
A Neuro�Dynamic Programming Approach to
Call Admission Control in Integrated Service

Networks� The Single Link Case �

Peter Marbach and John N� Tsitsiklis

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge� MA �����
e�mail	 marbach
mit�edu� jnt
mit�edu

Abstract� We formulate the call admission control problem for a single link
in an integrated service environment as a Markov Decision Problem� In prin�
ciple� an optimal admission control policy can be computed using methods of
Dynamic Programming� However� as the number of possible states of the un�
derlying Markov Chain grows exponentially in the number of customer classes�
Dynamic Programming algorithms for realistic size problems are computation�
ally infeasible� We try to overcome this so�called �curse of dimensionality� by
using methods of Neuro�Dynamic Programming �NDP for short�� NDP employs
simulation�based algorithms and function approximation techniques to 	nd con�
trol policies for large�scale Markov Decision Problems� We apply two methods of
NDP to the call admission control problem
 the TD��� algorithm and Approxim�
ate Policy Iteration� We assess the performance of these methods by comparing
with two heuristic policies
 a policy which always accepts a new customer when
the required resources are available� and a threshold policy�

�This research was supported by a contract with Siemens AG� Munich� Germany�

�

� Introduction

Markov Decision Problems have been a popular paradigm for sequential de�
cision making under uncertainty� Dynamic Programming �� provides a frame�
work for studying such problems� as well as algorithms for computing optimal
decision policies� Unfortunately� these algorithms become computationally in�
feasible when the underlying state space is large� This so called �curse of dimen�
sionality� renders the classical methods of Dynamic Programming inapplicable
to most realistic problems� As a result� control policies for practical large�scale
sequential decision problems often rely on heuristics�

In recent years� a new methodology called Neuro�Dynamic Programming
�NDP for short� �� has emerged� NDP tries to overcome the curse of dimen�
sionality by employing stochastic approximation algorithms and function ap�
proximation techniques such as neural networks� The outcome is a methodology
for approximating Dynamic Programming solutions with reduced computational
requirements�

Over the past few years� methods of NDP have been successfully applied
to challenging problems� Examples include a program that plays Backgam�
mon ��� an elevator dispatcher ��� a job scheduler ��� and a call admission
control policy in wireless communication networks ��� Despite these successes�
most algorithms proposed in the 	eld are not well understood at a theoretical
level� Nevertheless� the potential of these methods for solving systematically
large�scale Markov Decision Problems and the successful experimental work in
the 	eld has drawn considerable attention�

In this paper� we apply methods of NDP to the call admission control prob�
lem in an integrated service environment� In particular� we consider a single
communication link with a given bandwidth that serves several customer classes
of di�erent values� The customer classes are characterized by the following para�
meters
 bandwidth demand� arrival rate� departure rate and a reward we obtain�
whenever we accept a customer of that class� The goal is to 	nd a call admission
control policy which maximizes the long term reward� Related work has been
done by Nordstr�om et al� �� and �� �

The paper is structured in the following way
 in Section �� we state the call
admission control problem� A brief review of Dynamic Programming is given in
Section �� Section � introduces two methods of NDP
 the TD��� algorithm and
Approximate Policy Iteration� In Section �� we describe two parametric forms
used to approximate the reward �value� function of DynamicProgramming
 mul�
tilayer perceptron and quadratic parameterizations� We formulate in Section �
the call admission control problem as a Markov Decision Problem� Section �
de	nes two heuristic control policies for the call admission control problem
 a
policy which always accepts a new customer when the required resources are
available� and a threshold policy� Experimental results of two case studies are
presented in Section ��

�

� Call Admission Control

We are given a single communication link with a total bandwidth of B units�
We intend to support a 	nite set f�� �� ��� Ng of customer classes� Customers of
the di�erent classes request connections over the link according to independent
Poisson Processes� The arrival rate of customers of class n is denoted by ��n��
When a new customer requests a connection� we can either decide to reject that
customer� or� if enough bandwidth is available� to accept it �call admission con�
trol�� Once accepted� a customer of class n seizes b�n� units of bandwidth for
t units of time� where t is exponentially distributed with parameter ��n�� inde�
pendently of everything else happening in the system� Furthermore� whenever
we accept a customer of class n� we receive a reward c�n�� The goal is to exercise
call admission control in such a way that we maximize long term reward�

In this problem formulation� the reward c�n� could be the price customers of
class n are paying for using b�n� units of bandwidth of the link� This models the
situation� where a telecommunication network provider wants to sell bandwidth
to customers in such a way� that long term revenue is maximized�

The reward c�n� could also be used to attach levels of importance�priority
to the di�erent service classes� This re�ects the case where one wants to provide
the di�erent customer classes di�erent qualities of service� e�g� customers of a
class with a high reward �high importance�priority level� should be less likely
to be blocked than customers of a class with with a low reward �low import�
ance�priority level��

Furthermore� the bandwidth demand b�n� could either re�ect the demand
associated with the peak transmission rate requested by customers of class n�
or a so�called �e�ective bandwidth� associated with customers of class n� The
concept of an e�ective bandwidth has been introduced and extensively studied
in the context of ATM �see for example ���� ATM �Asynchronous Transfer
Mode� is a technology which implements integrated service telecommunication
networks� In ATM� the notion of an e�ective bandwidth is used to encapsule cell�
level behavior such as multiplexing� This separation of cell�level and call�level is
important for the tractability of the call admission control problem�

Although one is ultimately interested in applying call admission control �com�
bined with routing� to the case of an integrated service network� we focus here
on the single link case� This allows us to test algorithms of NDP on a problem�
for which good heuristic policies are available� and for which �if the instance is
fairly small� an optimal control policy can be computed� Furthermore� results
obtained for the single link case can be used as a basis for solving the network
case�

�

� Markov Decision Problems and Dynamic Pro�

gramming

In this section� we give a brief review of Markov Decision Problems and Dy�
namic Programming� Markov Decision Problems have been a popular paradigm
for sequential decision making problems under uncertainty� Dynamic Program�
ming �� provides a framework for studying such problems� as well as algorithms
for computing optimal control policies�

We consider in	nite�horizon� discrete�time� discounted Markov Decision Prob�
lems de	ned on a 	nite state space S and involving a 	nite set U of control ac�
tions� Although we formulate the call admission control problem as a continuous�
time Markov Decision Problem� it can be translated into a discrete�time Markov
Decision Problem using uniformization ��� Therefore� we can without loss of
generality limit our framework to discrete�time Markov Decision Problems�

For every state s � S� there is a set of nonnegative scalars p�s� u� s��� such
that for all control actions u in U �

P
s��S p�s� u� s

�� is equal to �� The scalar
p�s� u� s�� is interpreted as the probability of a transition from state s to state
s� under control action u� With a state s and a control action u� we associate a
real�valued one stage reward g�s� u��

A stationary policy is a function �
 S � U � Let M be the set of all possible
stationary policies� A stationary policy � de	nes a discrete�time Markov Chain
�Sk� with the transition probabilities

P fSk�� � s� jSk � sg � p �s� ��s�� s��

With a stationary policy � �M and a state s � S� we associate the reward�
to�go function

J��s� � lim
T��

E

�
TX
k��

�kg �Sk� ��Sk�� jS� � s

�

where the discrete�time process �Sk� evolves according to the Markov Chain
de	ned by the policy � and where � � ��� �� is a discount factor�

Our objective is to maximize the the reward�to�go function J��s� simultan�
eously for all states s � S� A stationary policy �� such that

J���s� � J��s�� for all s � S and for all � �M

is said to be an optimal policy�
We can think of the reward�to�go function associated with a policy � as a

mapping J�
 S � R� It is well known that if � is optimal then J� satis	es
Bellman�s equation

J�s� � max
u�U

�
g�s� u� � �

X
s��S

p�s� u� s��J�s��

�
� for all s � S

�

It is also known that Bellman�s equation has an unique solution J�� called the
optimal reward�to�go function�

Given a function J
 S � R� we de	ne a greedy policy for J to be a policy
� which has the following property

��s� � argmax
u�U

�
g�s� u� � �

X
s��S

p�s� u� s��J�s��

�

It is well known that a greedy policy for the optimal reward�to�go function J� is
an optimal policy� This means that the knowledge of the optimal reward�to�go
function J� allows us to derive an optimal policy ���

For a function J
 S � R� a stationary policy �
 S � U � and for every state
s � S� we denote

T �J��s� � max
u�U

�
g�s� u� � �

X
s��S

p�s� u� s��J�s��

�

T��J��s� � g�s� ��s�� � �
X
s��S

p�s� ��s�� s��J�s��

The optimal reward�to�go function J� and the reward�to�go function J� of a
policy � have the following property

J��s� � T �J���s�� for every state s � S

J��s� � T��J���s�� for every state s � S

�
There are several algorithms for computing J� and determining an optimal

policy ��� but we will only consider Value Iteration and Policy Iteration�
The Value Iteration algorithm generates a sequence of functions Jk
 S � R

according to
Jk���s� � T �Jk��s�� for all s � S

It is well known that for discounted� in	nite�horizon Markov Decision Problems
which evolve over a 	nite state space S and which involve a 	nite set U of control
actions� the Value Iteration algorithm is guaranteed to converge to the optimal
reward�to�go function J��

The Policy Iteration algorithm generates a sequence of policies �k
 S � U

by letting

�k���s� � argmax
u�U

�
g�s� u� � �

X
s��S

p�s� u� s��J�k�s
��

�

It is well known that for discounted� in	nite�horizon Markov Decision Problems
which evolve over a 	nite state space S and which involve a 	nite set U of

