Reduce O/E/O conversions (reduce size, weight, and power consumption)
 - Offers payload transparency for flexible networking
- All-optical packet processing:
 - Reduce packet processing latencies
 - Minimize buffering requirements

The Need for Regeneration

- Linear and nonlinear effects in optical fiber
- Dispersion
 compensation cancels
 2nd order dispersion
- Amplifiers compensate for loss
- Amplitude variation
- Pulse shape distortion
- Timing jitter (not simulated)
 - Due to amplifier and transmitter noise

- All-optical regenerator
 - High-speed optical switching capable of channel-rate processing
 - Reduce O/E/O conversions
 - Size, weight, power improvements

- Challenges
 - Electronic technology more mature and offers more functionality than optical switches
 - Optical switches still costly compared with electronic techniques
- This thesis
 - Demonstrate increased functionality for all-optical processing
 - Improve practicality of all-optical logic gates

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

Ultrafast Interferometric All-Optical Switching

- Interferometric switch: change index of refraction (phase)
- Ultrafast performance
- Spatial switching

• Fiber

- Weak nonlinearity (10⁻¹⁶ cm²/W)
- Fast response (~fs)
- No integration long lengths required
- Photonic crystal fiber, highly nonlinear fiber
 - Fast, strong nonlinearity
 - Integration potential?

- Semiconductor optical amplifier
 - Strong nonlinearity (~10⁻¹² cm²/W)
 - Slow recovery time (~ 100 ps)
 - Potential for integration (semiconductor processes)
- Quantum dot SOA
 - Fast recovery time (~10 ps)
 - Strong nonlinearity?

SOA Operation

- Interaction of optical waves with SOA carriers
 - Stimulated recombination of electrons and holes creates gain
 - Optical waves change carrier distribution
 - Changes gain and index of refraction \rightarrow optical switching

SOA Operation

- Interaction of optical waves with SOA carriers
 - Stimulated recombination of electrons and holes creates gain
 - Optical waves change carrier distribution
 - Changes gain and index of refraction \rightarrow optical switching
- How does the incident light affect the carrier density?
 - Phenomenological model
 - Focus on time scales ~ 10 ps (100 Gb/s)

Key assumptions: $gain = a(N - N_o)$ index = $\alpha \cdot gain$

V = volume N = carrier density

Rate equation describing carrier evolution

MIT Lincoln Laboratory

^{PhD Defense-17} JPW 6/11/2008 G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electronics, 25 (11), 1989.

Key assumptions: $gain = a(N - N_o)$ index = $\alpha \cdot gain$

Rate equation describing carrier evolution

$$\frac{\partial N}{\partial t} = D\nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar\omega} |E|^2,$$

Wave equation describing optical propagation

V = volume N = carrier density

MIT Lincoln Laboratory

^{PhD Defense-18} G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electronics, 25 (11), 1989.

Key assumptions: $gain = a(N - N_o)$ index = $\alpha \cdot gain$

Rate equation describing carrier evolution

$$\frac{\partial N}{\partial t} = D\nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar\omega} |E|^2,$$

Wave equation describing optical propagation

$$\nabla^{2} E - \frac{\varepsilon}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} = 0,$$

$$\varepsilon = n_{o} + \chi(N)$$

$$\chi(N) = -\frac{\overline{n} c}{\omega_{o}} (\alpha + i) \cdot a (N - N_{o})$$

V = volume N = carrier density h(τ) = integrated gain

Coupled equations describing gain evolution, optical pulse amplitude and phase propagation

$$h(\tau) = \int_{0}^{L} g(z,\tau) dz$$

$$\frac{\partial h(\tau)}{\partial \tau} = \frac{g_o L - h(\tau)}{\tau_c} - \frac{P_{in}(\tau)}{E_{sat}} \left(e^{h(\tau)} - 1 \right)$$

$$P_{out}(\tau) = P_{in}(\tau) e^{h(\tau)}$$

$$\Phi_{out}(\tau) = \Phi_{in}(\tau) - \frac{1}{2} \alpha h(\tau)$$

MIT Lincoln Laboratory

^{PhD Defense-19} G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electronics, 25 (11), 1989.

