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We study a multi-server model with n flexible servers and n queues, connected through a bipartite graph,

where the level of flexibility is captured by an upper bound on the graph’s average degree, dn. Applications

in content replication in data centers, skill-based routing in call centers, and flexible supply chains are among

our main motivations.

We focus on the scaling regime where the system size n tends to infinity, while the overall traffic intensity

stays fixed. We show that a large capacity region and an asymptotically vanishing queueing delay are

simultaneously achievable even under limited flexibility (dn� n). Our main results demonstrate that, when

dn� lnn, a family of expander-graph-based flexibility architectures has a capacity region that is within a

constant factor of the maximum possible, while simultaneously ensuring a diminishing queueing delay for

all arrival rate vectors in the capacity region. Our analysis is centered around a new class of virtual-queue-

based scheduling policies that rely on dynamically constructed job-to-server assignments on the connectivity

graph. For comparison, we also analyze a natural family of modular architectures, which is simpler but has

provably weaker performance. *
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1. Introduction

At the heart of a number of modern queueing networks lies the problem of allocating processing

resources (manufacturing plants, web servers, or call-center staff) to meet multiple types of demands

that arrive dynamically over time (orders, data queries, or customer inquiries). It is usually the case

that a fully flexible or completely resource-pooled system, where every unit of processing resource

is capable of serving all types of demands, delivers the best possible performance. Our inquiry is,

however, motivated by the unfortunate reality that such full flexibility is often infeasible due to

overwhelming implementation costs (in the case of a data center) or human skill limitations (in

the case of a skill-based call center).

What are the key benefits of flexibility and resource pooling in such queueing networks? Can

we harness the same benefits even when the degree of flexibility is limited, and how should the

* May 2015; revised October 2016. A preliminary version of this paper appeared at Sigmetrics 2013, [30]; the perfor-

mance of the architectures proposed in the current paper is significantly better than the one in [30]. This research

was supported in part by the NSF under grant CMMI-1234062.
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network be designed and operated? These are the main questions that we wish to address. While

these questions can be approached from a few different angles, we will focus on the metrics of

capacity region and expected queueing delay ; the former measures the system’s robustness against

demand uncertainties, i.e., when the arrival rates for different demand types are unknown or likely

to fluctuate over time, while the latter is a direct reflection of performance. Our main message is

positive: in the regime where the system size is large, improvements in both the capacity region

and delay are jointly achievable even under very limited flexibility, given a proper choice of the

architecture (interconnection topology) and scheduling policy.

Figure 1 Extreme cases of flexibility: dn = n versus dn = 1.

Benefits of Full Flexibility. We begin by illustrating the benefits of flexibility and resource

pooling in a very simple setting. Consider a system of n servers, each running at rate 1, and n

queues, where each queue stores jobs of a particular demand type. For each i ∈ {1, . . . , n}, queue

i receives an independent Poisson arrival stream of rate λi. The average arrival rate 1
n

∑n

i=1 λi is

denoted by ρ, and is referred to as the traffic intensity. The sizes of all jobs are independent and

exponentially distributed with mean 1.

For the remainder of this paper, we will use a measure of flexibility given by the average number

of servers that a demand type can receive service from, denoted by dn. Let us consider the two

extreme cases: a fully flexible system, with dn = n (Figure 1(a)), and an inflexible system, with

dn = 1 (Figure 1(b)). Fixing the traffic intensity ρ < 1, and letting the system size, n, tend to

infinity, we observe the following qualitative benefits of full flexibility:

1. Large Capacity Region. In the fully flexible case and under any work-conserving scheduling

policy1, the collection of all jobs in the system evolves as an M/M/n queue, with arrival rate∑n

i=1 λi and service rate n. It is easy to see that the system is stable for all arrival rates that satisfy∑n

i=1 λi <n. In contrast, in the inflexible system, since all M/M/1 queues operate independently,

we must have λi < 1, for all i, in order to achieve stability. Comparing the two, we see that the

1 A work-conserving policy mandates that a server be always busy whenever there is at least one job in some queue
to which it is connected.
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fully flexible system has a much larger capacity region, and is hence more robust to uncertainties

or changes in the arrival rates.

2. Diminishing Delay. Let W be the steady-state expected waiting time in queue (time from

entering the queue to the initiation of service). As mentioned earlier, the total number jobs in

the system for the fully flexible case evolves as an M/M/n queue with traffic intensity ρ < 1. It

is not difficult to verify that for any fixed value of ρ, the expected total number of jobs in the

queues is bounded above by a constant independent of n, and hence the expected waiting time in

queue satisfies E (W )→ 0, as n→∞.2 In contrast, the inflexible system is simply a collection of

n independent M/M/1 queues, and hence the expected waiting time is E (W ) = ρ
1−ρ > 0, for all

n. Thus, the expected delay in the fully flexible system vanishes asymptotically as the system size

increases, but stays bounded away from zero in the inflexible system.

Preview of Main Results. Will the above benefits of fully flexible systems continue to be

present if the system only has limited flexibiltiy, that is, if dn� n? The main results of this paper

show that a large capacity region and an asymptotically vanishing delay can still be simultaneously

achieved, even when dn� n. However, when flexibility is limited, the architecture and scheduling

policy need be chosen with care. We show that, when dn� lnn, a family of expander-graph-based

flexibility architectures has the largest possible capacity region, up to a constant factor, while

simultaneously ensuring a diminishing queueing delay, of order lnn/dn as n→∞, for all arrival

rate vectors in the capacity region (Theorem 3.4). For comparison, we also analyze a natural family

of modular architectures, which is simpler but has provably weaker performance (Theorems 3.5

and 3.6).

1.1. Motivating Applications

We describe here several motivating applications for our model; Figure 2 illustrates the overall

architecture that they share. Content replication is commonly used in data centers for bandwidth

intensive operations such as database queries [27] or video streaming [20], by hosting the same

piece of content on multiple servers. Here, a server corresponds to a physical machine in the data

center, and each queue stores incoming demands for a particular piece of content (e.g., a video

clip). A server j is connected to queue i if there is a copy of content i on server j, and dn reflects

the average number of replicas per piece of content across the network. Similar structures also arise

in skill-based routing in call centers, where agents (servers) are assigned to answer calls from

different categories (queues) based on their domains of expertise [32], and in process-flexible

2 The fact that the expected waiting time vanishes asymptotically follows from the bounded expected total number
of jobs in steady-state, the assumption that the total arrival rate is ρn, which goes to infinity as n→∞, and Little’s
Law.
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Figure 2 A processing network with rn queues and n servers.

supply chains [16, 26, 6, 15, 10], where each plant (server) is capable of producing multiple

product types (queues). In many of these applications, demand rates can be unpredictable and may

change significantly over time; for instance, unexpected “spikes” in demand traffic are common

in modern data centers [17]. These demand uncertainties make robustness an important criterion

for system design. These practical concerns have been our primary motivation for studying the

interplay between robustness, performance, and the level of flexibility.

1.2. Related Research

Bipartite graphs provide a natural model for capturing the relationships between demand types

and service resources. It is well known in the supply chain literature that limited flexibility, corre-

sponding to a sparse bipartite graph, can be surprisingly effective in resource allocation even when

compared to a fully flexible system [16, 10, 15, 6, 26]. The use of sparse random graphs or expanders

as flexibility structures to improve robustness has recently been studied in [7, 5] in the context

of supply chains, and in [20] for content replication. Similar to the robustness results reported in

this paper, these works show that random graphs or expanders can accommodate a large set of

demand rates. However, in contrast to our work, nearly all analytical results in this literature focus

on static allocation problems, where one tries to match supply with demand in a single shot, as

opposed to our model, where resource allocation decisions need to be made dynamically over time.

In the queueing theory literature, the models that we consider fall under the umbrella of multi-

class multi-server systems, where a set of servers are connected to a set of queues through a bipartite

graph. Under these (and similar) settings, complete resource pooling (full flexibility) is known to

improve system performance [21, 12, 3]. However, much less is known when only limited flexibility

is available: systems with a non-trivial connectivity graph are extremely difficult to analyze, even

under seemingly simple scheduling policies (e.g, first-come first-serve) [28, 31]. Simulations in [32]

show empirically that limited cross-training can be highly effective in a large call center under
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a skill-based routing algorithm. Using a very different set of modeling assumptions, [2] proposes

a specific chaining structure with limited flexibility, which is shown to perform well under heavy

traffic. Closer to the spirit of the current work is [29], which studies a partially flexible system

where a fraction p > 0 of all processing resources are fully flexible, while the remaining fraction,

1−p, is dedicated to specific demand types, and which shows an exponential improvement in delay

scaling under heavy-traffic. However, both [2] and [29] focus on the heavy-traffic regime, which is

different from the current setting where traffic intensity is assumed to be fixed, and the analytical

results in both works apply only to uniform demand rates. Furthermore, with a constant fraction

of the resources being fully flexible, the average degree in [29] scales linearly with the system size

n, whereas here we are interested in the case of a much slower (sub-linear) degree scaling.

At a higher level, our work is focused on the interplay between robustness, delay, and the degree

of flexibility in a queueing network, which is much less studied in the existing literature, and

especially for networks with a non-trivial interconnection topology.

On the technical end, we build on several existing ideas. The techniques of batching (cf. [24, 25])

and the use of virtual queues (cf. [22, 19]) have appeared in many contexts in queueing theory,

but the specific models considered in the literature bear little resemblance to ours. The study of

expander graphs has become a rich field in mathematics (cf. [14]), but we will refrain from providing

a thorough review because only some elementary and standard properties of expander graphs are

used in the current paper.

We finally note that preliminary (and weaker) versions of some of the results were included in

the conference paper [30].

Organization of the Paper. We describe the model in Section 2, along with the notation

to be used throughout. The main results are provided in Section 3. The construction and the

analysis associated with the Expander architecture will be presented separately, in Section 4. We

conclude the paper in Section 5 with a further discussion of the results as well as directions for

future research.

2. Model and Metrics

2.1. Queueing Model and Interconnection Topologies

The Model. We consider a sequence of systems operating in continuous time, indexed by the

integer n, where the nth system consists of rn queues and n servers (Figure 2), and where r is a

constant that is held fixed as n varies. For simplicity, we will set r to 1 but note that all results

and arguments in this paper can be extended to the case of general r without difficulty.

A flexible architecture is represented by an n × n undirected bipartite graph gn = (E,I ∪J),

where I and J represent the sets of queues and servers, respectively, and E the set of edges between
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them.3 We will also refer to I and J as the sets of left and right nodes, respectively. A server j ∈ J

is capable of serving a queue i∈ I, if and only if (i, j)∈E. We will use the following notation.

1. Let Gn be the set of all n×n bipartite graphs.

2. For gn ∈ Gn, let deg(gn) be the average degree among the n left nodes, which is the same as

the average degree of the right nodes.

3. For a subset of nodes, M ⊂ I ∪J , let g|M be the graph induced by g on the nodes in M .

4. Denote by N (i) the set of servers in J connected to queue i, and similarly, by N (j) the set

of queues in I connected to server j.

Each queue i receives a stream of incoming jobs according to a Poisson process of rate λn,i,

independent of all other streams, and we define λn = (λn,1, λn,2, . . . , λn,n), which is the arrival rate

vector. When the value of n is clear from the context, we sometimes suppress the subscript n and

write λ = (λ1, . . . , λn) instead. The sizes of the jobs are exponentially distributed with mean 1,

independent from each other and from the arrival processes. All servers are assumed to be running

at a constant rate of 1. The system is assumed to be empty at time t= 0.

Jobs arriving at queue i can be assigned (immediately, or in the future) to an idle server j ∈N (i)

to receive service. The assignment is binding : once the assignment is made, the job cannot be

transferred to, or simultaneously receive service from, any other server. Moreover, service is non-

preemptive: once service is initiated for a job, the assigned server has to dedicate its full capacity

to this job until its completion.4 Formally, if a server j has just completed the service of a previous

job at time t or is idle, its available actions are: (a) Serve a new job: Server j can choose to

fetch a job from any queue in N (j) and immediately start service. The server will remain occupied

and take no other actions until the processing of the current job is completed, which will take an

amount of time that is equal to the size of the job. (b) Remain idle: Server j can choose to

remain idle. While in the idling state, it will be allowed to initiate a service (Action (a)) at any

point in time.