�

control actions� the Policy Iteration algorithm is guaranteed to terminate with
an optimal policy �� in a 	nite number of iterations�

The reward�to�go function J�k can be obtained by solving the linear system
of equations

J��s� � g�s� ��s�� � �
X
s��S

p�s� ��s�� s��J�s��

�as discussed earlier�� or by an algorithmwhich generates a sequence of functions
Jk
 S � R according to

Jk���s� � T�k �Jk��s�� for all s � S

Note that this iteration can be viewed as a special case of Value Iteration applied
to a problemwith no control options� Therefore� the convergence result for Value
Iteration applies also here�

In principle� an optimal control policy can be obtained by means of the Value
Iteration algorithm or the Policy Iteration algorithm� However� this requires the
computation and storage of J��s� and J�k�s�� respectively� for every state s � S�
For Markov Decision Problem evolving over a large state space� these algorithms
become computationally infeasible�

� Neuro�Dynamic Programming

Instead of computing the reward�to�go function for every state s � S� methods
of NDP use a parametric representation �J��� r� to approximate J� and J�� In
particular� we approximate J��s� and J��s� by a suitable approximation archi�

tecture �J�s� r�� where r is a vector of tunable parameters �weights��
We present two NDP methods
 TD��� and Approximate Policy Iteration�

TD��� is related in structure to Value Iteration� whereas Approximate Policy
Iteration emulates Policy Iteration� The TD��� algorithm belongs to the class
of Temporal Di�erence algorithms ��� �often referred to as TD��� algorithms��
which are the most widely used NDP methods� Here� we will only state the
iteration rule of the TD��� algorithm� for a more comprehensive treatment of
Temporal Di�erence methods� we refer to ���

��� Temporal Di�erence Algorithm� TD���

The TD��� algorithm is related to Value Iteration and can be used to 	nd an
approximation of J��

Let �J
 S � RK � R be a family of parametric representations such that
rr

�J �s� r� exists for every state s � S and every parameter vector r � RK �
Choose an initial parameter vector r� � RK and an initial state s� � S� We
generate a sequence �rk� by the following recursive procedure

�

�� Assume that we are given state sk and parameter vector rk� choose a
control action uk according to a greedy policy for �J��� rk�

uk � argmax
u�U

�
g�sk� u� � �

X
s��S

p�sk� u� s
�� �J�s�� rk�

�

�� Choose the next state sk�� at random� according to the transition prob�
abilities p�sk� uk� sk����

�� Update rk by the following rule

dk �
�
g�sk � uk� � � �J�sk��� rk�� �J�sk� rk�

�
rk�� � rk � �kdkrr

�J�sk� rk�

where �k � � is a small step size parameter and � � ��� �� is the discount
factor� The scalar dk is referred to as the temporal di�erence at iteration
step k�

In general� the convergence results of Value Iteration do not apply to TD����
However� for some classes of Markov Decision Problem� one can derive conver�
gence results� We refer to �� for a more detailed discussion of this issue�

��	 Approximate Policy Iteration Using TD���

The general structure of Approximate Policy Iteration is the same as in ordinary
Policy Iteration� Again� we generate a sequence of stationary policies �k
 S �
U � However� in Approximate Policy Iteration� we replace the exact reward�to�go
function J�k of the policy �k� by an approximation �J��� rk�

�k���s� � argmax
u�U

�
g�s� u� � �

X
s��S

p�s� u� s�� �J�s�� rk�

�

An approximation �J��� r� of J���� for given policy � can be obtained using TD����
by setting

uk � ��sk�

in step � of its iteration rule�
Starting with an initial policy �� and with the functional approximation

�J��� r�� of J�� � we generate a sequence of policies in the following way

�� Assume that we are given a policy �k and a functional approximation
�J��� rk� of J�k � Choose �k�� to be a greedy policy for �J��� rk�

�k���s� � argmax
u�U

�
g�s� u� � �

X
s��S

p�s� u� s�� �J�s�� rk�

�

�

�� Compute the approximation �J��� rk��� of J�k�� �

In general� Approximate Policy Iteration does not terminate� nor is the al�
gorithm guaranteed to improve the reward�to�go function of the corresponding
policies at each iteration step� Under certain assumptions however� bounds on
its performance can be derived ���

� Architectures for Approximating J
� and J�

In this section� we describe the two parametric forms �J��� r� we use to approx�
imate the optimal reward�to�go function J� and the reward�to�go function J� of
a stationary policy �� They are multilayer perceptron and quadratic parameter�
izations�

A commonnonlinear architecture for function approximation is the multilayer
perceptron� Under this architecture� the input vector s � RN is transformed by
a matrix to give a vector v � RL

v�l� �
NX
n��

r�l� n�s�n�

Each component of the vector v is then transformed by non�linear sigmoidal
function 	
 R � R� which is di�erentiable� monotonically increasing� and has
the property