Key assumptions: $gain = a(N - N_o)$ index = $\alpha \cdot gain$

Rate equation describing carrier evolution

$$\frac{\partial N}{\partial t} = D\nabla^2 N + \frac{I}{qV} - \frac{N}{\tau_c} - \frac{a(N - N_o)}{\hbar\omega} |E|^2,$$

Wave equation describing optical propagation

$$\nabla^{2} E - \frac{\varepsilon}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} = 0,$$

$$\varepsilon = n_{o} + \chi(N)$$

$$\chi(N) = -\frac{\overline{n} c}{\omega_{o}} (\alpha + i) \cdot a (N - N_{o})$$

V = volume N = carrier density h(τ) = integrated gain

Coupled equations describing gain evolution, optical pulse amplitude and phase propagation

$$h(\tau) = \int_{0}^{L} g(z,\tau) dz$$

$$\frac{\partial h(\tau)}{\partial \tau} = \frac{g_o L - h(\tau)}{\tau_c} - \frac{P_{in}(\tau)}{E_{sat}} \left(e^{h(\tau)} - 1 \right)$$

$$P_{out}(\tau) = P_{in}(\tau) e^{h(\tau)}$$

$$\Phi_{out}(\tau) = \Phi_{in}(\tau) - \frac{1}{2} \alpha h(\tau)$$

Gain saturates and recovers

• Phase ∞ gain

MIT Lincoln Laboratory

^{PhD Defense-20} JPW 6/11/2008 G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electronics, 25 (11), 1989.

Carrier Recovery Time Limitation

- Long carrier recovery time creates pulse patterning
- Limits switching speed to ~10 Gb/s
- Solution: balanced interferometer approach

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

- Goal: Demonstrate ultrafast packet processing functionality for routing
- Previous work*:
 - Ultrafast all-optical header processing of single packets
 - Applicable to add/drop nodes, ring networks
- This work:
 - Multi-packet all-optical header processing demonstration
 - Scalable topology: can be easily extended to larger switches
 - Applicable to wide variety of networks, including multidegree mesh nodes
 - Increased packet processing functionality

- Multi-packet processing (2 incoming packets to 2 outgoing ports)
- Scalable: 2 optical logic gates for each 2x2 switch
- Potential for integration (SOA-based logic)

Optical Logic Gate Implementation: Ultrafast Nonlinear Interferometer (UNI)

MIT Lincoln Laboratory

^{PhD Defense-36} JPW 6/11/2008 N. S. Patel, K. L. Hall, and K. A. Rauschenbach, Optics Letters, 21 (18), 1996.

Optical Logic Gate Implementation: Ultrafast Nonlinear Interferometer (UNI)

JPW 6/11/2008 N. S. Patel, K. L. Hall, and K. A. Rauschenbach, Optics Letters, 21 (18), 1996.

Full System Experimental Schematic

MLFL = Mode-locked Fiber Laser Tx = Transmitter

Packet Architecture
– 2⁷-1 PRBS

Full System Experimental Schematic

- Packet Architecture
 - 2⁷-1 PRBS
 - 4000 bits/packet
 - 100 ns packet

MIT Lincoln Laboratory

Full System Experimental Schematic

Ultrafast All-Optical Header Processor

40-Gbit/s Non-inverting

- Ultrafast operation: Header error rate of 1x10⁻⁶ with 40-Gbit/s line rate
- Comparable with current electronic router error rates
- Low switching-energy: 60.5 fJ/packet

PhD Defense-41 JPW 6/11/2008 J. Wang et al., "Demonstration of 40-Gb/s Packet Routing Using All-Optical Header Processing", IEEE Photonics Technology Letters, 18 (21), 2006.

- Successful demonstration of 2-port forwarding using discrete all-optical logic gates.
- What is required to expand this functionality?
 - Integration: Discrete logic gates are infeasible for practical implementation
 - Size, weight, cost
 - Ease of installation & operation
 - Simple method for optimizing each logic gate for optimal performance
 - Currently requires time-intensive search over a large parameter space

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

SOA Mach-Zehnder Interferometer: An Integrated Optical Logic Gate

- Integrated optical logic gate: SOA-MZI
- Conceptually similar to the UNI: balanced interferometer
- Waveguide and coupling losses require amplifying SOAs
- Complex parameter space makes optimization difficult

SOA Mach-Zehnder Interferometer: An Integrated Optical Logic Gate

- Focus on single-ended operation to observe SOA dynamics
- Key operating parameters
 - $|_{4}, |_{5}$ Static interferometer bias Signal and control average power

 - Signal and control pulse power
 - Signal-control delay (Δt)

Switching dynamics

MIT Lincoln Laboratory

Developed by Alphion Corporation.