Given the limited set of actions available to the server, the performance of the system is fully

determined by a scheduling policy, π, which specifies for each server j ∈ J , (a) when to remain idle,

and when to serve a new job, and (b) from which queue in N (j) to fetch a job when initiating

a new service. We only allow policies that are causal, in the sense that the decision at time t

depends only on the history of the system (arrivals and service completions) up to t. We allow the

3 For simplicity of notation, we omit the dependence of E, I, and J on n.

4 While we restrict to binding and non-preemptive scheduling policies, other common architectures where (a) a server
can serve multiple jobs concurrently (processor sharing), (b) a job can be served by multiple servers concurrently,
or (c) job sizes are revealed upon entering the system, are clearly more powerful than the current setting, and are
therefore capable of implementing the scheduling policies considered in this paper. As a result, the performance upper
bounds developed in this paper also apply to these more powerful variations.
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scheduling policy to be centralized (i.e., to have full control over all server actions) based on the

knowledge of all queue lengths and server states. On the other hand, the policy does not observe

the actual sizes of the jobs before they are served.

2.2. Performance Metrics

Characterization of Arrival Rates. We will restrict ourselves to arrival rate vectors with

average traffic intensity at most ρ, i.e.,
n∑
i=1

λi ≤ ρn, (1)

where ρ ∈ (0,1) will be treated throughout the paper as a given absolute constant. To quantify

the level of variability or uncertainty of a set of arrival rate vectors, Λ, we introduce a fluctuation

parameter, denoted by un, with the property that λi <un, for all i and λ∈Λ.

Note that, for a graph with maximum degree dn, the fluctuation parameter should not exceed dn,

because otherwise there could exist some λ∈Λ under which at least one queue would be unstable.

Therefore, the best we can hope for is a flexible architecture that can accommodate arrival rate

vectors with a un that is close to dn. The following condition formally characterizes the range of

arrival rate vectors we will be interested in, parameterized by the fluctuation parameter, un, and

traffic intensity, ρ.

Condition 2.1 (Rate Condition) Fix n ≥ 1 and some un > 0. We say that a (non-negative)

arrival rate vector λ satisfies the rate condition if the following hold:

1. max1≤i≤n λi <un.

2.
∑n

i=1 λi ≤ ρn.

We denote by Λn(un) the set of all arrival rate vectors that satisfy the above conditions.

Capacity Region. The capacity region for a given architecture is defined as the set of all arrival

rate vectors that it can handle. As mentioned in the Introduction, a larger capacity region indicates

that the architecture is more robust against uncertainties or changes in the arrival rates. More

formally, we have the following definition.

Definition 2.2 (Feasible Demands and Capacity Region) Let g = (I ∪ J,E) be an n × n′

bipartite graph. An arrival rate vector λ = (λ1, . . . , λn), is said to be feasible if there exists a flow,

f = {fij : (i, j)∈E}, such that

λi =
∑
j∈N (i)

fij, ∀i∈ I,∑
i∈N (j)

fij < 1, ∀j ∈ J,

fij ≥ 0, ∀(i, j)∈E. (2)
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In this case, we say that the flow f satisfies the demand λ. The capacity region of g, denoted by

R(g), is defined as the set of all feasible demand vectors of g.

It is well known that there exists a policy under which the steady-state expected delay is finite if

and only if λ∈R(gn); the strict inequalities in Definition 2.2 are important here. For the remainder

of the paper, we will use the fluctuation parameter un (cf. Condition 2.1) to gauge the size of the

capacity region, R(gn), of an architecture. For instance, if Λn(un)⊂R(gn), then the architecture

gn, together with a suitable scheduling policy, allows for finite steady-state expected delay, for any

arrival rate vetor in Λn(un).

Vanishing Delay. We define the expected average delay, E (W |λ, g, π) under the arrival rate

vector λ, flexible architecture g, and scheduling policy π, as follows. We denote by Wi,m the waiting

time in queue experienced by the mth job arriving to queue i, define

E (Wi) = lim sup
m→∞

E (Wi,m) ,

and let

E (W |λ, g, π) =
1∑
i∈I λi

∑
i∈I

λiE (Wi) . (3)

In the sequel, we will often omit the mention of π, and sometimes of g, and write E (W |λ, g) or

E (W |λ), in order to place emphasis on the dependencies that we wish to focus on.5

The delay performance of the system is measured by the following criteria: (a) for what

ranges Λn(un) of arrival rates, λ, does delay diminish to zero as the system size increases, i.e.,

supλ∈Λn(un) E (W |λ)→ 0 as n→∞, and (b) at what speed does the delay diminish, as a function

of n?

2.3. Notation

We will denote by N, Z+, and R+, the sets of natural numbers, non-negative integers, and non-

negative reals, respectively. The following short-hand notation for asymptotic comparisons will be

used often, as an alternative to the usual O (·) notation; here f and g are positive functions, and

L is a certain limiting value of interest, in the set of extended reals, R∪{−∞,+∞}:
1. f(x). g(x) or g(x)& f(x) for limsupx→Lf(x)/g(x)<∞;

2. f(x)� g(x) or g(x)� f(x) for limsupx→Lf(x)/g(x) = 0;

3. f(x)∼ g(x) for limx→L f(x)/g(x) = 1.

We will minimize the use of floors and ceilings, to avoid the cluttering of notation, and thus

assume that all values of interest are appropriately rounded up or down to an integer, whenever

doing so does not cause ambiguity or confusion. Whenever suitable, we will use upper-case letters

for random variables, and lower-case letters for deterministic values.

5 Note that E (W |λ) captures a worst-case expected waiting time across all jobs in the long run, and is always well
defined, even under scheduling policies that do not induce a steady-state distribution.
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3. Main Results: Capacity Region and Delay of Flexible Architectures

The statements of our main results are given in this section. Below is a high-level summary of our

results; a more complete comparison is given in Table 1.

Flexible architectures Rate Conditions Capacity Region Delay

Expander
(Theorem 3.4)

dn� lnn,
un . dn

Good for all λ
Good for all λ, with
E (W ). lnn/dn,

Modular
(Theorems 3.5, 3.7)

dn� 1,
un > 1

Bad for some
λ (even if un . 1)

Good for uniform λ, with
E (W ). exp(−c · dn)

Random Modular
(w.h.p.)

(Theorems 3.6, 3.7)

dn & lnn,
un . dn/ lnn

Good for most λ,
Bad for some λ

Good for most λ, with
E (W ). exp(−c · dn),
Bad for some λ

Table 1

This table summarizes and compares the flexibility architectures that we study, in terms of of capacity and delay.

We say that capacity is “good” for λ if λ falls within the capacity region of the architecture, and that delay is

“good” if the expected delay is vanishingly small for large n. When describing the size of the set of λ for which a

statement applies, we use the following (progressively weaker) quantifiers:

1. “For all” means that the statement holds for all λ∈Λn(un);

2. “For most” means that the statement holds with high probability when λ is drawn from an arbitrary

distribution over Λn(un), independently from any randomization in the construction of the flexibility architecture;

3. “For some” means that the statement is true for a non-empty set of values of λ.

The label “w.h.p.” means that all statements in the corresponding row hold with high probability with respect to

the randomness in generating the flexibility architecture.

Our main results focus on an Expander architecture, where the interconnection topology is

an expander graph with appropriate expansion. We show that, when dn � lnn, the Expander

architecture has a capacity region that is within a constant factor of the maximum possible among

all graphs with average degree dn, while simultaneously ensuring an asymptotically diminishing

queueing delay of order lnn/dn for all arrival rate vectors in the capacity region, as n→∞ (Theorem

3.4). Our analysis involves on a new class of virtual-queue-based scheduling policies that rely on

dynamically constructed job-to-server assignments on the connectivity graph.

Our secondary results concern a Modular architecture, which has a simpler construction and

scheduling rule compared to the Expander architecture. The Modular architecture consists of a
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collection of separate smaller subnetworks, with complete connectivity between all queues and

servers within each subnetwork. Since the subnetworks are disconnected from each other, a Modular

architecture does not admit a large capacity region: there always exists an infeasible arrival rate

vector even when the fluctuation parameter is of constant order (Theorem 3.5). Nevertheless, we

show that with proper randomization in the construction of the subnetworks (Randomized Modular

architecture), a simple greedy scheduling policy is able to deliver asymptotically vanishing delay

for “most” arrival rate vectors with nearly optimal fluctuation parameters, with high probability

(Theorem 3.6). These findings suggest that, thanks to its simplicity, the Randomized Modular

architecture could be a viable alternative to the Expander architecture if the robustness requirement

is not as stringent and one is content with probabilistic guarantees on system stability.

3.1. Preliminaries

Before proceeding, we provide some information on expander graphs, which will be used in some

of our constructions and proofs.

Definition 3.1 An n × n′ bipartite graph (I ∪ J,E) is an (α,β)-expander, if for all S ⊂ I that

satisfy |S| ≤ αn, we have that |N (S) | ≥ β|S|, where N (S) =
⋃
i∈SN (i) is the set of nodes in J

that are connected to some node in S.

The usefulness of expanders in our context comes from the following lemma, which relates the

parameters of an expander to the size of its capacity region, as measured by the fluctuation param-

eter, un. The proof is elementary and is given in Appendix A.1.

Lemma 3.2 (Capacity of Expanders) Fix n,n′ ∈ N, ρ ∈ (0,1), γ > ρ. Suppose that an n× n′

bipartite graph, gn, is a (γ/βn, βn)-expander, where βn ≥ un. Then Λn(un)⊂R(gn).

The following lemma ensures that such expander graphs exist for the range of parameters that

we are interested in. The lemma is a simple consequence of a standard result on the existence of

expander graphs, and its proof is given in Appendix A.2.

Lemma 3.3 Fix ρ∈ (0,1). Suppose that dn→∞ as n→∞. Let βn = 1
2
· ln(1/ρ)

1+ln(1/ρ)
dn, and γ =

√
ρ.

There exists n′ > 0, such that for all n ≥ n′, there exists an n × n bipartite graph which is a

(γ/βn , βn)-expander with maximum degree dn.

Remark. It is well known that random graphs with appropriate average degree are expanders

with high probability (cf. [14]). For instance, it is not difficult to show that if dn� lnn and βn =

1−γ
4
dn/ lnn, then an Erdös-Rényi random bipartite graph with average degree dn is a (γ/βn, βn)-

expander, with high probability, as n→∞ (cf. Lemma 3.12 of [33]). We note, however, that to
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deterministically construct expanders in a computationally efficient manner can be challenging and

is in and of itself an active field of research; the reader is referred to the survey paper [14] and the

references therein.

3.2. Expander Architecture

Construction of the Architecture. The connectivity graph in the Expander Architecture is

an expander graph with maximum degree dn and appropriate expansion.

Scheduling Policy. We employ a scheduling policy that organizes the arrivals into batches,

stores the batches in a virtual queue, and dynamically assigns the jobs in a batch to appropriate

servers. Theorem 3.4, which is the main result of this paper, shows that under this policy the

Expander architecture achieves an asymptotically vanishing delay for all arrival rate vectors in the

set Λn(un). Of course we assume that dn is sufficiently large so that the corresponding expander

graph exists (Lemma 3.3, with ρ replaced with ρ̂). At a high level, the strong guarantees stem from

the excellent connectivity of an expander graph, and similarly of random subsets of an expander

graph, a fact which we will exploit to show that jobs arriving to the system during a small time

interval can be quickly assigned to connected idle servers with high probability, which then leads to

a small delay. The proof of the theorem, including a detailed description of the scheduling policy,

is given in Section 4.

Theorem 3.4 (Capacity and Delay of Expander Architectures) Let ρ̂ = 1
1+(1−ρ)/8 . For

every n∈N, define

βn =
1

2
· ln(1/ρ̂)

ln(1/ρ̂) + 1
dn,

and

γ =
√
ρ̂.