��
 lim
x���

	�x�
 lim
x���

	�x�
 ��

The sigmoidal function we use is given by the following rule

	�x� �
�

� � e�x

The sigmoidal function 	 is used to transform the vector v � RL to a new vector
w � RL such that

w�l� � 	�v�l�� � 	

�
NX
n��

r�l� n�s�n�

�

The components of the vector w � RL are then linearly combined using coe��
cients r�l� to produce the output

�J�s� r� � r��� �
LX
l��

r�l�w�l� � r��� �
LX
l��

r�l�	

�
NX
n��

r�l� n�s�n�

�

The quadratic approximation for an input vector s � RN is given by the following
rule

�J�s� r� � r��� �
NX
n��

r�n�s�n� �
NX

m��

NX
n��

r�m�n�s�m�s�n�

�

�� Input and Output Scaling

Input and output scaling can have a signi	cant e�ect on the performance of
training methods �such as TD���� for function approximations� Typically� the
objective of input and output scaling is to force each component of the input
and output vector to lie in the interval ���� ��

Let �J��� r�
 RN � R be an approximation architecture� let s � RN be an
input vector� let mx � RN � 	x � RN �my � R� and 	y � R be scaling vectors�
Then the scaled input and output are given as follows

s��n� �
s�n��mx�n�

	x�n�

y� � 	yJ�s
�� r� �my

� Formulation of the Call AdmissionControl Prob�

lem in ATM networks as a Markov Decision

Problem

In this section� we formulate the call admission control problem for a single link
in an integrated service environment as an in	nite�horizon� discounted Markov
Decision Problem� We will initially adopt the framework of continuous�time
Markov Decision Problems and later transform the problem into a discrete�time
Markov Decision Problem through uniformization�

We describe the state of the single communication link by an N�tuple s �
�s���� ���� s�N ��� where s�n� denotes the number of customers of class n currently
using the link� The state space S is given by

S �

�
s � RN

�����
NX
n��

s�n�b�n� 	 B� s�n� � f�� �� �� ���g

	

where b�n� is the bandwidth demand of a customer of class n� and B is the total
available bandwidth of the communication link� Let st denote the state of the
system at time t � �������

A control action u � �u���� ���� u�N �� is an N�tuple such that each u�n� equals
either � or �� Given a control action u� we accept a new connection request of
a customer of class n� if u�n� equals �� and reject a new customer of class n�
otherwise� Let U denote the set of all possible control actions

U �

u
�� u � f�� �gN �

We say that an event occurs at a certain time if a customer departs from the
system or a new customer requires a connection over the communication link�

�

Let tk be the time of the kth event� By convention� we start the system at time
t� � �� t� is the time when the 	rst event occurs� We identify an event by the
N�tuple � � ������ ���� ��N �� where ��n� equals � if a new customer of class n
requests a connection� ��n� equals �� if a customer of class n departs from the
system and ��n� equals � otherwise� Let denote the sets of all possible events

 �

�
�

����� � � f��� �� �gN�
NX
n��

j��n�j � �

	

Let sk be the state of the system in the interval �tk� tk��� Note that if the system
is in state sk� the probability that the next event will be a speci	c event � is
determined by the arrival rates ��n� and the departure rates ��n��

Given a state s � S� an event � � and a control action u � U � the next
state s� is given by a function f
 S� �U � S such that if s� equals f�s� �� u��
then the following holds

s��n� �

��
�

s�n� if ��n� � �
s�n� if ��n� � � and u�n� � �
s�n� � � if ��n� � � and u�n� � �
s�n� � � if ��n� � �� and s�n� � �
s�n� if ��n� � �� and s�n� � �

We associate a one stage reward g�s� �� u� with a state s� an event �� and a
control action u� according to the formula

g�s� �� u� �

�
c�n� if ��n� � � and u�n� � �
� otherwise

Here� c�n� is the reward associated with admitting a customer of class n�
A stationary policy is a function �
 S � U and induces a Markov Process

on the state space S�
With a stationary policy � and a state s we associate the discounted reward�

to�go J��s�

J��s� � E

�
�X
k��

e��tk��g�sk � �k��� ��sk�� js� � s

�

where the following condition is satis	ed

sk�� � f�sk� �k��� ��sk��

and where � is a positive real number� called the discount rate� Note that in this
formulation the 	rst stage reward is discounted�

With every state s in the state space� we can associate a so called rate of
transition �s� given by

�s� �
NX
n��

���n� � s�n���n�

��

Using uniformization� the continuous�time Markov Decision Problem can be
transformed into an equivalent discrete�time Markov Decision Problem with a
state�dependent discount factor