- Bias map measurement:
 - Sweep I₄ current at 1 Hz
 - Measure current on SOA using hall-effect probe
 - Measure output power on oscilloscope
 - Full 2D scan taken on the order of minutes

- Bias map measurement:
 - Sweep I₄ current at 1 Hz
 - Measure current on SOA using hall-effect probe
 - Measure output power on oscilloscope
 - Full 2D scan taken on the order of minutes

- Bias map measurement:
 - Sweep I₄ current at 1 Hz
 - Measure current on SOA using hall-effect probe
 - Measure output power on oscilloscope
 - Full 2D scan taken on the order of minutes

- Bias map measurement:
 - Sweep I₄ current at 1 Hz
 - Measure current on SOA using hall-effect probe
 - Measure output power on oscilloscope
 - Full 2D scan taken on the order of minutes

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay
- Continuous measurement can be obtained using a differencefrequency technique

- Fix current bias (I₄, I₅)
- Measure average output power at every control-signal delay
- Continuous measurement can be obtained using a differencefrequency technique
- Switching dynamics
 - Extinction, Recovery time

MIT Lincoln Laboratory

Combined Measurement: Dynamic Bias Scan

• Simultaneous pump-probe measurement at all bias points

- At each signal delay, measure a bias map

Dynamic Pump-Probe Bias Scan

- Simultaneous pump-probe measurement at all bias points
 - At each signal delay, measure a bias map
- Measures the effect of optical control pulse on interferometer bias at all operating points: 4-dimensional plot

MIT Lincoln Laboratory

^{PhD Defense-57} JPW 6/11/2008 J. Wang et al., "A Performance Optimization Method for SOA-MZI Devices", OFC 2007.

Dynamic Bias Scan

Extinction Map

- Extinction map: Extract extinction measurement from dynamic bias scan
- Inverting mode gives higher extinction, but logic functions often require non-inverting operation

Wavelength Conversion at Selected Operating Point

 Demonstration of effectiveness of dynamic bias map: wavelength conversion

Wavelength Conversion at Selected Operating Point

- Demonstration of effectiveness of dynamic bias map: wavelength conversion
- Compare with nearby operating point found by typical manual optimization

Wavelength Conversion at Selected Operating Point

- Demonstration of effectiveness of dynamic bias map: wavelength conversion
- Compare with nearby operating point found by typical manual optimization

Achievements:

- Highly accurate characterization technique for optimization of ultrafast switch performance
- Improves practical, multi-gate functionality of integrated optical logic

MIT Lincoln Laboratory

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates
- Conclusion

- Goal: Demonstrate all-optical error-free regeneration with the SOA-MZI logic gate
- Previous work*:
 - Error-free regeneration with paired SOA-MZI logic gates (inverting operation)
- This work:
 - Wavelength-maintaining regenerator
 - Non-inverting operation (requires only a single logic gate)
 - Polarization insensitive

MIT Lincoln Laboratory

* Z. Zhu et al., IEEE Photonics Technology Letters 18 (5), 2006.

100-km Recirculating Loop Experiment

- Simulates regenerator performance in real-world system
- Tests SOA-MZI in cascading operation
- Dispersion compensation cancels 2nd order dispersion
- 10 Gb/s, 2³¹-1 pseudo-random bit sequence

MIT Lincoln Laboratory

100-km Recirculating Loop Experiment

- Wavelength converter + SOA-MZI = wavelength-maintaining regenerator
- Single SOA-MZI regenerator, non-inverting operation
- Optimal operating point found via dynamic bias map
- Very stable regenerator operation

Regenerator Results: Cross-Correlation and BER

- Cross-correlation & BER measured after regenerator
- 0.5-dB penalty after 100 passes (10,000 km)

MIT Lincoln Laboratory

PhD Defense-67 JPW 6/11/2008 J.P. Wang, et al., "Regeneration using an SOA-MZI in a 100-pass 10,000-km Recirculating Fiber Loop." CLEO 2007.

- Electronic techniques rapidly outgrowing size, weight, power limitations
- Optical signal processing techniques can help:
 - Ultrafast, multi-packet header processing
 - Scalable
 - Low switching energy
 - Network flexibility from payload transparency
 - Reduced O/E/O conversions
 - Practical, easily optimized integrated logic gates
 - Accurate, fast optimization
 - Insight into switching dynamics
 - Cascadable, single-gate wavelength-maintaining regeneration
 - Polarization insensitive
 - Potential for integration
 - 10,000-km, 100 pass demonstration

- Motivation/Background
- Ultrafast all-optical logic gates
- Routing: 40-Gb/s all-optical header processing
- Performance optimization of optical logic gates
- Regeneration
- Future SOA-MZI gates: What's next?

- Hybrid Integration
 - Incompatible materials integrated on a wafer
 - Passive material: silicon, silica
 - Active material: InGaAsP (III-V semiconductors)
 - Challenge: Alignment and fabrication cost

- Monolithic integration
 - Compatible materials grown together for both active and passive devices
 - Challenge:
 - Silicon: active devices
 - InGaAsP: low loss
 - Challenge: high yields

- Hybrid Integration
 - Incompatible materials integrated on a wafer
 - Passive material: silicon, silica
 - Active material: InGaAsP (III-V semiconductors)
 - Challenge: Alignment and fabrication cost

- Monolithic integration
 - Compatible materials grown together for both active and passive devices
 - Challenge:
 - Silicon: active devices
 - InGaAsP: low loss
 - Challenge: high yields

• Asymmetric twin waveguide approach

- Potential for close to 100% coupling
- Potential for high yield
- Tolerance for fabrication errors

 Collaboration with MIT Integrated Photonics Devices and Materials group

- Previous work:
 - Simulation and design of SOA-MZI gates (A. Markina)
 - Fabrication of 1st and 2nd generation logic chips (R. Williams)
- This work:
 - Characterization of 2nd generation logic chip
 - Recommendations for next generation integrated chips
- Future work:
 - Fabrication and design of 3rd generation chips (T. Shih)

Integration Progress: Size, Power

1 logic gate

1 logic gate

Multiple logic gates

Characterization results:

- Demonstrated SOA gain, active/passive coupling
- Loss is currently an issue
- Fabrication improvements will solve these issues

Enable complex logic on a single chip

- Demonstrated functionality of all-optical signal processing in routing and regeneration
 - 40 Gb/s multi-packet header-processing
 - 10,000-km, 100-pass error free regeneration
- Addressed practical implementation of all-optical signal processing
 - Developed a simple optimization technique for all-optical logic gate performance
 - Demonstrated potential of asymmetric waveguide design for integrated multi-gate logic on a single chip

Acknowledgements

- Professor Erich Ippen
- Scott Hamilton
- Professor Rajeev Ram

Lincoln Laboratory

- Bryan Robinson
- Shelby Savage
- Claudia Fennelly
- Paul Juodawlkis
- Jason Plant
- Reuel Swint
- Todd Ulmer
- Neal Spellmeyer
- Matthew Grein
- Jeffrey Roth
- David Caplan
- Mark Stevens
- Don Boroson
- William Keicher

ΜΙΤ

- Professor Leslie Kolodziejski
- Gale Petrich
- Ta-Ming Shih
- Ryan Williams (graduated)
- Aleksandra Markina (graduated)
- Tauhid Zaman
- Ali Motamedi
- Reja Amatya

Alphion Corporation

- Boris Stefanov
- Leo Spiekman
- Hongsheng Wang
- Ruomei Mu

Electronic 3R Regenerator*

- Total power: 10W
- 2 channels
- 2.5 Gb/s per channel
- 40 Gb/s
 - 8 modules
 - 80 W
- 100 Gb/s
 - 20 modules
 - 200 W

But electronic regenerator offers more functionality than just 3R regeneration!

* Cisco WDM Transponder

Optical 3R Regenerator

- 1 optical logic gate
- 1 channel
- Bias power: 600 mW
 - 2 SOAs
 - 200 mA x 1.5 V = 300 mW per
 SOA
- Switching energy: 40 fJ/bit
 - 40 Gb/s: 1.6 mW
- negligible
- 100 Gb/s: 4 mW
- 40 Gb/s
 - 1 switch
 - 600 mW
- 100 Gb/s
 - 1 switch
 - 600 mW

Power Consumption Shortfall

Technology is falling behind demand

Shortfall is overcome by architectural innovation and trading off: Performance, functionality, programmability, physical size/density → Very hard to sustain long-term

Ø 2005 Chao Spranne, Inc. Offrighte mean as

PhD Defense-77 JPW 6/11/2008

G. Epps, Cisco Routing Research Symposium (2006).

6

MIT Lincoln Laboratory

Commercial Electronic Routers