Suppose that lnn� dn� n, and

un ≤
1− ρ

2
βn.

Let gn be a (γ/βn, βn)-expander with maximum degree dn. The following holds.

1. There exists a scheduling policy, πn, under which

sup
λn∈Λn(un)

E (W |λn, gn)≤ c lnn

dn
, (4)

where c is a constant independent of n and gn.

2. The scheduling policy, πn, only depends on gn and an upper bound on the traffic intensity, ρ.

It does not require knowledge of the arrival rate vector λn.
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Note that when ρ is viewed as a constant, the upper bound on un in the statement of Theorem

3.4 is just a constant multiple of dn. Since the fluctuation parameter, un, should be no more than

dn for stability to be possible, the size of Λn(un) in Theorem 3.4 is within a constant factor of the

best possible.

Remark. Compared to our earlier results, in a preliminary version of this paper (Theorem 1 in

[30]), Theorem 3.4 is stronger in two major aspects: (1) the guarantee for diminishing delay holds

deterministically over all arrival rate vectors in Λn(un), as opposed to “with high probability”

over the randomness in the generation of gn, and (2) the fluctuation parameter, un, is allowed to

be of order dn in Theorem 3.4, while [30] required that un�
√
dn/ lnn. The flexible architecture

considered in [30] was based on Erdös-Rényi random graphs. It also employed a scheduling policy

based on virtual queues, as in this paper. However, the policy in the present paper is simpler to

describe and analyze.

3.3. Modular Architectures

In a Modular architecture, the designer partitions the network into n/dn separate subnetworks.

Each subnetwork consists of dn queues and servers that are fully connected (Figure 3), but discon-

nected from queues and servers in other subnetworks.

Construction of the Architecture. Formally, the construction is as follows.

1. We partition the set J of servers into n/dn disjoint subsets (“clusters”) B1, . . . ,Bn/dn , all

having the same cardinality dn. For concreteness, we assign the first dn servers to the first

cluster, B1, the next dn servers to the second cluster, etc.

2. We form a partition σn = (A1, . . . ,An/dn) of the set I of queues into n/dn disjoint subsets

(“clusters”) Ak, all having the same cardinality dn.

3. To construct the interconnection topology, for k= 1, . . . , n/dn, we connect every queue i∈Ak
to every server j ∈ Bk. A pair of queue and server clusters with the same index k will be

referred to as a subnetwork.

Note that in a Modular architecture, the degree of each node is equal to the size, dn, of the

clusters. Note also that different choices of σn yield isomorphic architectures. When σn is drawn

uniformly at random from the set of all possible partitions of I into subsets of size n/dn, we call

the resulting topology a Random Modular architecture.

Scheduling Policy. We use a simple greedy policy, equivalent to running each subnetwork as

an M/M/dn queue. Whenever a server j ∈Bk becomes available, it starts serving a job from any

non-empty queue in Ak. Similarly, when a job arrives at queue i ∈Ak, it is immediately assigned

to an arbitrary idle server in Bk, if such a server exists, and waits in queue i, otherwise.
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Figure 3 A Modular architecture consisting of n/dn subnetworks, each with dn queues and servers. Within each

subnetwork, all servers are connected to all queues.

Our first result points out that a Modular architecture does not have a large capacity region:

for any partition σn, there always exists an infeasible arrival rate vector, even if un is small, of

order O(1). The proof is given in Appendix A.3. Note that this is a negative result that applies no

matter what scheduling policy is used.

Theorem 3.5 (Capacity Region of Deterministic Modular Architectures) Fix n≥ 1 and

some un > 1. Let gn be a Modular architecture with average degree dn ≤ ρ
2
n. Then, there exists

λn ∈Λn(un) such that λn /∈R(gn).

However, if we are willing to settle for a weaker result on the capacity region, the next theorem

states that with the Random Modular architecture, any given arrival rate vector λn has high

probability (with respect to the random choice of the partition σn) of belonging to the capacity

region, if the fluctuation parameter, un, is of order O(dn/ lnn), but no more than that. Intuitively,

this is because the randomization in the connectivity structure makes it unlikely that many large

components of λn reside in the same sub-network. The proof is given in Appendix A.4.

Theorem 3.6 (Capacity Region of Random Modular Architectures) Let σn be drawn

uniformly at random from the set of all partitions, and let Gn be the resulting Random Modular

architecture. Let PGn be the probability measure that describes the distribution of Gn. Fix a constant

c1 > 0, and suppose that dn ≥ c1 lnn. Then, there exist positive constants c2 and c3, such that:

(a) If un ≤ c2dn/ lnn, then

lim
n→∞

inf
λn∈Λn(un)

PGn (λn ∈R(Gn)) = 1. (5)

(b) Conversely, if un > c3dn/ lnn and dn ≤ n0.3, then

lim
n→∞

inf
λn∈Λn(un)

PGn (λn ∈R(Gn)) = 0, (6)
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We can use Theorem 3.6 to obtain a statement about “most” arrival rate vectors in Λn(un),

as follows. Suppose that λn is drawn from an arbitrary distribution µn over Λn(un), indepen-

dently from the randomness in Gn. Let PGn ×µn be the product measure that describes the joint

distribution of Gn and λn. Using Fubini’s theorem, Eq. (5) implies that

lim
n→∞

(PGn ×µn)
(
λn ∈R(Gn)

)
= 1. (7)

A further application of Fubini’s theorem and an elementary argument6 implies that there exists

a sequence δ′n that converges to zero, such that the event

µn
(
λn ∈R(Gn) |Gn

)
≥ 1− δ′n (8)

has “high probability,” with respect to the measure PGn . That is, there is high probability that the

Random Modular architecture includes “most” arrival vectors λn in Λn(un).

We now turn to delay. The next theorem states that in a Modular architecture, delay is van-

ishingly small for all arrival rate vectors in the capacity region that are not too close to its outer

boundary. The proof is given in Appendix A.5.

We need some notation. For any set S and scalar γ, we let γS = {γx : x∈ S}.

Theorem 3.7 (Delay of Modular Architectures) Fix some γ ∈ (0,1), and consider a Modu-

lar architecture gn for each n. There exists a constant c > 0, independent of n and the sequence

{gn}, so that

E (W |λn). exp(−c · dn), (9)

for every λn ∈ γR(gn).

3.3.1. Expanded Modular Architectures There is a further variant of the Modular archi-

tecture that we call the Expanded Modular architecture, which combines the features of a Modular

architecture and an expander graph via a graph product. By construction, it uses part of the sys-

tem flexibility to achieve a large capacity region and part to achieve low delay. As a result, the

Expanded Modular architecture admits a smaller capacity region compared to that of an Expander

architecture. Another drawback is that the available performance guarantees involve policies that

require the knowledge of the arrival rates λi. On the positive side, it guarantees an asymptotically

vanishing delay for all arrival rates, uniformly across the capacity region, and can be operated by

a scheduling policy that is arguably simpler than in the Expander architecture. The construction

and a scheduling policy for the Expanded Modular architecture is given in Appendix B, along with

a statement of its performance guarantees (Theorem B.1). The technical details can be found in

[33].

6 We are using here the following elementary Lemma. Let A be an event with P(A)≥ 1− ε, and let X be a random
variable. Then, there exists a set B with P(B)≥ 1−

√
ε such that P(A |X)≥ 1−

√
ε, whenever X ∈B. The lemma is

applied by letting A be the event {λn ∈R(Gn)} and letting X =Gn.
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4. Analysis of the Expander Architecture

In this section, we introduce a policy for the Expander architecture, based on batching and virtual

queues, which will then be used to prove Theorem 3.4. We begin by describing the basic idea at a

high level.

4.1. The Main Idea

Our policy proceeds by collecting a fair number of arriving jobs to form batches. Batches are

thought of as being stored in a virtual queue, with each batch treated as a single entity. By choosing

the batch size large enough, one expects to see certain statistical regularities that can be exploited

in order to efficiently handle the jobs within a batch. We now provide an outline of the operation

of the policy, for a special case.

Let us fix n and consider the case where λi = λ< 1 for all i. Suppose that at time t, all servers are

busy serving some job. Let us also fix some γn such that γn� 1, while nγn is large. During the time

interval [t, t+ γn), “roughly” λnγn new jobs will arrive and nγn servers will become available. Let

Γ be the set of queues that received any job and let ∆ be the set of servers that became available

during this interval. Since λnγn� n, these incoming jobs are likely to be spread out across different

queues, so that most queues receive at most one job. Assuming that this is indeed the case, we

focus on gn|Γ∪∆, that is, the connectivity graph gn, restricted to Γ∪∆. The key observation is that

this is a subgraph sampled uniformly at random among all subgraphs of gn with approximately

λnγn left nodes and nγn right nodes. When nγn is sufficiently large, and gn is well connected (as in

an expander with appropriate expansion properties), we expect that, with high probability, gn|Γ∪∆

admits a matching that includes the entire set Γ (i.e., a one-to-one mapping from Γ to ∆). In this

case, we can ensure that all of the roughly λnγn jobs can start receiving service at the end of the

interval, by assigning them to the available servers in ∆ according to this particular matching.

Note that the resulting queueing delay will be comparable to γn, which has been assumed to be

small.

The above described scenario corresponds to the normal course of events. However, with a small

probability, the above scenario may not materialize, due to statistical fluctuations, such as:

1. Arrivals may be concentrated on a small number of queues.

2. The servers that become available may be located in a subset of gn that is not well connected

to the queues with arrivals.

In such cases, it may be impossible to assign the jobs in Γ to servers in ∆. These exceptional

cases will be handled by the policy in a different manner. However, if we can guarantee that the

probability of such cases is low, we can then argue that their impact on performance is negligible.
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Whether or not the above mentioned exceptions will have low probability of occurring depends

on whether the underlying connectivity graph, gn, has the following property: with high probability,

a randomly sampled sublinear (but still sufficiently large) subgraph of gn admits a large set of

“flows.” This property will be used to guarantee that, with high probability, the jobs in Γ can

indeed be assigned to distinct servers in the set ∆. We will show that an expander graph with

appropriate expansion does possess this property.

4.2. An additional assumption

Before proceeding, we introduce an additional assumption on the arrival rates, which will remain

in effect throughout this section, and which will simplify some of the arguments. Appendix A.6

explains why this assumption can be made without loss of generality.

Assumption 4.1 (Lower Bound on the Total Arrival Rate) We have that ρ∈ (1/2 , 1), and

the total arrival rate satisfies the lower bound

n∑
i=1

λi ≥ (1− ρ)n. (10)

4.3. The Policy

We now describe in detail the scheduling policy. Besides n, the scheduling policy uses the following

inputs:

1. ρ, the traffic intensity introduced in Condition 2.1, in Section 2.2,

2. ε, a positive constant such that ρ+ ε < 1.

3. bn, a batch size parameter,

4. gn, the connectivity graph.

Notice that the arrival rates, λi, and the fluctuation parameter, un, are not inputs to the scheduling

policy.

At this point it is useful to make a clarification regarding the . notation. Recall that the relation

f(n) . g(n) means that f(n)≤ cg(n), for all n, where c is a positive constant. Whenever we use

this notation, we require that the constant c cannot depend on any parameters other than ρ and

ε. Because we view ρ and ε as fixed throughout, this makes c an absolute constant.

4.3.1. Arrivals of Batches. Arriving jobs are organized in batches of cardinality ρbn, where

bn is a design parameter, to be specified later.7 Let TB0 = 0. For k ≥ 1, let TBk be the time of the

(kρbn)th arrival to the system, which we also view as the arrival time of the kth batch. For k≥ 1,

7 In a slight departure from the earlier informal description, we define batches by keeping track of the number of
arriving jobs as opposed to keeping track of time.
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the kth batch consists of the ρbn jobs that arrive during the time interval (TBk−1, T
B
k ]. The length

Ak = TBk − TBk−1 of this interval will be called the kth inter-arrival time. We record, in the next

lemma, some immediate statistical properties of the batch inter-arrival times.

Lemma 4.2 The batch inter-arrival times, {Ak}k≥1, are i.i.d., with

bn
n
≤E (Ak)≤

ρ

1− ρ
· bn
n
,

and Var (Ak). bn/n
2.

Proof. The batch inter-arrival times are i.i.d., due to our independence assumptions on the job

arrivals. By definition, Ak is equal in distribution to the time until a Poisson process records ρbn

arrivals. This Poisson process has rate r =
∑n

i=1 λi, and using also Assumption 4.1 in the first

inequality below, we have

(1− ρ)n≤
n∑
i=1

λi= r≤ ρn,

The random variables Ak are Erlang (sum of ρbn exponentials with rate r). Therefore,

E (Ak)= ρbn ·
1

r
≥ ρbn ·

1

ρn
=
bn
n
.

Similarly,

E(Ak)= ρbn ·
1

r
≤ ρbn ·

1

(1− ρ)n
.

Finally,

Var (Ak)= ρbn ·
1

r2
≤ ρbn ·

1

(1− ρ)2n2
.
bn
n2
.

Q.E.D.

4.3.2. The Virtual Queue Upon arrival, batches are placed in what we refer to as a virtual

queue. The virtual queue is a GI/G/1 queue, which is operated in FIFO fashion. That is, a batch

waits in queue until all previous batches are served, and then starts being served by a virtual

queueing system. The service of a batch by the virtual queueing system lasts until a certain time

by which all jobs in the batch have already been assigned to, and have started receiving service

from, one of the physical servers, at which point the service of the batch is completed and the

batch departs from the virtual queue. The time elapsed from the initiation of service of batch until

its departure is called the service time of the batch. As a consequence, the queueing delay of a job

in the actual (physical) system is bounded above by the sum of:

(a) the time from the arrival of the job until the arrival time of the batch that the job belongs

to;

(b) the time that the batch waits in the virtual queue;

(c) the service time of the batch.
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Service slots. The service of the batches at the virtual queue is organized along consecutive

time intervals that we refer to as service slots. The service slots are intervals of the form (ls, (l+1)s],

where l is a nonnegative integer, whose length is8

s= (ρ+ ε) · bn
n
.

We will arrange matters so that batches can complete service and depart only at the end of a

service slot, that is, at times of the form ls. Furthermore, we assume that the physical servers are

operated as follows. If either a batch completes service at time ls or if there are no batches present

at the virtual queue at that time, we assign to every idle server a dummy job whose duration is

an independent exponential random variable, with mean 1. This ensures that the state of the n

servers is the same (all of them are busy) at certain special times, thus facilitating further analysis,

albeit at the cost of some inefficiency.

4.3.3. The Service Time of a Batch. The specification of the service time of a batch

depends on whether the batch, upon arrival, finds an empty or nonempty virtual queue.

assign jobs 
in a new batch 
to idle servers

clear the current 
batch greedily

batch assignment 
fails

batch
departs

batch assignment
succeeds

batch 
remains

Figure 4 An illustration of the service slot dynamics. An arrow indicates the transition from the end of one

service slot to the next.

Suppose that a batch arrives during the service slot (ls, (l + 1)s] and finds an empty virtual

queue; that is, all previous batches have departed by time ls. According to what was mentioned

earlier, at time ls, all physical servers are busy, serving either real or dummy jobs. Up until the end

of the service slot, any server that completes service is not assigned a new (real or dummy) job,

and remains idle, available to be assigned a job at the very end of the service slot. Let ∆ be the set

of servers that are idle at time (l+ 1)s, the end of the service slot. At that time, we focus on the

jobs in the batch under consideration. We wish to assign each job i in this batch to a distinct server

j ∈∆, subject to the constraint that (i, j) ∈E. We shall refer to such a job-to-server assignment

as a batch assignment. There are two possibilities (cf. Figure 4):

8 To see how the length of the service slot was chosen, recall that the size of each batch is equal to ρbn. The length
of the service slot hence ensures that (ρ+ ε)bn, the expected number of servers that will become available (and can
therefore be assigned to jobs) during a single service slot, is greater than the size of a batch, so that there is hope of
assigning all of these jobs to available servers within a single service slot. At the same time, since ρ+ ε < 1, service
slots are shorter than the expected batch inter-arrival time, which is needed for the stability of the virtual queue.
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(a) If a batch assignment can be found, each job in the batch is assigned to a server according

to that assignment, and the batch departs at time (l+ 1)s. In this case, we say that the service

time of the batch was short.

(b) If a batch assignment cannot be found, we start assigning the jobs in the batch to physical

servers in some arbitrary greedy manner: Whenever a server j becomes available, we assign to it a

job from the batch under consideration, and from some queue i with (i, j) ∈E, as long as such a

job exists. (Ties are broken arbitrarily.) As long as every queue is connected to at least one server,

all jobs in the associated batch will be eventually assigned. The last of the jobs in the batch gets

assigned during a subsequent service interval (l′s, (l′+ 1)s], where l′ > l, and we define (l′+ 1)s as

the departure time of the batch.

If the kth batch did indeed find an empty virtual queue upon arrival, its service time, denoted by

Sk, is the time elapsed from its arrival until its departure.

Suppose now that a batch arrives during a service slot (ls, (l+1)s] and finds a non-empty virtual

queue; that is, there are one or more batches that arrived earlier and which have not departed by

time ls. In this case, the batch waits in the virtual queue until some time of the form l′s, with

l′ > l, when the last of the previous batches departs. Recall that, as specified earlier, at time l′s

all servers are made to be busy (perhaps, by giving them dummy jobs) and we are faced with a

situation identical to the one considered in the previous case, as if the batch under consideration

just arrived at time l′s; in particular, the same service policy can be applied. For this case, where

the kth batch arrives to find a non-empty virtual queue, its service time, Sk, extends from the time

of the departure of the (k− 1)st batch until the departure of the kth batch.

4.4. Bounding the Virtual Queue by a GI/GI/1 Queue

Having defined the inter-arrival and service times of the batches, the virtual queue is a fully

specified, work-conserving, FIFO single-server queueing system.

We note however one complication. The service times of the different batches are dependent on

the arrival times. To see this, suppose, for example, that a batch upon arrival sees an empty virtual

queue and that its service time is “short.” Then, its service time will be equal to the remaining

time until the end of the current service slot, and therefore dependent on the batch’s arrival time.

Furthermore, the service times of different batches are dependent: if the service time of the previous

batch happens to be too long, then the next batch is likely to see upon arrival a non-empty virtual

queue, which then implies that its own service time will be an integer multiple of s.

In order to get around these complications, and to be able to use results on GI/GI/1 queues, we

define the modified service time, S′k, of the kth service batch to be equal to Sk, rounded above to

the nearest integer multiple of s:

S′k = min{ls : ls≥ Sk, l= 1,2, . . .}.
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Clearly, we have Sk ≤ S′k.

We now consider a modified (but again FIFO and work-conserving) virtual queueing system in

which the arrival times are the same as before, but the service times are the S′k. A simple coupling

argument, based on Lindley’s recursion, shows that for every sample path, the time that the batch

spends waiting in the queue of the original virtual queueing system is less than or equal to the

time spent waiting in the queue of the modified virtual queueing system. It therefore suffices to

upper bound the expected time spent in the queue of the modified virtual queueing system.

We now argue that the modified virtual queueing system is a GI/GI/1 queue, i.e., that the

service times S′k are i.i.d., and independent from the arrival process. For a batch whose service

starts during the service slot [ls, (l+ 1)s), the modified service time is equal to s, whenever the

batch service time is short. Whether the batch service time will be short or not is determined by

the composition of the jobs in this batch and by the identities of the servers who complete service

during the service slot [ls, (l+1)s). Because the servers start at the same “state” (all busy) at each

service slot, it follows that the events that determine whether a batch service time will be short or

not are independent across batches, and with the same associated probabilities.

Similarly, if a batch service time is not short, the additional time to serve the jobs in the batch

is affected only by the composition of jobs in the batch and the service completions at the physical

servers after time ls, and these are again independent from the inter-arrival times and the modified

service times S′m of other batches m. Finally, the same considerations show the independence of

the S′k from the batch arrival process.

It should now be clear from the above discussion that the modified service time of a batch is of

the form

S′k = s+Xk · Ŝk, (11)

where:

(a) Xk is a Bernoulli random variable which is equal to 1 if and only if the kth batch service

time is not short, i.e., it takes more than a single service slot;

(b) Ŝk is a random variable which (assuming that every queue is connected to at least one server)

is stochastically dominated by the sum of ρbn independent exponential random variables with mean

1, rounded up to the nearest multiple of s. (This dominating random variable corresponds to the

extreme case where all of the ρbn jobs in the batch are to be served in sequence, by the same

physical server.)

(c) The pairs (Xk, Ŝk) are i.i.d.
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4.5. Bounds on the Modified Service Times

For the remainder of Section 4, we will assume that

gn is a (γ/βn, βn)-expander, (12)

where γ and βn are defined as in the statement of Theorem 3.4.

The main idea behind the rest of the proof is as follows. We will upper bound the expected time

spent in the modified virtual queueing system using Kingman’s bound [18] for GI/GI/1 queues.

Indeed, the combination of a batching policy with Kingman’s bound is a fairly standard technique

for deriving delay upper bounds (see, e.g., [25]). We already have bounds on the mean and variance

of the inter-arrival times. In order to apply Kingman’s bound, it remains to obtain bounds on the

mean and variance of the service times S′k of the modified virtual queueing system.

We now introduce an important quantity associated with a graph gn, by defining

q(gn) = P (Xk = 1 |gn) ;

because of the i.i.d. properties of the batch service times, this quantity does not depend on k. In

words, for a given connectivity graph gn, the quantity q(gn) stands for the probability that we

cannot find a batch assignment, between the jobs in a batch and the servers that become idle

during a period of length s.

We begin with the following lemma, which provides bounds on the mean and variance of S′k.

Lemma 4.3 There exists a sequence, {cn}n∈N, with cn . bn, such that for all n≥ 1

s≤E (S′k | gn)≤ s+ q(gn)cn,

and

Var (S′k | gn). q(gn)c2
n.

Proof. The fact that E (S′k | gn) ≥ s follows from the definition of S′k in Eq. (11) and the non-

negativity of XkŜk. The definition of an expander ensures that every queue is connected to at least

one server through gn. Recall that Ŝk is zero if Xk = 0; on the other hand, if Xk = 1, and as long as

every queue is connected to some server, then Ŝk is upper bounded by the sum of ρbn exponential

random variables with mean 1, rounded up to an integer multiple of s. Therefore,

E (S′k | gn) = s+E
(
XkŜk | gn

)
= s+P(Xk = 1 |gn) ·E

(
Ŝk |Xk = 1, gn

)
≤ s+ q(gn)(ρbn + s),

which leads to the first bound in the statement of the lemma, with cn = bn+s. Since s is proportional

to bn/n, we also have cn . bn, as claimed. Furthermore,

Var (S′k | gn) = Var
(
XkŜk | gn

)
≤E

(
X2
k Ŝ

2
k | gn

)
. q(gn)(bn + s)2 = q(gn)c2

n.
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Q.E.D.

We now need to obtain bounds on q(gn). This is nontrivial and forms the core of the proof

of the theorem. In what follows, we will show that with appropriate assumptions on the various

parameters, and for any λ ∈Λ(un), an Erdös-Rényi random graph has a very small q(gn), with

high probability.

4.6. Assumptions on the Various Parameters

From now on, we focus on a specific batch size parameter of the form

bn =
320

(1− ρ)2
· n lnn

βn
. (13)

We shall also set

ε=
1− ρ

2
. (14)

We assume, as in the statement of Theorem 3.4, that dn� n, and that

βn & dn� lnn. (15)

Under these choices of bn and dn, we have

bn .
n

dn/ lnn
� n; (16)

that is, the batch size is vanishingly small compared to n. Finally, we will only consider arrival rate

vectors that belong to the set Λn(un) (cf. Condition 2.1), where, as in the statement of Theorem

3.4,

un ≤
1− ρ

2
βn. (17)

4.7. The Probability of a Short Batch Service Time

We now come to the core of the proof, aiming to show that if the connectivity graph gn is an

expander graph with a sufficiently large expansion factor, then q(gn) is small. More precisely, we

aim to show that a typical batch will have high probability of having a short service time. A

concrete statement is given in the result that follows, and the rest of this subsection will be devoted

to its proof.

Proposition 4.4 Fix n≥ 1. We have that

q(gn)≤ 1

n2
. (18)

Let us focus on a particular batch, and let us examine what it takes for its service time to be

short. There are two sources of randomness:
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1. A total of ρbn jobs arrive to the queues. Let Ai be the number of jobs that arrive at the ith

queue, let A = (A1, . . . ,An), and let Γ be the set of queues that receive at least one job. In

particular, we have
n∑
i=1

Ai =
∑
i∈Γ

Ai = ρbn.

2. During the time slot at which the service of the batch starts, each server starts busy (with

a real or dummy job). With some probability, and independently from other servers or from

the arrival process, a server becomes idle by the end of the service time slot. Let ∆ be the set

of servers that become idle.

Recalling the definition of Xk as the indicator random variable of the event that the service time of

the kth batch is not short, we see that Xk is completely determined by the graph gn together with

A and ∆. For the remainder of this subsection, we suppress the subscript k, since we are focusing

on a particular batch. We therefore have a dependence of the form

X = f(gn,A,∆),

for some function f , and we emphasize the fact that A and ∆ are independent.

Recall that ε= (1− ρ)/2, and from the statement of Theorem 3.4 that

ρ̂=
1

1 + (1− ρ)/8
=

1

1 + ε/4
. (19)

Clearly, ρ̂ < 1, and with some elementary algebra, it is not difficult to show that, for any given

ρ∈ (0,1),

ρ̂ > ρ.

Let

mn =
ρ

ρ̂
bn,

so that

ρ̂mn = ρbn. (20)

Finally, let

ûn = βn
mn

n
.

We will say that A is nice if there exists a set Γ̂⊃ Γ of cardinality mn, such that Ai = 0 whenever

i /∈ Γ̂, and

Ai<ûn, ∀ i∈ Γ̂.

We now establish that A is nice, with high probability. The main idea is simple: A is not nice

only if one out of a finite collection of binomial variables with large means takes a value which is
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away from its mean by a certain multiplicative factor. Using the Chernoff bound, this probability

can be shown to decay at least as fast as 1/n3. The details of this argument are given in the proof

of Lemma 4.5, in Appendix A.7.

Lemma 4.5 For all sufficiently large n, we have that

P(A is not nice)≤ 1

n3
.

We now wish to establish that when A is nice, there is high probability (with respect to ∆), that

the batch service time will be short. Having a short batch service time is, by definition, equivalent

to the existence of a batch assignment, which in turn is equivalent to the existence of a certain flow

in a subgraph of gn. The lemma that follows deals with the latter existence problem for the original

graph, but will be later applied to subgraphs. Let R(g) be the closure of the capacity region, R(g),

of g.

Lemma 4.6 Fix n,n′ ∈ N, ρ ∈ (0,1), and γ > ρ. Suppose that an n× n′ bipartite graph, gn, is a

(γ/βn, βn)-expander, where βn ≥ un. Then Λn(un)⊂R(gn).

Proof. The claim follows directly from Lemma 3.2, by noting that R(gn)⊃R(gn). Q.E.D.

The next lemma is the key technical result of this subsection. It states that if gn is an expander,

then, for any given Γ̂, the random subgraph gn|Γ̂∪∆ will be an expander graph with high probability

(with respect to ∆). The lemma is stated as a stand-alone result, though we will use a notation

that is consistent with the rest of the section. The proof relies on a delicate application of the

Chernoff bound, and is given in Appendix A.8.

Lemma 4.7 Fix n≥ 1, γ ∈ (0,1), and ρ ∈ [1/2 ,1). Let gn = (I ∪ J,E) be an n×n bipartite graph

that is a (γ/βn, βn)-expander, where βn� lnn. Define the following quantities:

ε=
1− ρ

2
,

ρ̂=
1

1 + ε/4
,

bn =
320

(1− ρ)2
· n lnn

βn
=

80

ε2
· n lnn

βn
,

mn =
ρ

ρ̂
bn,

ûn =βn
mn

n
. (21)

Let Γ̂ be an arbitrary subset of the left vertices, I, such that

|Γ̂|=mn, (22)
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and let ∆ be a random subset of the right vertices, J , where each vertex belongs to ∆ independently

and with the same probability, where

P(j ∈∆)≥ (ρ+ 3ε/4)
bn
n
, ∀j ∈ J, (23)

for all n sufficiently large. Denote by Ĝ the random subgraph gn|Γ̂∪∆. Then

P
(
Ĝ is not a (γ/ûn , ûn)-expander

)
≤ 1

n3
, (24)

for all n sufficiently large, where the probability is measured with respect to the randomness in ∆.

To invoke Lemma 4.7, note that the conditions in Eq. (21) are identical to the definitions for the

corresponding quantities in this section. We next verify that Eq. (23) is satisfied by the random

subset, ∆, consisting of the idle servers at the end of a service slot. Recall that the length of a

service slot is bn
n

(ρ+ ε), and hence the probability that a given server, j, becomes idle by the end

of a service slot is

P (j ∈∆) = 1− exp

(
−bn
n

(ρ+ ε)

)
∼ (ρ+ ε)

bn
n
, (25)

as n→∞. Therefore, for all n sufficiently large, we have that P (j ∈∆)≥(ρ+ 3ε/4) bn
n
. We will

now apply Lemmas 4.6 and 4.7 to the random subgraph with left (respectively, right) nodes Γ̂

(respectively ∆), and with the demands Ai, for i∈ Γ̂, playing the role of λ.

Lemma 4.8 If n is large enough, and if the value a of A is nice, then

P(X = 1 |A = a)≤ 1

n3
,

where the probability is with respect to the randomness in ∆.

Proof. We fix some a, assumed to be nice. Recall that

ûn = βn
mn

n
,

and from the statement of Theorem 3.4 that

γ =
√
ρ̂ > ρ̂.

We apply Lemma 4.6 to the randomly sampled subgraph Ĝ, with left nodes Γ̂, |Γ̂|=mn, and right

nodes ∆. We have the following correspondence: the parameters n and ρ, in Lemma 4.6 become, in

the current context, mn and ρ̂, respectively, and the parameters βn and un both become ûn. Thus,

by Lemma 4.6,

if Ĝ is a (γ/ûn, ûn)-expander, then Λmn(ûn)⊂R(Ĝ). (26)
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Let Â be the vector of job arrival numbers A, restricted to the set of nodes in Γ̂, and let â be

the realization of Â. Note that we have∑
i∈Γ̂

âi =
n∑
i=1

Ai = ρbn = ρ̂mn,

because of Eq. (20). Furthermore, for any i∈ Γ̂, the fact that a is nice implies that âi < ûn. Thus,

â∈Λmn(ûn). By Eq. (26), this further implies that

if Ĝ is a (γ/ûn, ûn)-expander, then â∈R(Ĝ). (27)

By Lemma 4.7, the graph Ĝ is a (γ/ûn, ûn)-expander with probability at least 1−n−3. Combining

this fact with Eq. (27), we have thus verified that â belongs to R(Ĝ), with probability at least

1− 1

n3
.

With R(Ĝ) having been defined as the closure of the capacity region, R(Ĝ) (cf. Definition 2.2),

the fact that the vector â belongs to R(Ĝ) is a statement about the existence of a feasible flow,

{f̂ij : (i, j)∈ Ê} (where Ê is the set of edges in Ĝ), in a linear network flow model of the form

âi =
∑

j:(i,j)∈Ê

fij, ∀i ∈ Γ̂,

∑
i:(i,j)∈Ê

fij ≤ 1, ∀ j ∈∆,

fij ≥ 0, ∀ (i, j)∈ Ê.

Because the “supplies” âi in this network flow model, as well as the unit capacities of the right nodes

are integer, it is well known that there also exists an integer flow. That is, we can find f̂ij ∈ {0,1}
such that

∑
j f̂ij = âi, for all i, and

∑
i f̂ij ≤ 1, for all j. But this is the same as the statement that

there exists a feasible batch assignment over Ĝ. Thus, for large enough n and for any given nice

a, the conditional probability that a batch assignment does not exist is upper bounded by n−3, as

claimed. Q.E.D.

We can now complete the proof of Proposition 4.4. By considering unconditional probabilities

where A is random, and for n large enough, we have that

P(X = 1)≤P(A is not nice) +
∑

a nice

P(X = 1 |A = a) ·P(A = a)

(a)

≤ 1

n3
+
∑

a nice

P(X = 1 |A = a) ·P(A = a)

(b)

≤ 1

n3
+
∑

a nice

1

n3
·P(A = a)

≤ 2

n3

≤ 1

n2
, (28)
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where steps (a) and (b) follow from Lemmas 4.5 and 4.8, respectively. This concludes the proof of

Proposition 4.4.

4.8. Service and Waiting Time Bounds for the Virtual Queue

4.8.1. Service Time Bounds. We will now use Lemma 4.3 and Proposition 4.4 to bound

the mean and variance of the service times in the modified virtual queue.

Lemma 4.9 The modified batch service times, S′k, are i.i.d., with

E (S′k |gn)∼ (ρ+ ε) · bn
n
, and Var (S′k |gn).

b2
n

n2
.

Proof. We use the fact from Lemma 4.3, that s ≤ E (S′k |gn) ≤ s+ q(gn)cn, where cn . bn. We

recall that s= (ρ+ε)bn/n, and use the fact q(gn)≤n−2, as guaranteed by Proposition 4.4. The term

q(gn)cn satisfies q(gn)cn . bn/n
2, which is of lower order than bn/n, and hence negligible compared

to s. This proves the first part of the lemma.

For the second part, we use Lemma 4.3 in the first inequality below, and the fact that q(gn)≤n−2

in the second, to obtain

Var (S′k |gn). q(gn)c2
n .

b2
n

n2
.

Q.E.D.

4.8.2. Waiting Time Bounds. Fix n and the graph gn. Let WB be a random variable whose

distribution is the same as the steady-state distribution of the time that a batch spends waiting in

the queue of the virtual queueing system introduced in Section 4.3.2.

Proposition 4.10 We have that

E
(
WB |gn

)
.
bn
n
. (29)

Proof. As discussed in Section 4.4, the waiting time of a batch, in the virtual queueing system, is

dominated by the waiting time in a modified virtual queueing system, which is a GI/GI/1 queue,

with independent inter-arrival times Ak (defined in Section 4.3.1) and independent service times

S′k. Let W ′ be a random variable whose distribution is the same as the steady-state distribution of

the time that a batch spends waiting in the queue of the modified virtual queueing system.

According to Kingman’s bound [18], W ′ satisfies

E (W ′ |gn)≤ λ̃ σ
2
a +σ2

s

2(1− ρ̃)
,

where λ̃ is the arrival rate, ρ̃ is the traffic intensity, and σ2
a and σ2

s are the variances of the inter-

arrival times and service times, respectively, that are associated with the modified virtual queueing

system.
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From Lemma 4.2, we have

λ̃=
1

E (Ak)
≤ n

bn
.

and

σ2
a = Var (Ak).

bn
n2
.

We now bound

ρ̃=
E (S′k |gn)

E (Ak)
.

From the first part of Lemma 4.9, we have E (S′k |gn) ∼ (ρ + ε)bn/n. Together with the bound

1/E (Ak)≤ n/bn, we obtain that as n→∞, ρ̃ is upper bounded by a number strictly less than 1.

We also have, from the second part of Lemma 4.9,

σ2
s = Var (S′k| gn).

b2
n

n2
.

Using these inequalities in Kingman’s bound, we obtain

E
(
WB | gn

)
≤E (W ′ | gn).

n

bn
· b

2
n

n2
=
bn
n
.

Q.E.D.

4.9. Completing the Proof of Theorem 3.4

Proof. As discussed in Section 4.3.2, the expected waiting time of a job is upper bounded by the

sum of three quantities.

(a) The expected time from the arrival of the job until the arrival time of the batch that the job

belongs to. This is bounded above by the expected time until there are ρbn subsequent arrivals,

which is equal to E (A1). By Lemma 4.2, this is bounded above by c1bn/n, for some constant c1.

(b) The expected time that the batch waits in the virtual queue. This is also upper bounded by

c2bn/n, by Proposition 4.10, for some constant c2.

(c) The service time of the batch, which (by Lemma 4.9) again admits an upper bound of the

form c3bn/n, for some constant c3.

Furthermore, in the results that give these upper bounds, c1, c2, and c3, are absolute constants,

that do not depend on λn or gn.

By our assumptions on the choice of bn in Section 4.6, we have bn = 320
(1−ρ)2 ·

n lnn
βn

, and βn is

proportional to dn. We conclude that there exists a constant c such that for large enough n, we

have E (W |gn,λn)≤ c lnn/dn, for any given λn ∈Λn(un), which is an upper bound of the desired

form. This establishes Part 1 of the theorem. Finally, Part 2 follows from the way that the policy

was constructed. Q.E.D.
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Figure 5 Simulations of the virtual-queue based policy given in Section 4.3, with dn = n2/3, bn = n ln(n)/dn, and

λi = 0.5 for all i= 1, . . . , n. The boxplot contains the average delay from 50 runs of simulations where

the job size distribution is assumed to be exponential with mean 1. Each run is performed on a random

dn-regular graph over 104 service slots and a 1000-slot burn-in period. The center line of a box represents

the median and upper and lower edges of the box represent the 25th and 75th percentiles, respectively.

The dashed line depicts the median average waiting times when the job sizes are distributed according

to a log-normal distribution with mean 1 and variance 10.

4.10. On Practical Policies

Figure 5 provides simulation results for the average delay under the virtual-queue based scheduling

policy used in proving Theorem 3.4. The main role of the policy is to demonstrate the fundamental

potential of the Expander architecture in jointly achieving a small delay and large capacity region

when the system size is large. In smaller systems, however, there could be other policies that

yield better performance. For instance, simulations suggest that a seemingly naive greedy heuristic

can achieve a smaller delay in moderately-sized systems, which is practically zero in the range of

parameters in Figure 5. Under the greedy heuristic, an available server simply fetches a job from

a longest connected queue, and a job is immediately sent to a connected idle server upon arrival

if possible. Intuitively, the greedy policy can provide a better delay because it avoids the overhead

of holding jobs in queues while forming a batch. Unfortunately, it appears challenging to establish

rigorous delay or capacity guarantees for the greedy heuristic and other similar policies.

In some applications, such as call centers, the service times or job sizes may not be exponentially

distributed ([4]). In Figure 5, we also include the scenario where the job sizes are drawn from a

log-normal distribution ([4]) with an increased variance. Interestingly, the average delay appears

to be somewhat insensitive to the change in job size distribution.
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5. Summary and Future Research

The main message of this paper is that the two objectives of a large capacity region and an asymp-

totically vanishing delay can be simultaneously achieved even if the level of processing flexibility

of each server is small compared to the system size. Our main results show that, as far as these

objectives are concerned, the family of Expander architectures is essentially optimal: it admits a

capacity region whose size is within a constant factor of the maximum possible, while ensuring an

asymptotically vanishing queueing delay for all arrival rate vectors in the capacity region.

An alternative design, the Random Modular architecture, guarantees small delays for “many”

arrival rates, by means of a simple greedy scheduling policy. However, for any given Modular

architecture, there are always many arrival rate vectors in Λn(un) that result in an unstable system,

even if the maximum arrival rate across the queues is of constant order. Nevertheless, the simplicity

of the Modular architectures can still be appealing in some practical settings.

Our result for the Expander architecture leaves open three questions:

1. Is it possible to lower the requirement on the average degree from dn� lnn to dn� 1?

2. Without sacrificing the size of the capacity region, is it possible to achieve a queueing delay

which approaches zero exponentially fast as a function of dn? The delay scaling in Theorem

3.4 is O(lnn/dn).

3. Is it possible to obtain delay and stability guarantees under simpler policies, such as the

greedy heuristic mentioned in Section 4.10? The techniques developed in [31] for analyzing

first-come-first-serve scheduling rules in a multi-class queueing network similar to ours could

be a useful starting point.

Finally, the scaling regime considered in this paper assumes that the traffic intensity is fixed

as n increases, which fails to capture system performance in the heavy-traffic regime (ρ ≈ 1). It

would be interesting to consider a scaling regime in which ρ and n scale simultaneously (e.g., as in

the celebrated Halfin-Whitt regime [11]), but it is unclear at this stage what the most appropriate

formulations and analytical techniques are.
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Appendix A: Proofs

A.1. Proof of Lemma 3.2

Proof. Fix λ= (λ1, . . . , λn)∈Λn(un), and let gn be a (γ/βn, βn)-expander, where γ > ρ and βn ≥ un.

By the max-flow-min-cut theorem, and the fact that all servers have unit capacity, it suffices to

show that ∑
i∈S

λi < |N (S) |, ∀S ⊂ I. (30)

We consider two cases, depending on the size of S.

http://dx.doi.org/10.1214/11-SSY033
http://hdl.handle.net/1721.1/91101
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1. Suppose that |S|<γn/βn. By the expansion property of gn, we have that

N (S)≥βn|S| ≥ un|S|>
∑
i∈S

λi, (31)

where the second inequality follows from the fact that βn ≥ un, and the last inequality from

λi<un for all i∈ I.

2. Suppose that |S| ≥ γn/βn. By removing, if necessary, some of the nodes in S, we obtain a set

S′ ⊂ S of size exactly γn/βn, and

N (S)≥N (S′)
(a)

≥ γn> ρn
(b)

≥
∑
i∈S

λi, (32)

where step (a) follows from the expansion property, and step (b) from the assumption that∑
i∈I λi ≤ ρn.

This completes the proof. Q.E.D.

A.2. Proof of Lemma 3.3

Proof. Lemma 3.3 is a consequence of the following standard result (cf. [1]), where we let d= dn,

β = βn, and α= γ/βn =
√
ρ/βn, and observe that log2 βn� βn as n→∞.

Lemma A.1 Fix n≥ 1, β ≥ 1 and αβ < 1. If

d≥ 1 + log2 β+ (β+ 1) log2 e

− log2(αβ)
+β+ 1, (33)

then there exists an (α,β)-expander with maximum degree d.

Q.E.D.

A.3. Proof of Theorem 3.5

Proof. Since the arrival rate vector λn whose existence we want to show can depend on the

architecture, we assume, without loss of generality, that servers and queues are clustered in the

same manner: server i and queue i belong to the same cluster. Since all servers have capacity 1, and

each cluster has exactly dn servers, it suffices to show that there exists λ = (λ1, . . . , λn) ∈Λn(un),

such that the total arrival rate to the first queue cluster exceeds dn, i.e.,

dn∑
i=1

λi >dn. (34)

To this end, consider the vector λ where λi = min{2, (1 + un)/2} for all i ∈ {1, . . . , dn}, and λi = 0

for i≥ dn + 1. Because of the assumption un > 1 in the statement of the theorem, we have that

max
1≤i≤n

λi = min{2, (1 +un)/2} ≤ 1 +un
2

<un, (35)
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and
n∑
i=1

λi = dnmin{2, (1 +un)/2} ≤ 2dn ≤ 2 · ρ
2
n= ρn, (36)

where the last inequality in Eq. (36) follows from the assumption that dn ≤ ρ
2
n. Eqs. (35) and (36)

together ensure that λ ∈Λn(un) (cf. Condition 1). Since we have assumed that un > 1, we have

λi > 1, for i= 1, . . . , dn, and therefore Eq. (34) holds for this λ. We thus have that λ /∈R(gn), which

proves our claim. Q.E.D.

A.4. Proof of Theorem 3.6

Proof. Part (a); Eq. (5). We will use the following classical result due to Hoeffding, adapted from

Theorem 3 in [13].

Lemma A.2 Fix integers m and n, where 0 < m < n. Let X1,X2, . . . ,Xm be random variables

drawn uniformly from a finite set C = {c1, . . . , cn}, without replacement. Suppose that 0≤ ci ≤ b for

all i, and let σ2 = Var (X1). Let X = 1
m

∑m

i=1Xi. Then,

P
(
X ≥E

(
X
)

+ t
)
≤ exp

(
−mt
b

[(
1 +

σ2

bt

)
ln

(
1 +

bt

σ2

)
− 1

])
, (37)

for all t∈ (0, b).

We fix some λn ∈Λn(un). If un < 1, then λn ∈Λn(1). It therefore suffices to prove the result for

the case where un ≥ 1 and we will henceforth assume that this is the case. Recall that Ak ⊂ I is

the set of dn queues in the kth queue cluster generated by the partition σn = (A1, . . . ,An/dn). We

consider some ε∈ (0,1/ρ), and define the event Ek as

Ek =

{∑
i∈Ak

λi > (1 + ε)ρdn

}
. (38)

Since σn is drawn uniformly at random from all possible partitions, it is not difficult to see that∑
i∈Ak

λi has the same distribution as
∑dn

i=1Xi, where X1,X2, . . . ,Xdn are dn random variables

drawn uniformly at random, without replacement, from the set {λ1, λ2, . . . , λn}. Note that ερ < 1≤

un, so that ερ ∈ (0, un). We can therefore apply Lemma A.2, with m= dn, b= un, and t= ερ, to

obtain

P (E1) =P

(
dn∑
i=1

Xi > (1 + ε)ρdn

)
(a)

≤P

(
1

dn

dn∑
i=1

Xi >E

(
1

dn

dn∑
i=1

Xi

)
+ ερ

)

≤ exp

(
−ερdn

un

[(
1 +

Var (X1)

ερun

)
ln

(
1 +

ερun
Var (X1)

)
− 1

])
, (39)



Tsitsiklis and Xu: Flexible Queueing Architectures 35

where the probability is taken with respect to the randomness in G, and where in step (a) we used

the fact that

E

(
dn∑
i=1

Xi

)
=

dn∑
i=1

E (Xi) = dnE (X1) = dn

(
1

n

n∑
i=1

λi

)
≤ ρdn. (40)

We now develop an upper bound on Var (X1). Since X1 takes values in [0, un], we have X2
1 ≤ unX1

and, therefore,

Var (X1)≤E(X2
1 )≤ unE(X1)≤ ρun. (41)

Observe that for all a,x > 0,

d

dx
(1 +x/a) ln(1 + a/x) =−1

x
+

1

a
ln(1 + a/x)<−1

x
+

1

a
· a
x

= 0. (42)

Therefore, with the substitutions a= ερun and x= Var (X1), we have that the right-hand-side of

(39) is increasing in Var (X1). Combining Eqs. (39) and (41), we obtain

P (E1)≤ exp

(
−ερdn

un

[(
1 +

1

ε

)
ln (1 + ε)− 1

])
.

Note that
d

dx

(
1 +

1

x

)
ln(1 +x) =

1

x2
(x− ln(1 +x))

(a)→ 1

2
, as x ↓ 0, (43)

where step (a) follows from applying l’Hôpital’s rule. We thus have that
[(

1 + 1
ε

)
ln(1 + ε)− 1

]
∼

1
2
ε≥ 1

3
ε, as ε ↓ 0, it follows that there exists θ > 0 such that for all ε∈ (0, θ),

P (E1)≤ exp

(
−ρ

3
· ε

2dn
un

)
. (44)

Let ε = 1
2

min{ 1
ρ
− 1, θ}; in particular, our earlier assumption that ερ < 1 is satisfied. Suppose

that un ≤ ρε2

6
dn ln−1 n. Combining Eq. (44) with the union bound, we have that

PGn (λn /∈R(Gn))≤P

(
n/dn⋃
k=1

Ek

)

≤
n/dn∑
k=1

P (Ek)

≤ n

dn
exp

(
−ρ

3
· ε

2dn
un

)
(a)

≤ n

dn
· 1

n2

≤n−1, (45)

where step (a) follows from the assumption that un ≤ ρε2

6
dn ln−1 n. It follows that

lim
n→∞

inf
λn∈Λn(un)

PGn (λn ∈R(Gn))≥ lim
n→∞

(
1− 1

n

)
= 1. (46)
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We have therefore proved part (a) of the theorem, with c2 = ρε2/6.

Part (b); Eq. (6).

Let us fix a large enough constant c3, whose value will be specified later, and let

vn = c3

dn
lnn

. (47)

For this part of the proof, we will assume that un > vn. Because we are interested in showing a

result for the worst case over all λn ∈Λn(un), we can assume that un� n.

At this point, we could analyze the model for a worst-case choice of λn. However, the analysis

turns out to be simpler if we employ the probabilistic method. Denote by µn a probability measure

over Λn(un). Let λn be a random vector drawn from the distribution µn, independent of the

randomness in the Random Modular architecture, G. (For convenience, we suppress the subscript n

and write G instead of Gn.) The following elementary fact captures the essence of the probabilistic

method.

Lemma A.3 Fix n, a measure µn on Λn(un), and a constant an. Suppose that

Pλn,G (λn /∈R(G))≥ an, (48)

where Pλn,G stands for the product of the measures µn (for λn) and PG (for G). Then,

sup
λ̃n∈Λn(un)

PG(λ̃n /∈R(G))≥ an. (49)

Proof. We have that

sup
λ̃n∈Λn(un)

PG(λ̃n /∈R(G))≥
∫
λ̃n∈Λn(un)

PG(λ̃n /∈R(G))dµn(λ̃n)

=Pλn,G (λn /∈R(G))

≥an. (50)

Q.E.D.

We will now construct sequences, {µn : n ∈ N}, and {an : n ∈ N}, with limn→∞ an = 1, so that

Eq. (48) holds for all n. To simplify notation, in the rest of this proof we will write P instead of PG
or Pλn,G, etc. Which particular measure we are dealing with will always be clear from the context.

Fix n ∈ N. We first construct the distribution µn. Let λ′ = (λ′1, λ
′
2, . . . , λ

′
n) be a random vector

with independent components and with

λ′i =

{
vn, w.p. ρ

(1+ε)vn
,

0, otherwise,
(51)
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for all i. Let H be the event defined by

H =

{
n∑
i=1

λ′i ≤ ρn

}
. (52)

Let λn be the random vector given by

λn = I(H)λ′, (53)

where 0 is the zero vector of dimension n, and where I(·) is the indicator function. That is, λn

takes on the value of λ′ if H occurs, and is set to zero, otherwise. It is not difficult to verify that,

by construction, we always have λn ∈Λn(un). We let µn be the distribution of this random vector

λn.

We next show that

lim
n→∞

P (λn /∈R(G)) = 1, (54)

which, together with Lemma A.3 above, will complete the proof of the theorem. Fix some ε > 1
ρ
−1,

so that (1 + ε)ρ> 1, and define the event

Ek =

{∑
i∈Ak

λ′i > (1 + ε)ρdn

}
, k ∈ {1, . . . , n/dn}. (55)

Note that, if some Ek occurs, then λ′ will not be in R(G). Therefore,

P(λ′ /∈R(G))≥ P

(
n/dn⋃
k=1

Ek

)
. (56)

Let X1,X2, . . . be i.i.d. Bernoulli random variables with

E(X1) = P(X1 = 1) =
ρ

(1 + ε)vn
. (57)

By the definition of λ′ (cf. Eq. (51)), we have that

P(E1) =P

(∑
i∈A1

λ′i > (1 + ε)ρdn

)

=P

(
dn∑
i=1

Xi > (1 + ε)ρ
dn
vn

)

=P

(
1

dn

dn∑
i=1

Xi > (1 + ε)2E (X1)

)
. (58)

By Sanov’s theorem (cf. Chapter 12 of [8]), we have that

P(E1) =P

(
1

dn

dn∑
i=1

Xi > (1 + ε)2E (X1)

)

&
1

d2
n

exp

(
−DB

(
(1 + ε)ρ

vn

∥∥∥∥ ρ

(1 + ε)vn

)
dn

)
, (59)
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where DB(p‖q) is the Kullback-Leibler divergence between two Bernoulli distributions with param-

eters p and q, respectively:

DB(p‖q) = p ln
p

q
+ (1− p) ln

1− p
1− q

. (60)

Let us fix some r ∈ (0,1). Using the fact that ln(1 + y)∼ y as y→ 0, we have that

DB (x‖ rx)∼ x
[
ln

1

r
+ (1− r)

]
, as x→ 0. (61)

Recall that dn ≥ c1 lnn and vn ≥ / lnn. By Eq. (61), with x= (1 + ε)ρ/vn, r = 1/(1 + ε)2, and for

the given c1, we can set c3 to be sufficiently large so that

DB

(
(1 + ε)ρ

vn

∥∥∥∥ ρ

(1 + ε)vn

)
≤2

(1 + ε)ρ

vn
·
[
ln(1 + ε)2 +

(
1− 1

(1 + ε)2

)]
=

2h

vn
, (62)

for all sufficiently large n, where h= (1 + ε)ρ
[
ln(1 + ε)2 +

(
1− 1

(1+ε)2

)]
> 0. Combining Eqs. (59)

and (62), we have that

P(E1)&
1

d2
n

exp

(
−2h

dn
vn

)
(a)

&
1

d2
n

n−2h/c3 , (63)

where step (a) follows from the assumption that vn ≥ c3dn/ lnn. Equation (63) can be rewritten in

the form

P(E1)≥ c

d2
n

n−2h/c3 , (64)

where c is a positive constant, and where the inequality is valid for large enough n.

Fix c3 = 40h, and recall that ε > 1
ρ
− 1. We have that

P(λ′ /∈R(G))≥P

(
n/dn⋃
k=1

Ek

)
(a)
=1−

n/dn∏
k=1

(1−P(Ek))

=1− (1−P(E1))
n/dn

(b)

≥1−
(
1− cd−3

n n1−2h/c3dn/n
)n/dn

(c)

≥1−
(
1− cn0.05dn/n

)n/dn
→1, as n→∞, (65)

where step (a) is based on the independence among the events Ek, which is in turn based on

the independence among the λ′is; step (b) follows from Eq. (64) and some rearrangement; step (c)
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follows from the assumption in the statement of the theorem that dn ≤ n0.3, and our choice of

c3 = 40h.

We next show that the event H occurs with high probability when n is large. Let, as before, the

Xis be i.i.d. Bernoulli random variables with E(X1) = ρ
vn(1+ε)

. Then,

P(H) =P

(
n∑
i=1

λ′i ≤ ρn

)

=P

(
n∑
i=1

Xi ≤ ρn/vn

)

=P

(
1

n

n∑
i=1

Xi ≤ (1 + ε)E (X1)

)
→ 1, as n→∞, (66)

by the weak law of large numbers.

We are now ready to prove Eq. (54). We have that

Pλn,G

(
λn /∈R(G)

)
=Pλ′,G

(
I(H)λ′ /∈R(G)

)
=Pλ′,G

(
H ∩{λ′ /∈R(G)}

)
≥P(H) +P

(
λ′ /∈R(G)

)
− 1

→1, as n→∞, (67)

where the last step follows from Eqs. (65) and (66). By Lemma A.3, Eq. (67)

implies that limn→∞ supλn∈Λn(un) PGn (λn /∈R(G)) = 1, which is in turn equivalent to

limn→∞ infλn∈Λn(un) PGn (λn ∈R(G)) = 0. This proves Eq. (6). Q.E.D.

A.5. Proof of Theorem 3.7

Proof. Denote by Qi(t) the number of jobs in queue i at time t, and by Qk(t) the total number of

jobs in queue cluster k, i.e.,

Qk(t) =
∑
i∈Ak

Qi(t). (68)

We note that Qk(·) is the number of jobs in an M/M/c queue, with c = dn and arrival rate

ηk =
∑

i∈Ak
λi. Also note that since λn ∈ γR(gn), we have that ηk ≤ γdn. Using the formula for the

expected waiting time in queue for an M/M/c queue (cf. Section 2.3 of [9]), one can show that the

average waiting time across jobs arriving to cluster k, Wk, satisfies

E (Wk|λ) =
1∑

i∈Ak
λi

∑
i∈Ak

λiE (Wi) =
C(dn, ηk)

dn− ηk
≤ C(dn, γdn)

(1− γ)dn
. exp(−b · dn), (69)

where C(c, r) is given by

C(c, r) =
rc

c!
· 1

c(1− r/c)2

(
rc

c!
· 1

1− r/c
+

c−1∑
i=0

ri

i!

)−1

.
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The last inequality in Eq. (69) follows from the fact that for any given γ ∈ (0,1), there exists

b > 0, so that C(x,γx) . exp(−b · x) as x→∞, as can be checked through elementary algebraic

manipulations. Q.E.D.

A.6. Lower Bound on the Total Arrival Rate

We show in this section that the assumption that ρ∈ (1/2 ,1) and
∑n

i=1 λi ≥ (1− ρ)n (cf. Eq. (10)

in Assumption 4.1) can be made without loss of generality. Fix the traffic intensity ρ∈ (0,1), and

suppose that λ∈Λn(un). Define

ρ′ = ρ+
1

2
(1− ρ) =

1 + ρ

2
. (70)

Note that 1/2<ρ′ < 1, and 1−ρ′ = (1−ρ)/2. Consider a modified vector λ′, where λ′i = (1−ρ′)+λi,

for all i∈ {1, . . . , n}. By construction, we have that

n∑
i=1

λ′i ≥(1− ρ′)n, (71)

n∑
i=1

λ′i ≤(1− ρ′)n+
n∑
i=1

λi ≤ (1− ρ′)n+ ρn= ρ′n, (72)

max
1≤i≤n

λ′i ≤ max
1≤i≤n

λi + (1− ρ′)<un + (1− ρ′). (73)

The above definition of λ′ amounts to the following: we feed each queue with an additional indepen-

dent Poisson stream of artificial (dummy) jobs of rate 1− ρ′. By Eqs. (72) and (73), the resulting

arrival rate vector, λ′, will belong to the set Λn(un + 1− ρ′). Also, by Eq. (71), it will satisfy the

lower bound (10) on the total arrival rate, albeit with a modified traffic intensity of ρ′ ∈ (1/2 , 1).

Therefore, our assumption can always be satisfied by the insertion of dummy jobs. Note that the

increment of 1− ρ′ to the value of un is insignificant in our regime of interest, where un� 1, and

the insertion of dummy jobs only requires knowledge of the original traffic intensity, ρ.

A.7. Proof of Lemma 4.5

Proof. Note that because there are ρbn jobs in a batch, the size of Γ is at most ρbn, which is in

turn less than mn. This guarantees that the cardinality of Γ̂ can be taken to be mn. It therefore

suffices to show that

P
(

max
1≤i≤n

Ai ≥ ûn
)
≤ 1/n3. (74)

There is a total of ρbn arriving jobs in a single batch, and for each arriving job

P (the job arrives to queue i) =
λi∑n

i=1 λi

(a)

≤ λi
(1− ρ)n

≤ un
(1− ρ)n

(b)

≤ 1

2n
βn ≤

1

2nρ̂
βn, (75)
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for all i, where steps (a) and (b) follow from the assumptions that
∑n

i=1 λi ≥ (1− ρ)n (Eq. (10)

in Assumption 4.1) and that un ≤ 1−ρ
2
βn (in the statement of Theorem 3.4), respectively. From

Eq. (75), Ai is stochastically dominated by a binomial random variable Ã
d
= Bino(ρbn ,

1
2nρ̂
βn), with

E
(
Ã
)

= ρbn
1

2nρ̂
βn =

1

2

(
βn
ρbn/ρ̂

n

)
=

1

2

(
βn
mn

n

)
=

1

2
ûn. (76)

Based on this expression of E
(
Ã
)

, we will now use an exponential tail bound to bound the

probability of the event {max1≤i≤nAi ≥ ûn}. Recall that bn = 320
(1−ρ)2 ·

n lnn
βn

. Using the union bound,

we have that

P
(

max
1≤i≤n

Ai ≥ ûn
)

= P(Ai ≥ ûn, for some i)

≤ nP(A1 ≥ ûn) (77)

≤ nP
(
Ã≥ ûn

)
(a)
= nP

(
Ã≥ 2E(Ã)

)
(b)

≤ n exp

(
−1

3
E(Ã)

)
= n exp

(
− ρ

6ρ̂
· bnβn
n

)
≤ n exp

(
−ρ

6
· bnβn
n

)
= n exp

(
−ρ

6
· 320

(1− ρ)2
· n lnn

βn
· βn
n

)
(c)

≤ n exp

(
−160

6
lnn

)
≤ n−3. (78)

Step (a) follows from Eq. (76). Step (b) follows from the following multiplicative form of the

Chernoff bound (cf. Chapter 4 of [23]), with δ = 1: P(Ã ≥ (1 + δ)µ) ≤ exp(− δ2

2+δ
µ), where Ã is a

binomial random variable with E(Ã) = µ. Step (c) follows from the assumption ρ ∈ (1/2,1) (cf.

Assumption 4.1), and hence
ρ

(1− ρ)2
≥ ρ≥ 1/2. (79)

This completes the proof of Lemma 4.5. Q.E.D.

A.8. Proof of Lemma 4.7

Proof. For a set S ⊂ Γ̂, denote by N ∗(S) the set of neighbors of S in Ĝ, i.e., N ∗(S) =N (S)∩∆.

To prove Lemma 4.7, we will leverage the fact that the underlying connectivity graph, gn, is an

expander graph with appropriate expansion. As a result, most subsets S ⊂ Γ̂ have a large set

of neighbors, N (S), in gn. Because each server in N (S) belongs to N ∗(S) independently, as a
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consequence of our scheduling policy, we will then use a concentration inequality to show that,

with high probability, the sizes of the sets N ∗(S) remain sufficiently large. Using the union bound

over the relevant sets S, we will finally conclude that Ĝ has the desired expansion property, with

high probability.

By the definition of a (γ/ûn , ûn)-expander, we are only interested in the expansion of subsets

of Γ̂ with size less than or equal to |Γ̂|γ/ûn. We first verify below that the size of such subsets S

is sufficiently small to be able to exploit the expansion property of gn and to infer that N ∗(S) is

large. We have

nγ/βn

|Γ̂|γ/ûn
=

n

|Γ̂|
· ûn
βn

=
n

mn

·
βn

mn
n

βn
= 1, (80)

which is equivalent to saying

s≤ γn/βn, ∀s≤ |Γ̂|γ/ûn, (81)

as desired.

For a set S ⊂ Γ̂, we now characterize the size of its neighborhood in Ĝ, |N ∗(S)|, which depends

on the distribution of the random subset, ∆. Fix some s∈N with s≤ |Γ̂|γ/ûn. From Eq. (81), we

know that s≤ γn/βn. Consider some S ⊂ Γ̂ with |S|= s. Using the expansion property of gn, we

have that |N (S)| ≥ βns. Therefore,

P(|N ∗(S)| ≤ ûns) =P

 ∑
j∈N (S)

I(j ∈∆)≤ ûns


(a)

≤P
(

Bino

(
|N (S) | , bn

n
(ρ+ 3ε/4)

)
≤ ûns

)
(b)

≤P
(

Bino

(
βns ,

bn
n

(ρ+ 3ε/4)

)
≤ ûns

)
, (82)

for all sufficiently large n. Step (a) follows from the assumption that P (j ∈∆)≥(ρ+ 3ε/4) bn
n

, and

step (b) from the inequality |N (S)| ≥ βns. We observe that

µ
4
=E
(

Bino

(
βns ,

bn
n

(ρ+ 3ε/4)

))
=(ρ+ 3ε/4)

βnbn
n

s

(a)
=(ρ+ 3ε/4)

1

n
· 80

ε2
· n lnn

βn
βns

=(ρ+ 3ε/4)
80 lnn

ε2
s, (83)

where in step (a) we used the substitution bn = 80
ε2
· n lnn

βn
. We also have that

ûn =βn
mn

n
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=βn
ρbn
ρ̂n

=βn
ρ

ρ̂n
· 80

ε2
· n lnn

βn

=
ρ

ρ̂
· 80 lnn

ε2
. (84)

By combining Eqs. (83) and (84), we can derive a useful lower bound on the quantity 1− sûn
µ

,

which is recorded in the lemma that follows.

Lemma A.4 We have that

1− sûn
µ
≥ ε

2
. (85)

Proof. Using Eqs. (83) and (84) in the first step below, we have that

1− sûn
µ

= 1− ρ

ρ̂(ρ+ 3ε/4)
.

Recall that ε= (1−ρ)/2, so that ρ= 1−2ε and that ρ̂= 1/(1 + ε/4). Using these substitutions, we

obtain

1− sûn
µ

=1− (1− 2ε)(1 + ε/4)

1− 2ε+ 3ε/4

=
3ε/4− ε/4 + 2ε2/4

1− 5ε/4

=
ε(1 + ε)/2

1− 5ε/4

≥ ε
2
.

Q.E.D.

To obtain an upper bound for the probability in Eq. (82), we substitute Eqs. (83) and (85) into

Eq. (82). Given the assumption that s≤γn/βn, we have that

P(|N ∗(S)| ≤ ûns)≤P
(

Bino

(
βns ,

bn
n

(ρ+ 3ε/4)

)
≤ ûns

)
(a)

≤ exp

(
−1

2

( ε
2

)2

µ

)
(b)
= exp

(
−ε

2

8
· 80 lnn

ε2
(ρ+ 3ε/4)s

)
=exp(−(10 lnn)(ρ+ 3ε/4)s)
(c)

≤ exp(−(5 lnn)s)

=
1

n5s
. (86)
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for all sufficiently large n. Step (a) is based on a multiplicative form of the Chernoff bound

(cf. Chapter 4 of [23]), P (X ≤ (1− δ)µ) ≤ exp
(
− 1

2
δ2µ
)
, where X is a binomial random variable

with E (X) = µ, and

δ= 1− sûn
µ
≥ ε/2, (87)

where the last inequality follows from Lemma A.4. Step (b) follows from Eq. (83), and (c) from the

assumption that ρ≥ 1/2.

We now apply Eq. (86) to subsets of Γ̂, and use the union bound. We have, for all sufficiently

large n, that

P
(
Ĝ is not a (γ/ûn , ûn)-expander

)
≤P(∃S ⊂ Γ̂ such that: |S| ≤ |Γ̂|γ/ûn and |N ∗(S)| ≤ ûn|S|)

(a)

≤
|Γ̂|γ/ûn∑
s=1

 ∑
S⊂Γ̂,|S|=s

P (|N ∗(S)| ≤ ûns)


≤
|Γ̂|γ/ûn∑
s=1

(
|Γ̂|
s

)
P (|N ∗(S)| ≤ ûns)

(b)

<

|Γ̂|γ/ûn∑
s=1

bsnP (|N ∗(S)| ≤ ûns)

(c)

≤
|Γ̂|γ/ûn∑
s=1

bsn
1

n5s

≤
∞∑
s=1

(bn/n
5)s

=
bn/n

5

1− bn/n5
. (88)

Step (a) is the union bound. In step (b), we used the bound
(
n
k

)
≤ nk, and the fact that |Γ̂|=mn =

ρ
ρ̂
bn < bn. Step (c) follows from Eq. (86). Because βn� lnn, we have that bn . n lnn

βn
� n, and hence

bn
n5
≤ 1

n3
, (89)

for all sufficiently large n. Combining Eqs. (88) and (89), we conclude that

P
(
Ĝ is not a

(
γ
ûn
, ûn

)
-expander

)
≤ 1

n3
, (90)

for all sufficiently large n. This proves our claim. Q.E.D.

Appendix B: Expanded Modular Architectures

In this appendix, we start by describing the graph product, and subsequently we discuss the

implications of using an expander graph.
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Construction of the Architecture. We first express the average degree as a product, dn =

dmn · den, where the relative magnitudes of dmn and den are a design choice. The architecture is

constructed as follows.

1. Similar to the case of the Modular architecture, partition I and J into equal-sized clusters of

size dmn . We will refer to the index set of the queue and server clusters as Q and S, respectively.

For any i ∈ I and j ∈ J , denote by q(i) ∈Q and s(j) ∈ S, the indices of the queue and server

clusters to which i and j belong, respectively.

2. Let gen be a bipartite graph of maximum degree den whose left and right nodes are the queue

and server clusters, Q and S, respectively. Let Ee be the set of edges of gen.

3. To construct the interconnection topology gn = (I ∪ J,E), let (i, j) ∈ E if and only if their

corresponding queue and server clusters are connected in gen, i.e., if (q(i), s(j))∈Ee.

Note that by the above construction, each queue is connected to at most den server clusters

through gen, and within each connected cluster, to dmn servers. Therefore, the maximum degree of

gn is dmn · den = dn.

Scheduling Policy. The scheduling policy requires the knowledge of the arrival rate vector,

λn, and involves two stages. For a given λn, the computation in the first stage is performed only

once, while the steps in the second stage are repeated throughout the operation of the system.

1. Compute a feasible flow, {fq,s}(q,s)∈Ee , over the graph gen, where the incoming flow at each

queue cluster q ∈Q is equal to
∑

i∈q λi, and the outgoing flow at each server cluster s ∈ S is

constrained to be less than or equal to 1+ρ
2
dmn . (It turns out that, under our assumptions, such

a feasible flow exists [33].) Denote by fq,s the total rate of flow from the queue cluster q to

the server cluster s.

2. Arriving jobs first wait in queue until they are fetched by a server. When a server becomes

available, it chooses a neighboring queue cluster (w.r.t. the topology of gen) with probability

roughly proportional to the flow between the clusters. In particular, a server in cluster s

chooses the queue cluster q with probability

ps,q =
fq,s∑

q′∈N (s) fq′,s
· 1 + ρ

2
+

1

deg(s)
· 1− ρ

2
, (91)

where deg(s) is the degree of s in gen. Within the chosen cluster, the server starts serving a

job from an arbitrary non-empty queue, or, if all queues in the cluster are empty, the server

initiates an idling period whose length is exponentially distributed with mean 1.

When the graph gen is an expander graph, we refer to the topology created via the above procedure

as an Expanded Modular architecture generated by gen.

Note that an Expanded Modular architecture is constructed as a “product” between an expander

graph across the queue and server clusters, and a fully connected graph for each pair of connected
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clusters. As a result, its performance is also of a hybrid nature: the expansion properties of gen

guarantee a large capacity region, while a diminishing delay is obtained as a result of the growing

size of the server and queue clusters. We summarize this in the next theorem. Here we assume that

den is sufficiently large so that the expander graph described in Lemma 3.3 exists. The reader is

referred to Section 3.4.5 of [33] for the proof of the theorem (although with different choices for

some of the constants).

Theorem B.1 (Capacity and Delay of Expanded Modular Architectures) Suppose that

dn = dmn · den. Let γ =
√
ρ and βn = 1

2
· ln(1/ρ)

1+ln(1/ρ)
den. Let gen be a (γ/βn, βn)-expander with maximum

degree den, and let gn be an Expanded Modular architecture generated by gen. If

un ≤
1 + ρ

2
βn =

1 + ρ

4
· ln(1/ρ)

1 + ln(1/ρ)
den, (92)

then, under the scheduling policy described above, we have that

sup
λn∈Λn(un)

E (W |λn).
c

dmn
, (93)

where c is a constant that does not depend on n.

A Tradeoff between the Size of the Capacity Region and the Delay. For the Expanded Modular

architecture, the relative values of dmn and den reflect a design choice: a larger value of den ensures

a larger capacity region, while a larger value of dmn yields smaller delays. Therefore, while the

Expanded Modular architecture is able to provide a strong delay guarantee that applies to all

arrival rate vectors in Λn(un), it comes at the expense of either a slower rate of diminishing delay

(small dmn ) or a smaller capacity region (small den).
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