��s� �
�s�

� � �s�

In particular� Bellman�s equation takes the form

J�s� � ��s�max
u�U

�X
���

p�s� �� �g�s� �� u� � J�f�s� �� u��

�

where the probabilities p�s� �� are given as follows

p�s� �� �

��
�

��n�
��s� if ��n� � �

s�n���n�
��s� if ��n� � ��

Note that the cardinality of the state space increases exponentially with the
number of customer classes� Therefore� for call admission control problems
which involve a fair number of customer classes� the classical methods of Dy�
namic Programming are not feasible�

��� Formulation of the TD��� algorithm for the Call Ad�
mission Control Problem

In this section� we describe how one implements the TD��� algorithm for the call
admission control problem�

Let �J
 S � RK � R be a family of parametric representations such that
rr

�J �s� r� exists for every state s � S and every parameter vector r � RK �
Choose an initial parameter vector r� � RK and an initial state s� � S� We
generate a sequence �rk� by the following recursive procedure

�� Assume that we are given state sk and parameter vector rk
 choose the
next event �k�� at random� according to the probabilities p�sk� �k����

�� If the next event �k�� corresponds to a departure of a customer� set the
control action uk equal to �� If the next event �k�� corresponds to an
arrival of a new customer of class n� choose the control action uk as follows

uk �

��
�

en if �J�sk� rk�� �J�sk � en� rk� 	 c�n�

and
PN

n�� sk�n�b�n� 	 B � b�n�
� otherwise

where en is the nth unit vector�

��

�� Set sk�� equal to f�sk � �k��� uk��

�� Update rk by the following rule

dk �
�
��s�

h
g�sk� �k��� uk� � �J�sk��� rk�

i
� �J�sk� rk�

�
rk�� � rk � �kdkrr

�J�sk� rk�

	 Heuristic

In order to assess the policies we obtain through NDP� we compare them with
two heuristic control policies
 one which we will call the �Always Accept� policy�
and one to which we refer as the �Threshold� policy�

The Always Accept policy accepts a new customer of class n if the required
bandwidth b�n� is available� and otherwise rejects it� e�g� if at time t a customer
of class n requires a connection over the link� the new customer is accepted to the
system if B�t��b�n� 	 B and is otherwise rejected� Here� B�t� is the bandwidth
used at time t

B�t� �
NX
n��

st�n�b�n�

The Threshold policy speci	es for each customer class n a threshold para�
meter h�n� � �� in units of bandwidth� If a customer of class n requests a
new connection at time t over the communication link� we accept it only if
B�t� � b�n� � h�n� 	 B�

 Case Studies

In this section� we present two case studies
 one involving � customer classes�
and one involving �� customer classes� A description of the parameters of the
case studies is given in Section ���� a discussion of the results is provided in
Section ���� Numerical results are reported in the Appendix�

For both cases� we implemented the TD��� algorithm with the two approx�
imation architectures described in Section � and Approximate Policy Iteration�
The control policies obtained by these methods of NDP are compared with the
Always Accept policy and Threshold policy� Simulating the policies of NDP�
we could observe which customer classes get sometimes rejected� and what per�
centage of customers of a particular class gets rejected� This insight guided
the tuning of the threshold parameters h�n� of the Threshold policy� which was
carried out manually� In particular� we don�t expect our choices of h�n� to be
optimal�

As the state space in the 	rst case study is relatively small� we are able to
compute an optimal control policy using exact Dynamic Programming and to
compare it with the policies obtained through NDP�

��

We use the average reward per unit time and the lost average reward per
unit time as performance measures to compare the di�erent policies� Based on
a trajectory of N simulation steps� we obtain the average reward for a stationary
policy � as follows

�

TN

NX
k��

g�sk� �k��� ��sk��

and the lost average reward by

�

TN

NX
k��

�g�sk� �k��� ��� �� ���� ���� g�sk� �k��� ��sk��

where

TN �
NX
k��

�

�sk�

Note that the lost average reward refers to the additional reward that would have
been obtained if no customer was ever rejected� i�e� if we had an in	nite band�
width link� To evaluate the average reward and the lost average reward� we used
a trajectory of ��������� simulation steps� which starts with an empty system�
The trajectory was generated using a random number generator� initialized with
the same seed for each evaluation�

�� Parameters

Here we give a brief description of the parameters used in the two case studies�
the complete de	nition of the parameters can be found in the Appendix in Table
�� �� � and ��

In the 	rst case study� we consider a communication link with a total band�
width of �� units� We intend to support � customer classes on that link� The
discount rate was set to be ������ As a multilayer perceptron for TD��� and
Approximate Policy Iteration� we used an architecture with � hidden units�

In the second case study� we consider a communication link with a total
bandwidth of ��� units� We intend to support �� customer classes on that
link� We varied the arrival rates of the di�erent customer classes to yield three
di�erent scenarios
 a highly loaded� a medium loaded and a lightly loaded link�
The discount rate was set to be ��� for the highly loaded and medium loaded
scenarios� and to ���� for lightly loaded scenario� As a multilayer perceptron
for TD��� and Approximate Policy Iteration� we used an architecture with ��
hidden units� The parameters which characterize the di�erent service types are
chosen in such a way� that there are pairs of service classes which di�er only in
the reward c�n�� Here� we interpret the reward c�n� as a �virtual� reward� If
the customer class n has a higher reward c�n�� but the same bandwidth demand
b�n�� the same arrival rate ��n� and the same departure rate ��n� as the customer

��

class m� then customers of class n should get a higher quality of service than
customers of class m� This should be re�ected by a good call admission control
policy by blocking less customers of class n than customers of class m�

The stepsize parameter �k in the iteration rule of the TD��� algorithm was
chosen in the following way
 we de	ne an initial stepsize parameter �� a mul�
tiplication factor � and a positive integer !� Every ! steps� we update � to
���

We use in the Appendix �API� as an abbreviation of Approximate Policy
Iteration� the parameters mx� 	x�my and 	y refer to the scaling vectors de	ned
in Section ����

�	 Results

The experimental results are given in the Appendix in Table �� �� �� and ��
and in Figure � through Figure �� Here� we will provide some more detailed
information concerning the simulation runs and the experimental results�

In the iteration rule of the TD��� for 	nding a functional approximation of J�

and J�� the initial state s� was set equal to ��� �� ������ the state which corresponds
to an empty system and the initial parameter vector r� was chosen at random�

In Figure � through Figure �� for the TD��� algorithm� the lost average
reward was taken to be the corresponding average over a time window� The
length of the time window is indicated in the label of the 	gures�

For the ApproximatePolicy Iteration algorithm� the performance results �Per�
centage of Customers Rejected� Percentage of Customers Rejected by Control�
Average Reward and Lost Average Reward� correspond to the policy which
attained the best performance among all the policies obtained through the iter�
ation� Note that �Customers Rejected by Control� are those customers who are
rejected even though the required bandwidth was available�

The main conclusions from the experimental results are the following

 Methods of NDP seem to be promising for the call admission

control problem for a Single Link� In the two case studies� methods
of NDP lead to signi	cantly better results than the heuristic Always Ac�
cept policy� except for the case of a lightly loaded link which supports ��
di�erent customer types� where the performance of the two policies was
the same� In particular� in all cases �except for the above mentioned case�
the lost average reward due to rejection of customers� could be reduced by
��" � ��"� Furthermore� for the case of � customer classes� essentially
optimal performance was attained�

 Methods of NDP can provide insight into a problem at hand�

which allows to design good heuristic policies� In our case� sim�
ulation of control policies obtained with NDP revealed that only a few
customer classes get rejected by the control� This observation lead to the

��

formulation of the heuristic Threshold policy and guided the tuning of the
threshold parameters�

 Among the methods of NDP� Approximate Policy Iteration led

to the best results� However� Approximate Policy Iteration led to only
slightly better policies than the ones obtained from TD��� methods�

 The performance of the policies obtained through Approximate

Policy Iteration can oscillate signi�cantly� This is consistent with
experience in other contexts� as well as with the analysis provided in ���

 The heuristic Threshold policy led to the best system perform�

ance in all cases� However� this may not be the case for more complex
problems� where good heuristic policies are hard to design� Furthermore�
as mentioned earlier� NDP can be used in the design of powerful heuristics�

 Exploration of the state space can be important� We have noted
that NDP methods did not lead to improvement for a lightly loaded system
with �� customer classes� The natural explanation is that a lightly loaded
system rarely becomes full and therefore very little training takes place at
these states where the control policy matters �near full system�� How to
sample the state space in places that have low probability under the policy
employed� while preserving the stability of the algorithms employed is an
intricate subject that is poorly understood at present�

��

Appendix

Customer Classes

Customer Band� Arrival Departure Reward

Class width� b�n� Rate� ��n� Rate� ��n� c�n�

� � ��� ��� �
� � ��� ��� ��
� � ��� ��� ��

Scaling Vectors

mx ������
	x �������
my �����
	y ��

Methods

Method Architecture Parameters

Always Accept
Threshold Policy h � ���� �� �
DP
TD��� MLP � � ����

� � ���
! � ���������

TD��� Quadratic � � ����
� � ���
! � ���������

API MLP � � ����
� � ���
! � ���������

Table �
 Case study for � di�erent customer classes�

��

Percentage of Customers Rejected

� � �
Always Accept ���� ���� ����
Threshold Policy ����� ���� ����
DP ����� ���� ����
TD���
 MLP ���� ���� ����
TD���
 Quadratic ���� ���� ����
API
 MLP ����� ���� ����

Percentage of Customers Rejected
by Control

� � �
Always Accept ��� ��� ���
Threshold Policy ���� ��� ���
DP ���� ��� ���
TD���
 MLP ���� ��� ���
TD���
 Quadratic ���� ��� ���
API
 MLP ���� ��� ���

Performance

Average Lost

Reward Average

Reward

Always Accept ����� �����
Threshold Policy ����� �����
DP ����� �����
TD���
 MLP ����� �����
TD���
 Quadratic ����� �����
API
 MLP ����� �����

Table �
 Case study for � di�erent customer classes�

��

0 1000 2000 3000
−10

0

10
TD(0): MLP

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
20

30

40
TD(0): MLP

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

0 1000 2000 3000
−5

0

5
TD(0): Quadratic

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
20

30

40
TD(0): Quadratic

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

2 4 6 8
20

30

40
API: MLP

Policy Iteration NumberL
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

Figure �
 Case study for � di�erent customer classes�

��

Customer Classes

Customer Band� Arrival Departure Reward

Class width� b�n� Rate� ��n� Rate� ��n� c�n�
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ����
� � ���� ��� ���
� � ��� ��� ����
� � ��� ��� ���
� �� ��� ��� ���
�� �� ��� ��� ����

Scaling Vectors

mx ��������������������
	x ������������������������������������
my ����
	y ��

Methods

Method Architecture Parameters

Always Accept
Threshold Policy h � ���������������������������

TD��� MLP � � �����
� � ���
! � ���������

TD��� Quadratic � � ���
� � ���
! � ���������

API MLP � � �����
� � ���
! � ���������

Table �
 Case study for �� di�erent customer classes
 highly loaded link�

��

Percentage of Customers Rejected

� � � � � � � � � ��
Always Accept ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
Threshold Policy ���� ���� ���� ����� ���� ������ ���� ������ ���� �����
TD���
 MLP ���� ���� ���� ����� ���� ����� ����� ����� ����� �����
TD���
 Quadratic ���� ���� ���� ����� ���� ����� ���� ����� ���� �����
API
 MLP ���� ���� ���� ����� ���� ����� ���� ����� ���� �����

Percentage of Customers Rejected by Control

� � � � � � � � � ��
Always Accept ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Threshold Policy ���� ���� ���� ����� ���� ����� ���� ����� ���� �����
TD���
 MLP ���� ���� ���� ����� ���� ����� ���� ����� ���� �����
TD���
 Quadratic ���� ���� ���� ����� ���� ����� ���� ����� ���� �����
API
 MLP ���� ���� ���� ����� ���� ����� ���� ����� ���� �����

Performance

Average Lost

Reward Average

Reward

Always Accept ������ ������
Threshold Policy ������ ������
TD���
 MLP ������ ������
TD���
 Quadratic ������ ������
API
 MLP ������ ������

Table �
 Case study for �� di�erent customer classes
 highly loaded link�

��

0 1000 2000 3000
−10

0

10
TD(0): MLP

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
0

200

400
TD(0): MLP

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

0 100 200 300
−50

0

50
TD(0): Quadratic

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
0

200

400
TD(0): Quadratic

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

2 4 6 8
0

200

400

Policy Iteration NumberL
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

Figure �
 Case study for �� di�erent customer classes
 highly loaded link�

��

Customer Classes

Customer Band� Arrival Departure Reward

Class width� b�n� Rate� ��n� Rate� ��n� c�n�
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ��� ��� ����
� � ��� ��� ���
� � ��� ��� ����
� � ��� ��� ���
� �� ��� ��� ���
�� �� ��� ��� ����

Scaling Vectors

mx ��������������������
	x ������������������������������������
my ����
	y ��

Methods

Method Architecture Parameters

Always Accept
Threshold Policy h � ����������������������

TD��� MLP � � ����
� � ���
! � ���������

TD��� Quadratic � � ���
� � ���
! � ���������

API MLP � � ����
� � ���
! � ���������

Table �
 Case study for �� di�erent customer classes
 medium loaded link�

��

Percentage of Customers Rejected

� � � � � � � � � ��
Always Accept ���� ���� ���� ���� ���� ���� ���� ���� ����� �����
Threshold Policy ���� ���� ���� ���� ���� ����� ���� ����� ���� ����
TD���
 MLP ���� ���� ���� ���� ���� ����� ���� ����� ���� �����
TD���
 Quadratic ���� ���� ���� ���� ���� ����� ���� ���� ���� ����
API
 MLP ���� ���� ���� ���� ���� ����� ���� ����� ���� �����

Percentage of Customers Rejected by Control

� � � � � � � � � ��
Always Accept ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Threshold Policy ���� ���� ���� ���� ���� ����� ���� ����� ���� ����
TD���
 MLP ���� ���� ���� ���� ���� ����� ���� ����� ���� ����
TD���
 Quadratic ���� ���� ���� ���� ���� ����� ���� ���� ���� ����
API
 MLP ���� ���� ���� ���� ���� ����� ���� ����� ���� �����

Performance

Average Lost

Reward Average

Reward

Always Accept ������ �����
Threshold Policy ������ �����
TD���
 MLP ������ �����
TD���
 Quadratic ������ �����
API
 MLP ������ �����

Table �
 Case study for �� di�erent customer classes
 medium loaded link�

��

0 1000 2000 3000
−20

0

20
TD(0): MLP

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
0

50

100
TD(0): MLP

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

0 1000 2000 3000
−30
−20
−10

0

TD(0): Quadratic

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
0

50

100
TD(0): Quadratic

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

2 4 6 8
0

50

Policy Iteration NumberL
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

Figure �
 Case study for �� di�erent customer classes
 medium loaded link�

��

Customer Classes

Customer Band� Arrival Departure Reward

Class width� b�n� Rate� ��n� Rate� ��n� c�n�
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ���� ��� ���
� � ��� ��� ����
� � ��� ��� ���
� � ��� ��� ����
� � ��� ��� ���
� �� ��� ��� ���
�� �� ��� ��� ����

Scaling Vectors

mx ��������������������
	x ������������������������������������
my ����
	y ��

Methods

Method Architecture Parameters

Always Accept
Threshold Policy h � ����������������������

TD��� MLP �� � ����
� � ���
! � ����������

TD��� Quadratic �� � ���
� � ���
! � ����������

API MLP �� � ����
� � ���
! � ����������

Table �
 Case study for �� di�erent customer classes
 lightly loaded link�

��

Percentage of Customers Rejected

� � � � � � � � � ��
Always Accept ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
Threshold Policy ���� ���� ���� ���� ���� ����� ���� ����� ���� ����
TD���
 MLP ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
TD���
 Quadratic ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
API
 MLP ���� ���� ���� ���� ���� ���� ���� ���� ���� ���

Percentage of Customers Rejected by Control

� � � � � � � � � ��
Always Accept ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
Threshold Policy ���� ���� ���� ���� ���� ����� ���� ����� ���� ����
TD���
 MLP ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
TD���
 Quadratic ���� ���� ���� ���� ���� ���� ���� ���� ���� ����
API
 MLP ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Performance

Average Lost

Reward Average

Reward

Always Accept ������ ����
Threshold Policy ������ ����
TD���
 MLP ������ ����
TD���
 Quadratic ������ ����
API
 MLP ������ ����

Table �
 Case study for �� di�erent customer classes
 lightly loaded link�

��

0 500 1000 1500
−40

−20

0

TD(0): MLP

Simulation Steps x5*10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 500 1000 1500
0

10

20
TD(0): MLP

Simulation Steps x5*10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

0 1000 2000 3000
−20

−10

0

TD(0): Quadratic

Simulation Steps x10^4

P
a
ra

m
e
te

r
V

a
lu

e

0 1000 2000 3000
−50

0

50
TD(0): Quadratic

Simulation Steps x10^4L
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

1 2 3 4 5
6

8

10

Policy Iteration NumberL
o
s
t
A

v
e
ra

g
e
 R

e
w

a
rd

Figure �
 Case study for �� di�erent customer classes
 lightly loaded link�

��

References

�� D� P� Bertsekas� �Dynamic Programming and Optimal Control��
Athena Scienti	c� �����

�� D� P� Bertsekas and J� N� Tsitsiklis� �Neuro�Dynamic Programming��
Athena Scienti	c� �����

�� G� J� Tesauro� �Practical Issues in Temporal�Di�erence Learning��
Machine Learning� vol� �� �����

�� R� H� Crites and A� G� Barto� �Improving Elevator Performance Using
Reinforcement Learning �� Advances in Neural Information Processing
Systems �� MIT Press� �����

�� W� Zhang and T� G� Dietterich� �High Performance Job�Shop Schedul�
ing with a Time�Delay TD��� Network�� Advances in Neural Inform�
ation Processing Systems �� MIT Press� �����

�� S� Singh and D� P� Bertsekas� �Reinforcement Learning for Dy�
namic Channel Allocation in Celluar Telephone Systems�� Advances
in Neural Information Processing Systems �� MIT Press� �����

�� E� Nordstr�om� J� Carlstr�om� O� G�allmo and L� Apslund� �Neural Net�
works for Adaptive Tra�c Control in ATM Networks�� IEEE Com�
munication Magazine� Oct� �����

�� E� Nordstr�om and J� Carlstr�om� �A Reinforcement Scheme for Ad�
aptive Link Allocation in ATM Networks�� Proceedings of the Inter�
national Workshop on Applications of Neural Networks to Telecommu�
nications �� �����

�� IEEE J� Select� Areas Commun�� vol� ��� nos����� Aug�Sept �����

��� R� S� Sutton� �Learning to Predict by the Methods of Temporal Dif�
ferences�� Machine Learning� vol� �� �����

��

