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Abstract

Following the structure of many commodity markets, we consider a few large firms and a

competitive fringe of many small suppliers choosing quantities in an infinite-horizon setting

subject to demand shocks. We show that a collusive agreement among the large firms

may not only bring an output contraction but also an output expansion (relative to the

non-collusive output level). The latter occurs during booms and is due to the strategic

substitutability of quantities. We also find that the time at which maximal collusion is

most difficult to sustain can be either at booms or recessions. The international copper

cartel of 1935-39 is used to illustrate some of our results.

I. INTRODUCTION

IN TABLE IWE REPRODUCEOrris C. Herfindahl’s Table 3 [1959, p. 115] with a summary

of the evolution of the so-called international copper cartel that consisted of the five largest firms

and operated during the four years preceding the Second World War. Herfindahl argues that

the cartel was successful in restricting production during the periods of low demand (denoted as
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Quota status and associated with lower spot prices in the London Metal Exchange) but failed

to extend such restrictions to the periods of high demand when the cartel and non-cartel firms

returned to their non-collusive output levels.1

Herfindahl’s description appears consistent with some existing collusion theories; in par-

ticular, with Rotemberg and Saloner’s [1986] prediction for the evolution of a cartel under

conditions of demand fluctuations in that collusive firms have more difficulties in sustaining

collusion during booms (i.e., periods of high demand).2 We advance a different behavioral

hypothesis in this paper. We posit that the large output expansions undertaken by cartel mem-

bers during the two booms (Jan.—Nov. 1937 and Oct.—Dec. 1938) may not necessarily reflect

a return to the non-collusive (i.e., Nash-Cournot) equilibrium but rather a continuation with

the collusive agreement in the form of a coordinated output expansion of cartel members above

their Nash-Cournot levels.3

*** Place Table I approximately here ***

The objective of this paper is to explore the conditions under which a collusive agreement,

if sustained, can take an output-expanding form at least during some part of the business cycle.

Although we do not run any empirical test, we will see that the international copper cartel of

1935-39 as well as many of today’s commodity markets appear to be good candidates to which

such collusive characterization may apply.4 There are basically two reasons for that. First, in

these markets a firm’ strategic variable is its level of production while prices are cleared, say, in a

metal exchange. Second, collusive efforts, if any, are likely to be carried out by a fraction of the

industry (typically, the largest firms) leaving an important fraction of the industry (consisting

mostly of a large number of small firms) outside the collusive agreement that nevertheless enjoy

any eventual price increase brought forward by the collusive agreement (we will refer to the

group of non-cartel firms as competitive fringe and to the group of potential cartel firms as

1Walters [1944] also comments on the satisfactory operation of the cartel in that there is no indication that
sanctions for non-compliance were ever invoked.

2Rotemberg and Saloner’s [1986] prediction can change if we introduce imperfect monitoring (Green and
Porter [1984]), a less than fully random demand evolution (Haltinwager and Harrington [1991] and Bagwell and
Staiger [1997]), and capacity constraints (Staiger and Wolak [1992]).

3From reading some news of the time it appears that output expansions were indeed not totally left to each
cartel member’s unilateral actions but were somehow also orchestrated by the cartel (e.g., New York Times 1938,
Oct. 11, pg. 37 and Oct. 18, pg. 37).

4Note that unlike other commodity cartels that organize around export sales quotas, the 1939-35 copper cartel
was organized exclusively around production quotas. The international tin cartel of 1931-1941, for example,
combined control of production with export sales quotas. For more, see Walters [1944].
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strategic or large firms).

Our model consists of a few, large and identical firms and a fringe of competitive suppliers

simultaneously deciding production in each period over an infinite horizon.5 Consistent with

practical observation, we assume that the entry or exit of large firms is a rare event. Fringe firms

are assumed to be infinitesimally small, so they play along their static reaction (best-response)

function.6 The problem of the cartel of large firms is then to find the optimal collusive agree-

ment, taking as given that fringe firms play a static best response in each period. Analogous

to the long-run player of Fudenberg and Levine [1989], the cartel’s optimal strategy is to play

its Stackelberg quantity in each period. Since cartel profits under the Stackelberg play are by

definition higher than in the Nash-Cournot equilibrium, the Stackelberg outcome is feasible to

sustain by the threat of Nash reversion whenever large firms are sufficiently patient. The main

result of the paper is that as demand increases, the cartel’s Stackelberg quantity can be greater

than the sum of the Nash-Cournot (i.e., non-collusive) quantities of the large firms.7

The possibility of an output-expanding collusion arises from a trade off that large firms face

when deciding on their optimal collusive agreement. On the one hand, large firms understand

that non-cooperative (i.e., Nash-Cournot) play typically results in too much output (as they

perceive it), so they want to correct this by restricting production to levels that rest below

their respective static reaction curves. This can be seen as the "corrective" objective of the

cartel. On the other hand, the firms in the cartel are aware of the strategic sustitutability of

quantities (Bulow et al. [1985] and Fudenberg and Tirole [1984]). They understand that if they

can credibly commit to produce a larger output (i.e., production levels that rest above their

respective reaction curves), then the fringe firms will produce less. This can be seen as the

"strategic" objective of the cartel, which is, of course, closely related to the Stackelberg logic of

the first-mover advantage. But in our model, large firms do not move first; instead, they build

credibility from their repeated interaction and the threat to Nash-Cournot reversion.

Thus, when a cartel interacts with a fringe, the cartel faces a trade-off between the corrective

benefit of restricting output and the strategic benefit of increasing output. When the fringe is

5Although the collusion literature usually assumes a structure of identical firms, this heterogeneous structure
in which a few large firms compete with many smaller firms has long been recognized (e.g., Arant [1956] and
Pindyck [1979]).

6 In that sense fringe firms are not different than consumers who also play along their static reaction function.
We could also use fringe firms of small but measurable size "unconcerned" about the future, very much like the
short-run players of Fudenberg et al. [1990]. For more see Mailath and Samuelson [2006].

7 It is not new in the literature that the introduction of a competitive fringe can alter existing results. Ri-
ordan [1998], for example, shows how and when the presence of a (downstream) fringe reverses the well known
procompetitive result of backward vertical integration by a downstream monopolist.
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negligible, the only objective that matters for the cartel is the corrective one, leading to the tra-

ditional output-contracting result (i.e., cartel output below Nash-Cournot levels). Conversely,

when there is only one firm in the cartel, the only objective that matters is the strategic one,

leading to the output-expanding result (i.e., cartel output above its Nash-Cournot level). For

the remaining cases, the resolution of the trade-off will ultimately depend on the number of

large firms (the corrective benefit increases with the number of large firms) and on the market

shared enjoyed by the fringe (the strategic benefit increases with fringe size). This latter will

in turn depend on the cost differences between large and fringe firms and on the magnitude of

the demand shocks. One can always find fringe’s costs sufficiently low (high) that it is optimal

for strategic firms to implement an output-expanding (-contracting) collusion for all possible

realizations of demand. As we speculate for the copper cartel of 1935-39, however, the more

interesting case is one in which fringe costs generate both output-contracting collusion during

recessions and output-expanding collusion during booms, which is when the fringe market share

is larger.

Another way to appreciate our results is by contrasting them with those obtained in a price-

setting game with some product differentiation.8 Because of the strategic complementarity of

prices, the basic trade-off between corrective and strategic objectives does not arise when firms

set prices. Cartel members prefer price increases for both corrective and strategic reasons.

The presence of an important fraction of non-cartel firms has also implications for cartel

firms’ ability to sustain the collusive outcome throughout the business cycle. In standard

collusion analysis deviation of a cartel firm is punished by the remaining cartel firms with

increases of production to Nash-Cournot levels. The same logic applies here when the deviation

occurs at periods of output contraction. The punishment logic is somehow different when

the deviation occurs at periods of output expansion. Since a deviation entails cutting back

production toward Nash-Cournot levels, the remaining cartel firms as well as fringe firms also

profit from the deviation in the short run. Then, in moments of output-expanding collusion the

cartel discipline does not come from the threat that remaining cartel firms will flood the market

after the deviation, but from the fear that cartel firms will lose credibility to effectively sustain

the Stackelberg outcome. If strategic firms fail to produce according to Stackelberg principles,

this causes fringe firms to believe that cartel firms have no credibility to act in such a way in

8 If products are perfectly homogeneous it is immediate that we cannot have an output-expanding collusion
(i.e., prices below Nash-Bertrand levels) because that would require large firms to price below their marginal
costs.
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the future, leading fringe firms to produce according to Nash-Cournot forever in the future.9

Note that this is a natural enforcement mechanism because the whole idea of expanding output

above Nash-Cournot levels hinges around the contracting response of the fringe.

Using the same i.i.d. demand shocks of Rotemberg and Saloner [1986] we also study the

sustainability of collusion over the business cycle. Unlike Rotemberg and Saloner [1986], we

show cases in which it is more difficult for firms to sustain maximal collusion (i.e., the monopoly

outcome) during recessions than during booms. In addition, we illustrate how the optimal

collusive agreement departs from maximal collusion when firms are not sufficiently patient.

Because many commodity markets are characterized by the presence of a relatively large

fraction of small suppliers that will never enter into a collusive agreement, our results can have

important welfare implications. We cannot rule out, on theoretical grounds, that collusion

efforts by a group of large firms may be welfare enhancing when periods of output-contracting

collusion are followed by periods of output-expanding collusion.10 Based on the aggregate data

of Table I, we illustrate this possibility in a numerical exercise for the copper cartel of 1935-39.

The rest of the paper is organized as follows. In Section II we present the model and derive

the (non-collusive) Nash-Cournot equilibrium. In Section III we present the maximal collusive

equilibrium and demonstrate the possibility of an output-expanding collusion. In Section IV,

we study the cartel stability over the business cycle. The numerical exercise based on the

copper cartel data is in Section V. Concluding remarks follow. All proofs are relegated to the

Appendix.

II. OLIGOPOLY—FRINGE MODEL

II(i). Notation

A group of n identical (strategic) firms (i = 1, ..., n) and a competitive fringe consisting of

a continuum of firms (indexed by j ∈ [0, J ]) produce some commodity in an infinite-horizon
setting. At the beginning of each period, firms simultaneously choose their production levels and

the price clears according to the inverse demand curve P (Q; θ), where Q is total production, θ ∈
[θ, θ] is a demand shock observed by all firms before they engage in production, ∂P (Q; θ)/∂Q ≡

9Note that this enforcement mechanism is no different, say, from the one used by the durable-good monopolist
of Ausubel and Deneckere [1989].
10Bulow et al. [1986] make a closely related point when they ask whether "little competition is a good thing."

The answer depends on whether the entry of a small fringe will cause the incumbent monopolist to expand
or contract output: entry is a good thing with strategic complements and is welfare reducing with strategic
substitutes.
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PQ(Q; θ) < 0, and ∂P (Q; θ)/∂θ ≡ Pθ(Q; θ) > 0 for all Q.11

Strictly speaking, only the n strategic firms have the possibility of choosing among different

production levels; a fringe firm’s decision is simply whether or not to bring its unit of output

to the market.12 The production cost of each strategic firm is Cs(qs) with C 0s(qs) > 0 and

C 00s (qs) ≥ 0 ("s" stands for strategic firm). The unit cost of fringe firm j is cj . The cj ’s,

which vary across firms, can be cost-effectively arranged along a marginal cost curve C 0f (Qf )

with C 00f (Qf ) > 0, where Qf =
R J
0 qfjdj is fringe output (we will use capital letters to denote

group production and small letters to denote individual production, so strategic firms’ output

is Qs =
Pn

i=1 qsi and total output is Q = Qs +Qf ).

In some passages of the paper we will introduce, with little loss of generality, some simpli-

fying assumptions to the model that will allow us to better illustrate some of our results. In

particular, we will assume that P (Q; θ) = θ(a − bQ), that strategic firms have no production

costs and that the fringe’ aggregate marginal cost curve is C 0f (Qf ) = cQf , where a, b and c are

strictly positive parameters.13

II(ii). The Nash-Cournot Equilibrium

A commonly used approach for finding the (static) Nash-Cournot equilibrium in the presence

of a competitive fringe is to first subtract the fringe’s supply function from the market demand to

obtain the "residual demand" faced by the large firms and then solve the non-cooperative game

among the large firms. This residual-demand approach, however, violates the simultaneous-

move assumption. It implicitly assumes a sequential timing within any given period: first, large

firms announce or choose their quantities; then and after observing large firms’ output decisions,

fringe firms choose their quantities. In the absence of technical reasons, this sequential timing

can only be supported by some degree of cooperation (i.e., collusion) among the large firms

that ensures that large firms will stick to their announcements or that they will not move again

together with the fringe.14 Without such cooperation, the static game necessarily collapses into

11Below we address the specific cases of multiplicative shock (i.e, P (Q; θ) = θP (Q)) and additive shock (i.e.,
P (Q; θ) = P (Q) + θ).
12 Including some fringe firms with output flexibility complicates the algebra with no implications in the re-

sults. It would be interesting, however, to study more formally the process of cartel formation when there are
heterogenous firms.
13That the costs of large firms are, on average, lower than the costs of smaller firms is not a bad assumption

–at least for mineral markets (Crowson [2003]). However, we do not need such assumption for our results; we
could have just worked with Cs(qs) = csqs at the expense of mathematical tractability.
14Suppose first that the sequential timing is the result of early production announcements by strategic firms.

At the production stage, however, a strategic firm would like to deviate from its original announcement by
producing less. Suppose instead that the sequential timing is the result of early and observable production by
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a simultaneous move game.15

Thus, the Nash-Cournot equilibrium of the one-period (simultaneous-move) game, i.e., the

equilibrium in the absence of any collusion efforts, is found by solving each firm’s problem as

follows16

max
qsi

P (qsi +
P
j 6=i

qsj +Qf ; θ)qsi − Cs(qsi) for all i = 1, ..., n (1)

qfj =

 1 if cj ≤ P (Qs +Qf ; θ)

0 if cj > P (Qs +Qf ; θ)
for all j (2)

The n first-order conditions associated to (1) give us the best response of each strategic firm to

the play of all remaining firms. Similarly, (2) summarizes the best response of each fringe firm,

which is to produce as long as its unit cost is equal to or below the clearing price.

Given the symmetry of the problem, the equilibrium outcome of the one-period game is

given by

PQ(Q
nc; θ)

Qnc
s

n
+ P (Qnc; θ)−C 0s(Q

nc
s /n) = 0 (3)

P (Qnc; θ) = C 0f (Q
nc
f ) (4)

where "nc" stands for Nash-Cournot or non-collusive equilibrium and Qnc = Qnc
s +Q

nc
f . Solving,

we obtain Qnc
s (θ) and Qnc

f (θ).
17

III. COLLUSION

It is well known that in a infinite-horizon setting strategic firms may be able to sustain

outcomes in subgame perfect equilibrium that generate higher profits than the outcome in the

corresponding one-period game. Leaving for later discussion how difficult it is for firms to

sustain these collusive outcomes in equilibrium, or alternatively, assuming for the moment that

strategic firms (together with a commitment of no additional production). At the time fringe firms are called to
produce, however, a strategic firm will find it profitable to deviate from its commitment by bringing additional
output to the market.
15Besides, the sequential timing assumption can lead to non-collusive outcomes that are far from realistic, as

we shall see in the next section.
16One of the first oligopoly-fringe models that explicitily adopts this simultaneous-move assumption is Salant’s

[1976] model for the oil market.
17The corresponding quantities for the simplified model are

Qnc
s =

nac

b[c(n+ 1) + θb]
and Qnc

f =
θa

c(n+ 1) + θb

Note that under this particular formulation dQnc
s (θ)/dθ < 0 and dQnc

f (θ)/dθ > 0; but we do not require these
properties in any of our Propositions.
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the discount factor δ (of strategic firms) is close enough to one,18 in this section we are interested

in finding the maximal collusive agreement for the strategic firms, that is, the agreement that

implements the cartel’s Stackelberg outcome.

III(i). Maximal Collusion

Assuming that all players acting at date t have observed the history of play up to date t,19

large firms can implement their collusive agreement by following history-dependent equilibrium

strategies. Let Qm
s and Qm

f denote the (aggregate) quantities corresponding to the maximal

collusive agreement, which, for example, can be implemented by the the following set of (sym-

metric) trigger strategies (which depend on the realization of the demand shock θ): In period

0, strategic firm i = 1, ..., n plays Qm
s /n and fringe firms play, on aggregate, Q

m
f . In period t,

firm i plays Qm
s /n if in every period preceding t all strategic firms have played Q

m
s /n; otherwise

it plays Qnc
s /n. Fringe firms, on the other hand, play Qm

f in t if in every period preceding t all

strategic firms have played Qm
s /n; otherwise they play Q

nc
f .

Since strategic firms are symmetric and there are no economies of scale, it is optimal for

each strategic firm to produce qmsi = Qm
s /n, hence

Qm
s = argmax

Qs

{P (Qs +Qf (Qs); θ)Qs − nCs(Qs/n)} (5)

where Qf (Qs) is the fringe’s static best-response to Qs, which is implicitly given by

P (Qf +Qs; θ) = C 0f (Qf ) (6)

Replacing Qf (Qs) from (6) into (5), the strategic firms’ maximal collusive outcome solves

C 00f (Q
m
f )PQ(Q

m; θ)

C 00f (Q
m
f )− PQ(Qm; θ)

Qm
s + P (Qm; θ)− C 0s(Q

m
s /n) = 0 (7)

P (Qm; θ) = C 0f (Q
m
f ) (8)

where Qm = Qm
s + Qm

f . Solving we obtain the collusive equilibrium strategies, Qm
s (θ) and

18The discount factor of fringe firms is irrelevant since they always operate along their static best-response
function.
19As explained by Crowson [1999], it is common in mineral markets to see smaller firms staying around for as

long as larger firms. It is also the case that smaller firms can learn about previous play without being physically
present, either through word-of-mouth or more likely from written sources.
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Qm
f (θ), as a function of the observable demand shock θ.

20

Note that having Qf as a function of Qs in (5) resembles a Stackelberg (sequential) game but

it is only because in this repeated game large firms anticipate and use fringe firms’ equilibrium

response in constructing their optimal actions and not because some exogenous first-mover

advantage.

III(ii). Output-Expanding Collusion

Having characterized the collusive and non-collusive equilibrium solutions we are ready to

present our main proposition. By comparing equilibrium conditions (3)—(4) with (7)—(8), it can

be established

Proposition 1. Suppose that there is a level of demand θ̂ ∈ [θ, θ] at which Nash-Cournot
play satisfies

−PQ(Qnc(θ̂); θ̂) = (n− 1)C 00f (Qnc
f (θ̂)) (9)

Then, maximal collusion and Nash-Cournot coincide at θ̂. Suppose further that

−dPQ(Q
m(θ̂); θ̂)

dθ
> (n− 1)C 000f (Qf (θ̂))

dQm
f (θ̂)

dθ
(10)

whenever (9) holds. Then, maximal collusion prescribes strategic firms to produce less than

Nash-Cournot if θ < θ̂ and more than Nash-Cournot if θ > θ̂.

The first part of the proposition identifies the demand level –provided that it exists, i.e.,

θ̂ ∈ [θ, θ]– at which the non-collusive and collusive solutions coincide. Depending on the

functional forms of the demand and cost functions, this demand level may not be unique. More

importantly, condition (9) opens up the possibility for an output-expanding collusion whenever

−PQ(Q(θ); θ) > (n − 1)C 00f (Qf (θ)), which will always be the case for C 00f (·) sufficiently small.
The second part of the proposition establishes the condition for the collusive agreement to

involve output expansions (above Nash-Cournot levels) during periods of higher demand (i.e.,

θ > θ̂) and output contractions during periods of lower demand (i.e., θ < θ̂).

In providing intuition for these results, it is useful to see first how Proposition 1 applies

to our simplified model: P (Q; θ) = θ(a − bQ), Cs(qs) = 0 and C 0f (Qf ) = cQf . From (9), we

20For the simplified model the equilibrium quantities are

Qm
s =

a

2b
and Qm

f =
θa

2(c+ θb)

Note that ∂Qm
f (θ)/∂θ > 0.
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obtain that the demand level at which the collusive outcome coincides with the Nash-Cournot

outcome is θ̂ = (n− 1)c/b. And since it is clear that (10) holds, the collusive agreement among
the strategic firms is to expand output (and, hence, to lower prices) whenever θ > (n− 1)c/b; a
condition that can be conveniently expressed in terms of Cournot market shares as follows (see

footnote 17 for the values of Qnc
f and Qnc

s )

θ >
(n− 1)c

b
⇐⇒ Qnc

f

Qnc
>

n− 1
2n− 1 (11)

If n = 2, for example, the collusive agreement will be output-expanding during those periods in

which the fringe’s Cournot share would be above 1/3. This market share "threshold" increases

with the number of large firms to the limiting value of 1/2. Thus, in this simplified model,

whenever the fringe’s Cournot share is above 1/2, it is collusive optima for large firms to

expand output above Cournot levels regardless of their number.

The simplified model illustrates neatly the trade-off that large firms face when deciding

on their collusive agreement. On the one hand, large firms understand that a Nash-Cournot

play typically results in too much output (as they perceive it), so they want to correct this

by restricting production to levels that rest below their respective static reaction curves. This

can be seen as the "corrective" objective of the cartel. On the other hand, the firms in the

cartel are aware of the strategic sustitutability of quantities in that they understand that if

they can credibly commit to produce a larger output (i.e., production levels that rest above

their respective reaction curves), then the fringe firms will produce less (note from (6) that

Q0f (Qs) = PQ(Q)/[C
00
f (Qf ) − PQ(Q)] < 0). This can be called the "strategic" objective of the

cartel, which is, of course, closely related to the Stackelberg logic of the first-mover advantage.

But in our model, large firms do not move first; instead, they build credibility from their

repeated interaction and the threat to Nash-Cournot reversion.

Thus, when a cartel interacts with a fringe, the cartel faces a trade-off between the corrective

benefit of restricting output and the strategic benefit of increasing output. At θ = θ̂, the two

objectives exactly balance out. For demand levels different than θ̂ the resolution of the trade-off

can go in either direction depending on the number of large firms, cost differences and demand

levels. At one extreme, when there is only one firm in the cartel (n = 1), the only objective

that matters is the strategic one, leading the one-firm cartel to produce above its Nash-Cournot

level for all levels of demand, i.e., −PQ(Q(θ); θ)/C 00f (Qf (θ) > 0 for all θ. As n increases, the
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corrective objective becomes more important and may eventually dominate the strategic one,

i.e., n− 1 > −PQ(Q(θ); θ)/C 00f (Qf (θ)).

At the other extreme, when the fringe is negligible (C00f (Qf ) very large for all Qf ), the only

objective that matters for the cartel is the corrective one, leading to the traditional output-

contracting result, i.e., −PQ(Q(θ); θ) < (n− 1)C 00f (Qf (θ)) for all θ. As we increase the relative

size of the fringe, the strategic objective gets more weight and eventually may become more

important than the corrective one. It is clear from (11) that for the simple model the relative

size of the fringe is larger the lower its cost (i.e., lower c) or higher the demand, or both. For the

more general model the effect of a demand increase on the likelihood of an output expansion

is less obvious. Expression (10) in Proposition 1 establishes the exact conditions for this to be

the case. In fact, when the fringe supply is convex in prices (i.e., C 000f (Qf ) < 0),21 condition

(10) holds for any particular shape of the demand shock.22

Finally, another way to appreciate the results of Proposition 1 is by contrasting them with

those obtained in a price-setting game with some product differentiation. In the Appendix we

develop a (general) model where we formally show it is never optimal for the strategic firms

to jointly price below their (non-collusive) Nash-Bertrand price levels. Because of the strategic

complementarity of prices, the basic trade-off between corrective and strategic objectives does

not arise when firms set prices.23 Cartel members are attracted to price increases for both

corrective and strategic reasons.

IV. COLLUSION OVER THE BUSINESS CYCLE

We have characterized the maximal collusive agreement but have said nothing on how dif-

ficult is for the strategic firms to sustain such an agreement under varying demand conditions.

The question of whether it is more difficult for firms to sustain collusion during booms than

21At least for mineral markets, Crowson [1999] and [2003] explain that total supply from smaller firms (including
that from non-conventional sources such as recycling) tend to be much more elastic at higher prices.
22The right hand side of (11) is always negative (recall that dQm

f (θ)/dθ > 0 for all θ) while the left hand side is
positive for a multiplicative shock (i.e., P (Q; θ) = θP (Q)) and zero for an additive shock (i.e., P (Q; θ) = P (Q)+θ).
Note also that for an additive shock the condition that separates output-contracting collusion from output-
expanding collusion reduces to whether −(n − 1)C00

f /PQ is greater or lower than the unity. So, if both the
fringe’s supply function C0

f (Qf ) and the demand function P (Q) are linear, the collusive agreement would exhibit
either output contractions or expansions over the entire business cycle, which appears little realistic. But if
C000
f (Qf ) < 0, we could then have a mixed regime with output contraction for θ < θ̂ and output expansion for

θ > θ̂, where θ̂ solves −(n− 1)C00
f (Qf (θ̂))/PQ(Q(θ̂)) = 1. It is possible that in reality shocks are best modeled

as a combination of both specifications.
23Note from eq. (17) in the Appendix that ∂pf (ps1, .., psn)/∂psi > 0 for all i, where pf and psi are, respectively,

the prices charged by fringe firms and strategic firm i.
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during recessions (or vice versa) has received a great deal of attention in the literature after

the pioneers works of Green and Porter [1984] and Rotemberg and Saloner [1986]. Since our

intention is not to provide a discussion of how all existing results could change with the intro-

duction of a (large) fringe, we follow Rotemberg and Saloner [1986] in that demand is subject

to (observable) i.i.d. θ shocks. We also assume that all (strategic) firms use the same factor

δ ∈ (0, 1) to discount future profits.

IV(i). Critical Discount Factor

For maximal collusion to be sustained throughout the business cycle it must hold for all θ

and for each strategic firm that the profits along the collusive path be equal or greater than the

profits from cheating on the collusive agreement and falling, thereafter, into the punishment

path, that is

πm(θ) + δV m ≥ πd(θ) + δV p (12)

where V m = Eθ[π
m(θ)]/(1−δ) is the firm’s expected present value of profits along the collusive

path, πd(θ) is the profit obtained by the deviating firm in the period of deviation and V p is

the firm’s expected present value of profits along the punishment path. Although in principle

the punishment path can take different forms (which may include return to collusion after

some period of time), reversion to Nash-Cournot appear to us as more reasonable, particularly

because of the fringe presence. Expression (12) adopts this view,24 so V p = Eθ[π
nc(θ)]/(1− δ).

It is important to notice that the direction of the deviation from the collusive agreement

vary along the business cycle. If the deviation occurs sometimes during the output-contracting

phase of the collusive agreement (i.e., when θ < θ̂), the optimal deviation is to increase output

towards Nash-Cournot levels. But if deviation occurs sometimes during the output-expanding

phase (i.e., when θ > θ̂), the optimal deviation is to reduce output below the collusive level.

Since the remaining cartel firms as well as fringe firms also profit from this type of deviation

in the short run, we see that in moments of output-expansion the cartel discipline does not

come from the remaining cartel firms flooding the market, but from the loss of credibility

that the cartel can effectively sustain its Stackelberg quantity. And if the fringe (correctly)

anticipates the cartel deviation incentives from the Stackelberg outcome, it will rather play its

Nash-Cournot quantity and so will each of the large firms.

We can now use (12) to obtain the discount factor function δ(θ) = (πd(θ)−πm(θ))/(V m−V p)

24We also consider the optimal penal codes of Abreu [1986, 1988] and find no qualitative changes in our results.
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that establishes the minimum discount factor needed to sustain maximal collusion at θ provided

that maximal collusion is sustained at all other θ’s. Then, the critical demand level θc at

which it becomes most difficult for firms to sustain maximal collusion can be defined as θc =

argmaxθ δ(θ). In other words, firms can sustain maximal collusion throughout the business

cycle, i.e., for all levels of demand, only if δ ≥ δ(θc).

To facilitate the exposition, let us adopt, for a moment, the simplifying assumptions of

linear demand and costs, which allows us to obtain tractable expressions for πd(θ) and πm(θ).

Solving we obtain25

δ(θ) =
θ[(n− 1)c− θb]2

(c+ θb)2
K (13)

where K = a2/16n2b(V m − V p).

The function δ(θ) is plotted in Figure 1, which exhibits a local maximum at 0 < θ1 < θ̂

and a global minimum at θ̂ –when maximal collusion reduces to the Nash-Cournot outcome.

Note that δ(θ) has been drawn without paying attention to the fact that the support of θ is

some subset [θ, θ] of <+.26 Although both V m and V p depend on the actual support (and

distribution) of θ, they enter as constant terms in (13), so changes in the support (and/or

distribution) of θ will only scale δ(θ) up or down with no effects on the discussion that follows

(e.g., θ1 is independent of θ and θ). More importantly, depending on the values of θ and θ

one can construct cases in which the critical time is either at booms (e.g., [θ = 0, θ = θ1],

[θ = θ̂, θ > θ̂]) or at recessions (e.g., [θ = θ1, θ = θ̂]). The latter example is most interesting

because even if we restrict attention to output-contracting collusion, that is, θ ≤ θ̂, we do not

need to invoke Green and Porter’s [1984] imperfect monitoring to generate procyclical pricing

(i.e., prices closer to collusive levels at booms and non-collusive levels at recessions).27

*** Place Figure 1 approximately here ***

The above discussion extends to the general model in that we can establish

Proposition 2. The time at which it is more difficult for large firms to sustain maximal

collusion can be either at booms or recessions.

25πd(θ) = θb[qd(θ)]2, where qd(θ) = a[c(n + 1) + θb]/4nb(c + θb) is the optimal deviation when each of the
remaining strategic firms are playing Qm

s /n.
26Note also that δ(θ) converges to the unity as θ −→ ∞ because the output reduction of the deviating firm

causes prices to explode, and with that, πd(θ) (while πm(θ) is bounded by the fringe presence).
27The Bagwell and Staiger’s [1997] model of serially correlated demand shocks is also able to generate pro-

cyclical pricing for some parameter values.
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The above result entirely hinges on the fact that there exists a demand level θ̂ at which the

collusive and the non-collusive outcomes are indistinguishable, so collusion for any nearby θ is

easily sustained. As we increase fringe’s costs, θ̂ moves to the right (see Proposition 1) and

eventually falls outside the support of θ. In the limit, when fringe’s costs are so high that its

market share goes to zero, we return to Rotemberg and Saloner’s [1986] prediction that in the

absence of fringe firms collusion is more difficult to sustain during booms (i.e., at the largest

θ).28

IV(ii). Best Collusive Agreement

In this section we numerically illustrate for the simplified model how the optimal collusive

agreement departs from maximal collusion when firms are not sufficiently patient, that is, when

the discount factor δ is below the critical discount factor δ(θc) identified above. We also contrast

the prediction of our model with that of Rotemberg and Saloner [1986]. Since the latter does

not, at least explicitly, consider fringe suppliers, to provide a meaningful comparison with our

oligopoly-fringe model we let large firms in the Rotemberg and Saloner formulation face the

residual demand P−1(Q)− C 0−1f (Qf ), or alternatively, the residual inverse demand

Pr(Qs) = θr(a− bQs)

where θr = θc/(c + θb) corresponds to the multiplicative demand shock in this alternative

"residual-demand" formulation and Qs = Q−Qf is, as before, total output from large firms.29

Note that specifying the demand under Rotemberg and Saloner be equal to the residual demand

implies that the two models produce the exact same maximal-collusion outcome. This does not

mean, however, that the best achievable collusive agreements are the same since the Nash-

Cournot outputs are not the same.

For the numerical illustration we use the following values: n = 8, a = b = 1, θ ∼ U [0, 2] and

c = 0.1. Figure 2 depicts how prices vary with the demand shock θ under the two formulations

and for the different solution concepts, i.e., maximal collusion (Pm and Pm
r ), Nash-Cournot

(Pnc and Pnc
r ) and best collusive agreement for δ = 0.5 (P ∗ and P ∗r ), which is lower than

the critical discount factor in either model. Consistent with Figure 1, curve P ∗ shows that

28Strictly speaking Rotemberg and Saloner (1986) show that in a quantity-setting game (with no fringe) it is
not always the case that collusion is more difficult to sustain at booms. It is the case though when demand and
costs are linear. In fact, in the limiting case of no fringe eq. (13) reduces to limc→∞ δ(θ) = θ(n− 1)2K, where
K = a2/16n2b(Vm − V p) and V m and V p correspond to the no-fringe values.
29Note that dθr/dθ = c2/(c+ θb)2 > 0.
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impatient firms in the oligopoly-fringe model can sustain maximal collusion only for demand

levels not too far from θ̂ = 0.7 (and obviously when θ ≈ 0 because there is nothing to collude
on).

*** Place Figure 2 approximately here ***

While consistent with the Rotemberg and Saloner [1986] prediction that maximal collusion

is more difficult to sustain at higher levels of demand, the residual-demand model provides

a remarkably different characterization of the best collusive agreement. This is because the

residual-demand model imposes an artificial sequential timing (i.e., in each period large firms

move before than fringe firms), which produces an unrealistic Nash-Cournot pattern. In fact,

Nash-Cournot prices under the residual-demand model (Pnc
r ) hardly react to demand shocks

above θ = 0.5. Furthermore, while in the residual-demand model the Cournot market share of

the fringe remains very much constant at 10%, in the oligopoly-fringe model it is increasing in

demand from 0 to 70% when θ = 2.

This divergence can also be seen in the payoff that strategic firms can sustain according to

either model. We know that the maximal collusion payoff is the same in either model, say, 100 (in

present value). Even though the critical discount factor in the oligopoly-fringe model is higher

than the critical discount factor in the residual-demand model –0.784 and 0.745, respectively–

, the oligopoly-fringe model predicts a much higher payoff under the best collusive agreement

– 98.8 vs. 87.4. Part of the explanation is that in the oligopoly-fringe model the Nash-Cournot

payoff is much closer to the maximal collusion payoff than in the residual-demand model –90.6

and 39.5, respectively. In that sense the predictions from the oligopoly-fringe model seem more

consistent with Herfindahl’s [1959] description of the operation of the 1935-39 copper cartel in

that, while successful, it did not bring astronomical increases in profits for participating firms.

V. WELFARE: A NUMERICAL EXERCISE

One of the main implications of our results is that the effect of collusion on welfare is to

be signed on a case-by-case basis. If Herfindahl’s behavioral hypothesis is correct, the copper

cartel of 1935-39 had an unambiguous negative impact on welfare. But this is not necessarily so

if one believes the cartel was also able to sustain (output-expanding) collusion during booms.

We explore this possibility with a numerical exercise. It is important to emphasize that the

exercise does not attempt to uncover the exact behavior of the cartel during the 1935-39 period

(we do not have the data to do that). We simply want to examine which of these two competing
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behavioral hypothesis "fits" the data better: (i) the cartel was able to sustain maximal collusion

in each of the six periods of Table I, and (ii) the cartel was able to sustain maximal collusion

in the four "Quotas" periods of Table I but returned to Nash-Cournot during the "No Quotas"

periods. Finding more support for hypothesis (i) could be interpreted as an indication that the

cartel was indeed able to coordinate on output expansions during booms.

The idea of our exercise is to use the (aggregate) price and quantity data of the six periods

of Table I to recover cost and demand parameters under the two behavioral hypothesis and then

discuss how reasonable are the estimates obtained for the different parameters. In carrying out

the exercise, we assume that (a) the five cartel members are identical, (b) the demand in period

t = 1, ..., 6 is Pt(Qt; θt) = θt(a − bQt),30 (b) the marginal cost function of each of the cartel

members is Cst(qst) = cstq
γ
st, and (d) the fringe’s marginal cost function is C

0
ft(Qft) = cftQ

η
ft.

Under either behavioral hypothesis, there are 22 parameters to be estimated: a, b, θt, cst,

γ, cft and η for t = 1, ..., 6. Since we have only 12 equilibrium conditions for the estimation

—two for each of the six periods—, we impose values upon a subset of the parameters.31 We let

b = 0.7 to work with demand elasticity numbers around −0.35; similar to those in Agostini
[2006] and the studies cited therein. In addition, we set γ = η = 0.4. We do not have a good

reason to differentiate between γ and η and these numbers produce less variation among the

ckt’s (k = s, f) under either behavioral hypothesis, which we think should not vary much in a

four-year period. Besides, lower numbers (e.g., γ = η = 0.1) produce the unrealistic scenario

of output-expanding collusion at all periods under hypothesis (i) while higher numbers (e.g.,

γ = η = 0.7) result not only in wide variation among ckt’s but also in some negative cft’s. We

also normalize the demand shocks to the apparently largest shock, that is, θ3 = 1.

Estimates for the remaining demand and cost parameters (i.e., θt, a, cst, cft) are reported

in the first four columns of Table II. Note that the only differences between the estimates

obtained under behavioral hypothesis (i) and (ii) are the costs of the large firms in the "No

Quotas" periods.32 It is clear that hypothesis (i) leads to more reasonable estimates; only

unexpectedly low and negative costs of strategic firms could support Nash-Cournot behavior

during the "No Quotas" periods.33

30We also consider the additive-shock model, i.e., Pt(Qt; θt) = a− bQt+ θt, with no qualitative changes in the
results.
31We tried different subsets with no changes in the discussion that follows.
32This can be easily checked from looking at first-order conditions (3)—(4) and (7)—(8).
33Notice the variation of the cartel firms’ cost parameters (i.e., cs’s), particularly the low numbers in t = 3 and

5, even under hypothesis (i). It may be that these low numbers reflect an asymmetric expansion with greater
participation of lower cost firms.
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Finally, using the cost and demand estimates from assuming that the cartel was able to

sustain maximal collusion throughout, the next three columns of Table II present counterfactual

non-collusive predictions. As supported by our theory, the non-collusive prices are lower during

recessions (t = 1, 2, 4 and 6) but higher during booms (t = 1 and 5). Furthermore, the average

non-collusive price (weighted by the number of months in the period) is almost equal to the

average collusive price (10.3 vs. 10.4). Provided that collusion leads to more stable prices

and that consumer surplus is likely to increase with a mean-preserving contraction of prices,34

it may well be that the copper cartel of 1935-39 did not have a negative impact on welfare

but the opposite. Obviously, this is just a reasonable hypothesis that has yet to be tested

econometrically.

*** Place Table II approximately here ***

VI. FINAL REMARKS

Following the structure of many commodity markets, we have studied the properties of a

collusive agreement when this is carried out only by the largest firms of the industry. We have

found that as the (non-collusive) output of the noncartel firms expands, it may be optimal for

the cartel to jointly produce above their non-collusive levels. Consequently, we cannot rule out,

at least in theory, the possibility of a collusive agreement in which periods of output-contracting

collusion are accompanied by periods of output-expanding collusion.

We also found that due to the presence of a significant fraction of noncartel firms (i.e., fringe

firms), we do not need Green and Porter’s [1984] imperfect information to generate procyclical

pricing. More generally, it may be equally difficult for large firms to sustain maximal collusion

during booms than during recessions. It would be, nevertheless, interesting to extend the model

to the case of imperfect information.

There are other theoretical extensions worth pursuing. So far we have assumed that large

firms have sufficient flexibility to expand production as needed. While this seems to be less

of a problem for the international copper cartel of 1935-39 thanks to the excess capacity left

by the 1929-33 world contraction,35 the introduction of capacity constraints is likely to affect

the properties of the collusive agreement (Staiger and Wolak [1992]). One can go even further

34Because consumption is larger in booms, the loss in consumer surplus from a price increase during recesions
is more than compensated with the gain from an equivalent price decrease during booms.
35 It would also be less of a problem if large firms manage, as in mineral markets, an in-house inventory to be

built up during recessions and withdrawn during booms.
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and study altogether collusion in output and capacity (recall that in these markets firms are

constantly expanding their capacities to cope with depreciation and new demand). This surely

opens up the possibility for a capacity-expanding collusion even when firms set prices in the

spot market. In addition to capacity constraints, the opportunity of forward contracting part

of future production can also have implications for the collusive agreement (Liski and Montero

[2006]).

Finally, it would be most interesting to carry out an empirical analysis of the copper cartel of

1935-39 along the works of Porter [1983] and Ellison [1994] for the JEC railroad cartel and test

for periods of output-expanding collusion. One important difference with these previous studies

is that we not only need to econometrically distinguish between regimes of (output-contracting)

collusion and "price wars" (i.e., return to Nash-Cournot) but perhaps more difficult between

regimes of output-expanding collusion and price wars.

APPENDIX

A. Proof of Proposition 1

The first part is straightforward. For Qnc = Qm we need PQ(·)/n = C 00f (·)PQ(·)/(C00f (·) −
PQ(·)), which rearranged leads to (n−1)C 00f (·) = −PQ(·). For the second part, we need to show
that if we let θ to increase by a small amount from θ̂ to, say, θ0, the term C 00f /(C

00
f − PQ) in (7)

decreases more (recall that PQ < 0) than the term 1/n in (3). If this is so, Qm
s (θ

0) must be

larger than Qnc
s (θ

0) (and, hence, Qm(θ0) larger than Qnc(θ0)) for both (3) and (7) to continue

holding at θ0. Therefore, we need to show

d

dθ

Ã
C 00f (Q

m
f (θ))

C 00f (Q
m
f (θ))− PQ(Qm(θ); θ)

!¯̄̄̄
¯
θ=θ̂

< 0 (14)

Totally differentiating, condition (14) reduces to

C 000f (Qf (θ̂))[C
00
f (Qf (θ̂))− PQ(Q(θ̂); θ̂)]

dQm
f (θ̂)

dθ
+

− C 00f (Qf (θ̂))

"
C 000f (Qf (θ̂))

dQm
f (θ̂)

dθ
− dPQ(Q

m(θ̂); θ̂)

dθ

#
< 0

Using (n − 1)C00f (Qf (θ̂)) = −PQ(Q(θ̂); θ̂) and rearranging lead to expression (10) in the text.
QED
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B. Price-Setting Game

Consider a group of n strategic firms (i = 1, ..., n) and a competitive fringe consisting of

a continuum of firms (indexed by j) engaged in a simultaneous price-setting game of infinite

horizon. Strategic firms produce differentiated goods at the same cost Cs(qsi). Fringe firms

produce a homogenous good according to the aggregate marginal cost curve C 0f (Qf ) (as before,

a fringe firm’s unit-cost is denoted by cj). Strategic firm i’s demand is qsi ≡ Dsi(psi,p−si, pf ),

where p−si is the vector of prices charged by the remaining strategic firms and pf is the price

charged by all fringe firms (it should be clear that in equilibrium pf will be equal to the unit-

cost of the most expensive fringe firm that entered into production, that no fringe firm with a

unit-cost equal or lower than pf would want in equilibrium to charge anything different than

this price, and that no firm with unit-cost higher than pf would want to charge lower than

pf ). Fringe aggregate demand is Qf = Df (pf ,ps), where ps = (ps1, ..., psn) is the vector of

prices charged by strategic firms. It is also known that ∂Dk/∂pk < 0, ∂Dk/∂p 6=k > 0, and

|∂Dk/∂pk| > |∂Dk/∂p6=k|.
The (non-collusive) Nash-Bertrand equilibrium of the one-period game is obtained by si-

multaneously solving each firm’s problem

max
pi

Dsi(psi,p−si, pf )pi − Cs(Dsi(psi,p−si, pf )) for all i = 1, ..., n

pfj =

 pf if cj ≤ pf

> pf if cj > pf
for all j

Then, the Nash-Bertrand equilibrium outcome is given by

Dsi(p
nb
si , p

nb
−si, p

nb
f ) + [p

nb
si −C 0s(Dsi)]

∂Dsi

∂psi
= 0 (15)

C 0f (Df (p
nb
f ,pnbs )) = pnbf

On the other hand, and following Section 3.1, the maximal collusive outcome for the strategic

firms is obtained by solving

max
ps1,...,psn

nX
i=1

{Dsi(psi,p−si, pf (ps))pi −Cs(Dsi(psi,p−si, pf (ps)))} (16)

19



where pf (ps) is implicitly given by the fringe’s equilibrium response

C 0f (Df (pf ,ps)) = pf (17)

Using the latter, the first-order conditions associated to the optimal collusive outcome can,

after rearranging some terms, be written as

Dsi(p
m
si , p

m
−si, p

m
f ) +

nX
k=1

[pmsi − C 0s(Dsk)]

µ
∂Dsk

∂psi
+

∂Dsk

∂pf

∂pf
∂psi

¶
= 0 for all i = 1, ..., n (18)

and C 0f (Df (p
m
f ,p

m
s )) = pmf .

Given that ∂pf/∂psi > 0, the difference between (18) and (15) is a stream of various positive

terms (those price effects internalized in the collusive agreement); therefore, it is immediate

that Dsi(p
m
si , p

m
−si, p

m
f ) < Dsi(p

nb
si , p

nb
−si, p

nb
f ) for all i = 1, ..., n, and with that, Df (p

m
f ,p

m
s ) <

Df (p
nb
f ,pnbs ).

C. Proof of Proposition 2

We simply need to reproduce the relevant characteristics of Figure 1 for the general model.

Using the no-deviation condition (12) and the definitions for V m ≡ Eθ[π
m(θ)]/(1 − δ) and

V p ≡ Eθ[π
nc(θ)]/(1− δ), the function δ(θ) becomes

δ(θ) =
πd(θ)− πm(θ)

πd(θ)− πm(θ) +Eθ[πm(θ)]−Eθ[πnc(θ)]
=

1

1 +∆(θ)

where ∆(θ) ≡ Eθ[π
m(θ) − πnc(θ)]/[πd(θ) − πm(θ)] > 0. Notice again that the support of θ,

i.e., [θ, θ], will only scale ∆(θ) up or down. For θ = 0, we have that πd(θ) = πm(θ) = 0, so

∆(θ) → ∞ and δ(θ) = 0. For θ = θ̂, we have that πd(θ) = πm(θ) > 0, so ∆(θ) → ∞ and

δ(θ) = 0. For 0 < θ < θ̂, ∆(θ) > 0 and 0 < δ(θ) < 1; and there will be a demand shock

0 < θ1 < θ associated to the local maximum δ1. For θ > θ̂, ∆(θ) > 0 and 0 < δ(θ) < 1. Finally,

note that it is irrelevant for our Proposition whether δ(θ) converges to the unity as θ −→ ∞,
as it does in the simplified model. QED
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TABLE I 
EVOLUTION OF THE 1935-39 COPPER CARTEL 

  Cartel production    Noncartel production London spot price     
 
 

Period 

 
Quota 
status 

Production 
(annual 

rate) 

Per cent 
change from 

preceding 
period 

Production 
(annual 

rate) 

Per cent 
change from 

preceding 
period 

Cents 
per 

pound 

Per cent 
change from 

preceding 
period 

1. July—Dec. 1935 Quotas 559  408  8.2  
2. Jan.—Dec. 1936 Quotas 598 +7.0% 368 -9.8% 9.5 +16% 
3. Jan.—Nov. 1937 No Quotas 917 +53.4 439 +19.3 13.4 +41 
4. Dec. 1937—Sept. 1938 Quotas 762 -16.9 481 +9.6 9.7 -28 
5. Oct. 1938—Dec. 1938 No Quotas 948 +24.4 504 +4.8 10.6 +9 
6. Jan. 1939—July 1939 Quotas 736 -22.4 511 +1.4 10.0 -6 
Source: Table 3 of Herfindahl [1959, p. 115] 
 
 



 
TABLE II 

NON-COLLUSIVE PREDICTION FOR THE 1935-39 COPPER CARTEL 
t θ cf cs (i) cs (ii) Qs

nc Qf
nc Pnc Pm 

1 0.23 2.00 2.19 2.19 679 337 7.6 8.2 
2 0.27 2.41 2.31 2.31 739 290 8.6 9.5 
3 1.00 3.16 1.44 0.93 847 498 14.0 13.4 
4 0.49 2.22 1.75 1.75 798 457 9.5 9.7 
5 1.36 2.38 1.12 -1.47 624 800 12.8 10.6 
6 0.51 2.22 2.02 2.02 743 508 9.9 10.0 

Note: a = 92.5. 
 
 
 



 
 
 
 
 

 
 

Figure 1. Critical time for maximal collusion 
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Figure 2

Best collusive agreement with impatient firms


