
Stochastic Systems
2016, Vol. 6, No. 1, 1–25
DOI: 10.1214/14-SSY151

ON QUEUE-SIZE SCALING FOR INPUT-QUEUED
SWITCHES

By D. Shah, J. N. Tsitsiklis and Y. Zhong
∗

Massachusetts Institute of Technology

We study the optimal scaling of the expected total queue size in
an n×n input-queued switch, as a function of the number of ports n
and the load factor ρ, which has been conjectured to be Θ(n/(1−ρ))
(cf. [15]). In a recent work [16], the validity of this conjecture has been
established for the regime where 1 − ρ = O(1/n2). In this paper, we
make further progress in the direction of this conjecture. We provide a
new class of scheduling policies under which the expected total queue
size scales as O

(
n1.5(1− ρ)−1 log

(
1/(1− ρ)

))
when 1− ρ = O(1/n).

This is an improvement over the state of the art; for example, for ρ =
1−1/n the best known bound was O(n3), while ours is O(n2.5 logn).

1. Introduction. An input-queued switch is a popular and commer-
cially available architecture for scheduling data packets in an internet router.
In general, an input-queued switch maintains a number of virtual queues to
which packets arrive. Packets to be served at each time slot are selected
according to a scheduling policy, subject to system constraints that specify
which queues can be served simultaneously.

The input-queued switch model is an important example of so-called
“stochastic processing networks,” formalized by Harrison [5, 6], which have
become a canonical model of a variety of dynamic resource allocation sce-
narios. While the most basic questions concerning throughput and stability1

are relatively well-understood for general stochastic processing networks (see
e.g., [10], [8], [7], [3], [18], [12], [19]), much less is known on the subject of
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more refined performance measures (e.g., results on the distribution and
the moments of queue sizes), even for the special context of input-queued
switches.

This paper contributes to the performance analysis of stochastic process-
ing networks. It is motivated by the conjectures put forth in [15] on the
optimal scaling of the expected total queue size in an n × n input-queued
switch, as a function of the number of ports n and the load factor ρ. For
certain limiting regimes, it was conjectured in [15] that the optimal scaling
(that is, the scaling under an “optimal” policy) takes the form Θ (n/(1− ρ)).
This is to be compared to available results that include an O(n2/(1 − ρ))
upper bound, which is a factor of O(n) away from the conjectured scaling,
and which is established for the so-called Maximum-Weight policy [14], [9],
and an O(n logn/(1−ρ)2) upper bound, which is a factor of O(log n/(1−ρ))
away, and is achieved by a batching policy proposed in [13]. We also note
an upper bound of O(n2/(1− ρ)), achieved by a randomized policy [14], in
the special case of uniform traffic. More recently, Shah et al. [16] proposed a
policy that gives an upper bound of n

1−ρ + n3, thus establishing the validity

of the conjecture when 1− ρ = O(1/n2).
In this paper, we focus on a different regime, where 1/n2 � 1− ρ ≤ 1/n.

In some sense, this is a more difficult regime to analyze, when compared to
the regime where 1−ρ = O(1/n2). This is because we consider a larger “gap”
1 − ρ, and so the heavy-traffic aspects of the system are less pronounced.
This in turn means that various laws of large numbers (e.g., fluid or batching
arguments) are less effective.

Concretely, we shall focus on the case ρ = 1− 1/fn, where fn ≥ n for all
n, and for n tending to infinity. When fn = n, previous works give an upper
bound O(n3) on the expected total queue size. In contrast, when ρ = 1−1/n,
the conjectured optimal scaling O (n/(1− ρ)) is of the form O(n2). It is then
natural to ask whether this gap can be reduced, i.e., whether there exists
a policy under which the expected total queue size is upper bounded by
O(nα), with α < 3 (and ideally with α = 2), when ρ = 1− 1/n.

Our main contribution is a new policy that leads to an upper bound of
O
(
n1.5fn log fn

)
, when fn ≥ n and the arrival rates at the different queues

are all equal. As a corollary, if fn = n, the expected total queue size is
upper bounded by O(n2.5 logn). This is the best known scaling with respect
to n, when ρ = 1 − 1/n. (We also note that these scaling results can be
extended to a class of arrival rates that is more general than the special case
of equal rates.) While this is a significant improvement over existing bounds,
we still believe that the right scaling (ignoring any poly-logarithmic factors)
is O(n2). The best currently known scalings on the expected total queue size
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Table 1

Best known scalings of the expected total queue size in various regimes. Here, ρ is the
load factor and n is the number of input ports

Regime Scaling References

1
1−ρ

< n O
(

n logn
(1−ρ)2

)
[13]

1
1−ρ

= n O
(
n2.5 logn

)
this work

n ≤ 1
1−ρ

< n2 O
(

n1.5 logn
1−ρ

)
this work

1
1−ρ

≥ n2 Θ
(

n
1−ρ

)
[16]

under various regimes, in an n× n input-queued switch, are summarized in
Table 1.2

The policy that we propose is a variation of the standard batching pol-
icy. In the standard batching policy, time is divided into disjoint intervals or
batches. Packets that arrive in a given batch are served only after the arrival
of the entire batch. By choosing the batch length large enough (determin-
istically or randomly), the total number of arriving packets at each queue
is close to its expected value and these packets can be served efficiently.
In general, a longer batching interval improves efficiency, because the effect
of random fluctuations is less pronounced, but on the other hand leads to
larger delays and queue sizes. For this reason, a good batching policy, as for
example in [13], selects the smallest possible batch length that will guaran-

tee stability; in [13], this led to a bound of O
(

n logn
(1−ρ)2

)
on the expected total

queue size.
Given the stability requirement, we cannot hope to improve delay by

reducing the batch length. On the other hand, the policy that we consider
starts serving packets from a given batch a lot earlier, before the arrival of
the entire batch. By starting to serve early, the expected delay (and hence
queue size) is reduced. When the arrival rates at each queue are all equal, we

2After the submission of this paper, [11] established the heavy traffic optimality of
the maximum weight policy, when arrival rates at the different queues are all equal. More
specifically, using Lyapunov function drift techniques, [11] established non-asymptotic
upper bounds on the steady-state total queue size, under uniform arrival rates and the
maximum weight policy. As a corollary, for any fixed n, the steady-state total queue size
has an upper bound of O(n/(1−ρ)), as ρ → 1. However, in the regime where 1−ρ = O(1/n)
and n → ∞, which is considered in our paper, the non-asymptotic upper bound in [11]
appears to be of a much higher order than O(n2.5 log n).
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show that the arrival process has sufficient regularity at a time scale shorter
than the batch length. Consequently, the policy can indeed start serving the
arriving packets early, while making sure that the stochastic fluctuations
lead to only a small number of unserved packets, which can be “cleared”
efficiently at the end of the batch. The combination of these ideas results in
substantial improvement over the standard batching policy.

A few remarks are in order regarding the proposed policy and its perfor-
mance scaling. First, our policy relies on the assumption of uniform arrival
rates. For a class of arrival rates that are more general than the special
case of uniform rates (cf. Assumption 1 of Section 7), a similar performance
bound of O(n1.5fn log fn) can be achieved under a slight modification of the
proposed policy, in the regime ρ = 1 − 1/fn and fn ≥ n. This modified
policy and its performance scaling (Theorem 7.1) is presented in Section
7. Second, our policy (and its modification) makes use of the knowledge of
the arrival rates. In contrast, some existing policies, such as the maximum
weight policy or the one in [16], are based only on the observed system state
(the queue sizes) and do not require knowledge of the arrival rates.

1.1. Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we describe the input-queued switch model. In Section 3, we state
our main theorem. In Section 4, we introduce some preliminary facts and
results, which will be used in later sections. In Section 5, we describe our
policy. In Section 6, we provide the proof of the main theorem. The modified
policy, for more general arrival rates is presented in Section 7. We conclude
with some discussion in Section 8.

2. Input-queued switch model. An n × n input-queued switch has
n input ports and n output ports. The switch operates in discrete time,
indexed by τ ∈ N = {1, 2, . . . }. In each time slot, and for each port pair
(i, j), a unit-sized packet may arrive at input port i destined for output
port j, according to an exogenous arrival process. Let Ai,j(τ) denote the
cumulative number of such arriving packets during time slots 1, . . . , τ . We
assume that the processes Ai,j(·) are independent for different pairs (i, j).
Furthermore, for every input-output pair (i, j), {Ai,j(τ)−Ai,j(τ−1)}τ∈N is a
Bernoulli process with parameter ρ/n, with the convention that Ai,j(0) = 0.
In particular,

E[Ai,j(τ)] =
ρ

n
τ, for all i, j, and all τ ≥ 1.

We are only interested in systems that can be made stable under a suitable
policy, and for this reason, we assume that ρ < 1, i.e., that the system is



ON QUEUE-SIZE SCALING FOR INPUT-QUEUED SWITCHES 5

underloaded. Furthermore, we consider a system load ρ of the form ρ =
1− 1/fn, where the sequence {fn} satisfies fn ≥ n for all n.

For every input-output pair (i, j), the associated arriving packets are
stored in separate queues, so that we have a total of n2 queues. Let Qi,j(τ)
be the number of packets waiting at input port i, destined for output port
j, at the beginning of time slot τ .

At each time slot, the switch can transmit a number of packets from input
ports to output ports, subject to the following two constraints: (i) each input
port can transmit at most one packet; and, (ii) each output port can receive
at most one packet. In other words, the actions of a switch at a particular
time slot constitute a matching between input and output ports.

A matching, or schedule, can be described by an array σ ∈ {0, 1}n×n,
where σi,j = 1 if input port i is matched to output port j, and σi,j = 0
otherwise. Thus, at any given time, the set of all feasible schedules is

(1) S =
{
σ ∈ {0, 1}n×n :

∑
k

σi,k ≤ 1,
∑
k

σk,j ≤ 1, ∀ i, j
}
.

A scheduling policy (or simply policy) is a rule that, at any given time τ ,
chooses a schedule σ(τ) = [σi,j(τ)] ∈ S, based on the past history and the
current queue sizes Qi,j(τ). If σi,j(τ) = 1 and Qi,j(τ) > 0, then one packet
is removed from the queue associated with the pair (i, j).

Regarding the details of the model, we adopt the following timing conven-
tions. At the beginning of time slot τ , the queue sizes Qi,j(τ) are observed
by the policy. The schedule σ(τ) is applied in the middle of the time slot.
Finally, at the end of the time slot, new arrivals happen. Mathematically,
for all i, j, and τ ∈ N, we have

(2) Qi,j(τ + 1) = Qi,j(τ)− σi,j(τ)1{Qi,j(τ)>0} +Ai,j(τ)−Ai,j(τ−1),

where for event B, 1B is the associated indicator function. We assume
throughout the paper that the system starts empty, i.e., Qi,j(1) = 0, for
all i, j.

Summing Eq. (2) over time and using the assumption Qi,j(1) = 0, we get
the following equivalent expression, for τ ∈ N:

(3) Qi,j(τ+1) = Ai,j(τ)−
τ∑

t=1

σi,j(t)1{Qi,j(t)>0}.

We define

Si,j(τ) =
τ∑

t=1

σi,j(t)1{Qi,j(t)>0},
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so that (3) reduces to

Qi,j(τ+1) = Ai,j(τ)− Si,j(τ).

We call Si,j(τ) the actual service received by queue (i, j) during the first τ
time slots. Note that Si,j(τ) may be different from

∑τ
t=1 σi,j(t), which is the

cumulative service offered to queue (i, j) during the first τ slots.

3. Main Result. The main result of this paper is as follows.

Theorem 3.1. Consider an n× n input-queued switch in which the ar-
rival processes are independent Bernoulli processes with a common arrival
rate ρ/n, where ρ = 1− 1/fn and fn ≥ n. For any n, there exists a schedul-
ing policy under which the expected total queue size is upper bounded by
cn1.5fn log fn. That is,

n∑
i,j=1

E[Qi,j(τ)] ≤ cn1.5fn log fn, for all τ,

where c is a constant that does not depend on n.

Corollary 3.2. Consider the setup in Theorem 3.1, with fn = n. For
any n, there exists a scheduling policy under which the expected total queue
size is upper bounded by cn2.5 log n. That is,

n∑
i,j=1

E[Qi,j(τ)] ≤ cn2.5 logn, for all τ,

where c is a constant that does not depend on n.

Let us remark here that we only prove Theorem 3.1 for all sufficiently large
n. The validity of the theorem for smaller n is guaranteed by considering an
arbitrary stabilizing policy (e.g., the maximum weight policy) and letting
c be large enough so that we have an upper bound to the expected total
queue size under that policy.

4. Preliminaries. Here we state some facts that will be used in our
subsequent analysis.

Concentration Inequalities. We will use the following tail bounds for bino-
mial random variables (adapted from Theorem 2.4 in [2]).
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Theorem 4.1. Let X1, X2, . . . , Xm be independent and identically dis-
tributed Bernoulli random variables, with

P(Xi = 1) = p, and P(Xi = 0) = 1− p,

for i = 1, 2, . . . ,m. Let X =
∑m

i=1Xi, so that E[X] = mp. Then, for any
x > 0, we have

(Lower tail) P(X ≤ E[X]− x) ≤ exp

{
− x2

2E[X]

}
,(4)

(Upper tail) P(X ≥ E[X] + x) ≤ exp

{
− x2

2(E[X] + x/3)

}
.(5)

Kingman Bound for the discrete-time G/G/1 Queue. Consider a discrete-
time G/G/1 queueing system. More precisely, let X(τ) be the number of
packets that arrive during time slot τ , let Y (τ) be the number of packets
that can be served during slot τ , and let Z(τ) be the queue size at the
beginning of time slot τ . Suppose that the X(τ) are i.i.d. across time, and
so are the Y (τ). Furthermore, the processes X(·) and Y (·) are independent.
The queueing dynamics are given by

(6) Z(τ + 1) = max{0, Z(τ) +X(τ)− Y (τ)}.

Note that the timing convention in (6) is different from that of the queueing
dynamics (2) of the switch model: with Eq. (6), during each slot, arrivals
take place before any service. This timing convention will be used later on to
analyze the so-called backlogged packets under the policy that we propose,
which evolve similar to (6) (cf. (13)).

Let λ = E[X(τ)], m2x = E[X2(τ)], μ = E[Y (τ)], and m2y = E[Y 2(τ)].
Suppose that λ < μ. The following bound is proved in [17] (Theorem 3.4.2),
using a standard argument based on a quadratic Lyapunov function.

Theorem 4.2 (Discrete-time Kingman bound). Suppose that Z(1) = 0
and that λ < μ. Then,

(7) E[Z(τ)] ≤ m2x +m2y − 2λμ

2(μ− λ)
, for all τ.

In fact, the above theorem is proved in [17] for the expected queue size in
steady state. However, since we assume that Z(1) = 0, a standard coupling
argument shows that the same bound holds for E[Z(τ)] at any time τ .
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Optimal Clearing Policy. Similar to [13], we will use the concept of the
minimum clearance time of a queue matrix. Consider a certain queue matrix
[Qi,j ]

n
i,j=1, where Qi,j denotes the number of packets at input port i destined

for output port j. Suppose that no new packets arrive, and that the goal is to
simply clear all packets present in the system, in the least possible amount of
time, using only feasible schedules/matchings. We call this minimal required
time the minimum clearance time of the given queue matrix, and we denote
it by L. Then, L is characterized exactly as follows.

Theorem 4.3. Let [Qi,j ]
n
i,j=1 be a queue matrix. Let

Ri =
n∑

j=1

Qi,j and Cj =
n∑

i=1

Qi,j

be the ith row sum and the jth column sum, respectively. Then, the minimum
clearance time, L, is equal to the largest of the row and column sums:

(8) L = max

{
max

i
Ri,max

j
Cj

}
.

The proof of Theorem 4.3 is a simple modification of the proof of Theorem
5.1.9 in [4].

Note that in each time slot at most one packet can depart from each
input/output port, and therefore each Ri and Cj is decreased by at most 1.
Thus, the minimum clearance time cannot be smaller than the right-hand
side of (8). Theorem 4.3 states that there actually exists an optimal clearing
policy that clears all packets within exactly max {maxiRi,maxj Cj} time
slots.

5. Policy Description. To describe our policy, we introduce three pa-
rameters, bn, dn, and sn, which depend on the number of ports, n. These
parameters specify the lengths of certain time intervals, which, in turn, de-
lineate the different phases of the policy. They are given by3

bn = cbf
2
n log fn,(9)

dn = cd
√
nfn log fn,(10)

sn = ρbn +
√
csbn log fn.(11)

3We will treat these parameters as if they were guaranteed to be integers. Rounding
them up or down to a nearest integer would overburden our notation but would have no
effect on our order-of-magnitude estimates.
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Without loss of generality, we will always assume that n ≥ 3, so that log fn >
1. Here cb, cd, and cs are positive constants (independent of n) that will be
appropriately chosen. As will be seen in the course of the proof, it suffices
to choose them so that

(12) cb > cs, c2d ≥ 640cb, cd > cb, cs ≥ 30,

and which we henceforth assume. We note that the above inequalities do not
necessarily lead to the best choices for these constants but they are imposed
in order to simplify the details of the proof. In the rest of the paper, and
to avoid overburdening notation, we will suppress the subscript n from the
parameters bn, dn, and sn, and write them as b, s, and n.

For an n × n input-queued switch, we introduce n particular schedules
σ(1),σ(2), . . . ,σ(n). For u ∈ {1, 2, . . . , n}, σ(u) is defined by

σ
(u)
i,j =

{
1, if j = i+ u− 1 (modulo n),
0, otherwise.

To illustrate, when n = 3, the schedules σ(1),σ(2), and σ(3) are given by

σ(1) =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠, σ(2) =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠, and σ(3) =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠.

Note that

σ(1) + σ(2) + · · ·+ σ(n) =

⎛
⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞
⎟⎠,

the n× n matrix of all 1s.
We now proceed with the description of the policy. Time is divided into

consecutive intervals, which we call arrival periods, of length b. For k =
0, 1, 2, . . ., the kth arrival period consists of slots kb+1, kb+2, . . . , (k+1)b.
Arrivals that occur during the kth arrival period are said to belong to the
kth batch.

The general idea behind the policy is as follows. The policy aims to serve
all of the packets in the kth batch during the kth service period, of length
b, which is offset from the arrival period by a delay of d. Thus, the kth
service period consists of time slots kb + d + 1, . . . , (k + 1)b + d. If the
policy does not succeed in serving all of the packets in the kth batch, the
unserved packets will be considered backlogged and will be handled together
with newly arriving packets from subsequent batches, in subsequent service
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periods. As it will turn out, however, the number of backlogged packets will
be zero, with high probability.

We now continue with a precise description, by considering what happens
during the kth service period. Note that the time slots kb + 1, . . . , kb + d
do not belong to the kth service period. Packets from the kth batch will
accumulate during these time slots, but none of them will be served. At the
beginning of the kth service period (the beginning of time slot bk + d+ 1),
we may have some backlogged packets from previous service periods, and
we denote their number by Bk. We assume that B0 = 0.

The kth service period consists of three phases, which are described below
and are illustrated in Fig. 1.

Fig 1. Illustration of a typical arrival period and the phases of a service period. Slots are
numbered consecutively, starting with the first slot of the arrival period.

1. The first b − d slots of the kth service period, namely, slots kb + d +
1, . . . , (k + 1)b, comprise a round-robin phase: we cycle through the
schedules σ(1), σ(2), . . . , σ(n) in a round-robin manner. However, dur-
ing this phase, we do not serve any of the backlogged packets; we only
serve packets that belong to the kth batch.4

2. The next � = d + s − b slots, namely slots (k + 1)b + 1, . . . , kb +
d + s, comprise the kth normal clearing phase. Similar to the round-
robin phase, we do not serve any backlogged packets during this phase.
Furthermore, even though packets from the (k + 1)st batch may have
started to arrive, we do not serve any of them. By the beginning of
this phase, all of the arrivals from the kth batch have already arrived.
Some of them have already been served during the round-robin phase.
To those that remain, we apply the optimal clearing policy described

4This particular choice introduces some inefficiency, because offered service will be
wasted whenever a queue has backlogged packets but no packets that belong to the kth
batch. However, this choice simplifies our analysis and makes little actual difference, be-
cause the number of backlogged packets is zero with high probability.
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earlier; cf. Theorem 4.3. However, there is a possibility that the phase
terminates before we succeed in serving all of the remaining packets
from the kth batch. Let Uk be the number of the packets from the kth
batch that were left unserved during this phase. These Uk packets are
considered backlogged and are added to the backlog Bk from earlier
periods.

3. The last r = b− s slots, namely slots kb+ d+ s+ 1, . . . , (k + 1)b+ d,
comprise the kth backlog clearing phase. During this phase, we serve
backlogged packets using some arbitrary policy. The only requirement
is that the policy serve at least one packet at each slot that a back-
logged packet is available. However, we do not serve any of the newly
arrived packets from the (k+1)st batch. Any backlogged packets that
are not served during this phase remain backlogged and comprise the
number Bk+1 of backlogged packets at the beginning of the next ser-
vice period. Since at least one backlogged packet is served (whenever
available) during each one of these r slots, and since there are no ad-
ditions to the backlog during this phase, we have

(13) Bk+1 ≤ max{0, Bk + Uk − r}, k = 0, 1, . . .

The total length of the three phases is

(b− d) + (d+ s− b) + (b− s) = b,

so that the length of a service period is equal to the length of an arrival
period. However, before continuing, we need to make sure that the duration
of each phase is a positive number, so that the policy is well-defined. This is
accomplished in the next two lemmas, which also provide order of magnitude
information on the durations of these phases.

Lemma 5.1. The length r = b− s of the backlog clearing phase satisfies

r = crfn log fn,

where cr = cb −
√
cscb > 0. In particular, when n is large enough, we have

r ≥ 1.

Proof. Using the assumption ρ = 1 − 1/fn, we have (1− ρ)b = b/fn =
cbfn log fn. We then obtain

b− s = b− ρb−
√
csb log fn

= cbfn log fn −
√
cscbf2

n log
2 fn
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= (cb −
√
cscb)fn log fn

= crfn log fn.

The fact that cr > 0 follows from our assumption in Eq. (12).

Lemma 5.2. The length � = d + s − b of the normal clearing phase
satisfies

� ≥ c�
√
nfn log fn,

where c� = cd−cr > 0. In particular, when n is large enough, we have � ≥ 1.

Proof. Recall that r = b− s. It follows that

� = d+ s− b

= d− r

= cd
√
nfn log fn − crfn log fn

≥ (cd − cr)
√
nfn log fn

= c�
√
nfn log fn.

Note that cr < cb < cd (cf. Lemma 5.1 and Eq. (12)), which implies that
c� > 0.

6. Policy Analysis. The performance analysis of the proposed policy
involves the following line of argument for what happens during the kth
arrival and service period.

(a) In the first d slots of the kth arrival period, we have an expected
number O(nd) of arrivals.

(b) With high probability, at every time slot during the round-robin phase,
there is a positive number of packets from the kth arrival batch at
each queue; cf. Lemmas 6.1 and 6.2. Therefore, offered service is never
wasted. In particular, at least as many packets are served as they arrive
(in the expected value sense), and the total queue size does not grow.

(c) With high probability, all of the packets from the kth batch that are
in queue at the beginning of the normal clearing phase get cleared
and therefore the number Uk of newly backlogged packets is zero; cf.
Lemma 6.4.

(d) The number Bk of backlogged packets evolves similar to a discrete-time
G/D/1 queue; cf. Eq. (13). Because Uk is zero with high probability,
the Kingman bound (Theorem 4.2) implies that the expected number
of backlogged packets, at any time, is small; cf. Lemma 6.5.

The above steps, when translated into precise bounds on queue sizes, will
lead to an O(nd) bound on the expected total queue size at any time.
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6.1. No waste during the round-robin phase. In this subsection, we es-
tablish that during the round-robin phase, every queue contains a nonzero
number of packets from the current arrival batch, with high probability.
We first introduce some convenient notation. We will use the variable t ∈
{1, . . . , b+1} to index the b slots of the kth arrival period together with the
first slot of the subsequent normal clearing phase. For t ∈ {1, . . . , b}, we let
Ak

i,j(t) be the number of arrivals to the (i, j)th queue during the first t time
slots of the kth arrival period; these are the time slots kb+1, kb+2, . . . , kb+t.
Similarly, for t ∈ {1, . . . , b}, we let Sk

i,j(t) be the number of packets that ar-
rive to queue (i, j) during the kth arrival period and get served during the
first t time slots of the kth arrival period. Finally, for t ∈ {1, . . . , b+ 1}, we
let Qk

i,j(t) be the number of packets from the kth arrival batch that are in
queue (i, j) at the beginning of the tth slot of the kth arrival period. With
these definitions, we have,

(14) Qk
i,j(t+ 1) = Ak

i,j(t)− Sk
i,j(t), t = 1, . . . , b.

We are interested in conditions under which no offered service is wasted
during the round-robin phase. Equivalently, we are interested in conditions
under which all queues have a positive number of packets from the kth batch.
Note that the round-robin phase involves slots for which t ∈ {d+ 1, . . . , b}.
We have the following observation on the queue sizes at the beginning of
these slots.

Lemma 6.1. Suppose that t ∈ {d, . . . , b− 1} and that

Ak
i,j(t) >

t− d

n
+ 1.

Then, Qk
i,j(t+ 1) > 0.

Proof. Note that that for the first d time slots, packets from the kth
batch do not receive any service. Starting from the (d+ 1)st slot, we are in
the round-robin phase, and queue (i, j) is offered service once every n slots.
Therefore,

Sk
i,j(t) ≤

⌈ t− d

n

⌉
<

t− d

n
+ 1 < Ak

i,j(t).

The result follows from Eq. (14).

The previous lemma highlights the importance of the events Ak
i,j(t) >

(t− d)/n+ 1. We will show that the complements of these events have,
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collectively, small probability. To this effect, let W k
i,j(t) be the event defined

by

W k
i,j(t) =

{
Ak

i,j(t) ≤
t− d

n
+ 1

}
, t = d, . . . , b− 1.

Let also W k be the union of these events, over all queues, and over all indices
t that are relevant to the round-robin phase:

W k =

n⋃
i=1

n⋃
j=1

b−1⋃
t=d

W k
i,j(t).

Lemma 6.2. For n sufficiently large, we have

P(W k) ≤ 1

2f13
n

, for all k.

Proof. Let us fix some (i, j) and some t ∈ {d, . . . , b−1}. Note that
E
[
Ak

i,j(t)
]
= ρt/n. Therefore, the event W k

i,j(t) is the same as the event

{
Ak

i,j(t) ≤ E
[
Ak

i,j(t)
]
− ρt

n
+

t− d

n
+ 1

}
,

which is of the form {
Ak

i,j(t) ≤ E
[
Ak

i,j(t)
]
− x

}
,

where

x =
ρt

n
− t− d

n
− 1

=
ρ(t− d)

n
− t− d

n
+

ρd

n
− 1

= −(1− ρ)
t− d

n
+

ρd

n
− 1.

Using the facts t− d ≤ b and 1− ρ = 1/fn, the first term on the right-hand
side is bounded above (in absolute value) by b/(nfn). For the second term,
we use the facts ρ = 1− (1/fn), fn ≥ n ≥ 2, to obtain ρ ≥ 1/2. Therefore,

x ≥ − b

nfn
+

d

2n
− 1

=
1

n

(
(cd/2)

√
nfn log fn − cbfn log fn − n

)

≥ 1

n

(
(cd/2)

√
nfn log fn − (cb + 1)fn log fn

)
.
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Now, for n large enough, we have cb + 1 ≤ (cd/4)
√
n, and this implies that

(15) x ≥ 1

n
· cd
4

·
√
nfn log fn =

cdfn log fn
4
√
n

.

Using Eq. (4) (the lower tail bound in Theorem 4.1), we have

P
(
W k

i,j(t)
)
= P

(
Ak

i,j(t) ≤ E
[
Ak

i,j(t)
]
− x

)
≤ exp

{
− x2

2E[Ak
i,j(t)]

}
.

We note that E[Ak
i,j(t)] = ρt/n ≤ b/n = cbf

2
n(log fn)/n. Using also Eq. (15),

we obtain

x2

2E[Ak
i,j(t)]

≥ c2df
2
n log

2 fn
16n

· 1

2cbf2
n(log fn)/n

=
c2d
32cb

log fn ≥ 20 log fn,

where the last inequality follows from our assumption that c2d ≥ 640cb;
cf. Eq. (12). Consequently,

P
(
W k

i,j(t)
)
≤ exp{−20 log fn} =

1

f20
n

≤ 1

2f19
n

.

The event W k is the union of n2(b− d) events W k
i,j(t). We note that

(16) n2(b− d) ≤ n2b ≤ f2
ncbf

2
n log fn ≤ f6

n,

as long as n is large enough so that cb ≤ fn. Therefore, using the union
bound

P(W k) ≤ n2(b− d)
1

2f19
n

≤ f6
n

2f19
n

=
1

2f13
n

.

6.2. The probability of no new backlog. In this subsection we show that
Uk, the additional backlog generated during the kth service period, is zero
with high probability. Our analysis builds on an upper bound on the proba-
bility that the number of packets in the kth batch that are associated with
a particular port is appreciably larger than its expected value. Towards this
purpose, we define the row and column sums for the arrivals in the kth
batch:

Rk
i =

∑
j

Ak
i,j(b), Ck

j =
∑
i

Ak
i,j(b).

We also define the events

F k
i = {Rk

i > s}, Gk
j = {Ck

j > s},
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and
Hk =

(
F k
1 ∪ · · · ∪ F k

n

)
∪
(
Gk

1 ∪ · · · ∪Gk
n

)
.

In what follows, we first show that the event Hk has low probability. We
then show that if neither of the events W k or Hk occurs (which has high
probability), then Uk is equal to zero.

Lemma 6.3. For n sufficiently large, we have

P(Hk) ≤ 1

2f13
n

, for all k.

Proof. Let us focus on the event F k
1 = {Rk

1 > s}; the argument for
other events F k

i or Gk
j is identical. Note that E[Rk

1 ] = ρb. We have, using
Eq. (5) (the upper tail bound in Theorem 4.1) in the last step,

P(Rk
1 > s) = P

(
Rk

1 > ρb+
√
csb log fn

)
= P

(
Rk

1 > E[Rk
1 ] +

√
csb log fn

)
≤ exp

{
− csb log fn

2(ρb+ x/3)

}
,

where x =
√
csb log fn. Notice that

ρb+
x

3
≤ ρb+ x = ρb+

√
csb log fn = s ≤ b,

where the last inequality follows from Lemma 5.1. Therefore, when n ≥ 4,

P(Rk
1 > s) ≤ exp

{
− csb log fn

2b

}
=

1

f
cs/2
n

≤ 1

4f14
n

,

where the last inequality follows from our assumption that cs ≥ 30;
cf. Eq. (12). The event Hk is the union of 2n events, each with probability
bounded above by 1/(4f14

n ). Using the union bound and the assumption
n ≤ fn, we obtain P(Hk) ≤ 1/(2f13

n ).

Lemma 6.4.

(a) Consider a sample path under which neither W k nor Hk occurs. Then,
Uk = 0.

(b) We have P(Uk > 0) ≤ 1/f13
n .

(c) For every sample path, we have Uk ≤ n2b.
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Proof. (a) We assume that neither W k norHk occurs. Using Eq. (14),
the queue sizes (where we only count packets from the kth batch) at
the beginning of the normal clearing period are equal to

(17) Qk
i,j(b+ 1) = Ak

i,j(b)− Sk
i,j(b).

Let
R̂k

i =
∑
j

Qk
i,j(b+ 1), Ĉk

j =
∑
i

Qk
i,j(b+ 1).

Now consider a fixed i. Note that the schedules σ(m) used during

the round-robin phase have the property
∑

j σ
(m)
i,j = 1; that is, each

input port is offered exactly one unit of service at each time slot.
Furthermore, since event W k does not occur, Lemma 6.1 implies that
all queues are positive at the beginning of each slot of the round-robin
phase; that is, Qk

ij(t + 1) > 0, for t = d, . . . , b − 1. Therefore, the
offered service is never wasted during the b − d slots of the round-
robin phase. It follows that the total actual service at input port i
during the round-robin phase is exactly b− d:

∑
j

Sk
i,j(b) = b− d.

Furthermore, since eventHk does not occur, we have Rk
i ≤ s. Recalling

the definition Rk
i =

∑
j A

k
i,j(b), and by summing both sides of Eq. (17)

over all j, we obtain

R̂k
i = Rk

i −
∑
j

Sk
i,j(b) ≤ s− (b− d) = �,

where � = d + s − b is the length of the normal clearing phase. By a
similar argument, we obtain that Ĉk

j ≤ �, for all j. It then follows from
Theorem 4.3 that all the packets (from the kth arrival batch) will be
cleared during the normal clearing phase, and Uk = 0.

(b) If Uk > 0, then, by part (a), it must be that either event W k or Hk

occurs. The result follows because the probability of each one of these
two events is upper bounded by 1/(2f13

n ) (Lemmas 6.2 and 6.3).
(c) The number of packets from the kth batch that can get backlogged can

be no more than the total number of arrivals in the kth batch. Since
each queue (n2 of them) receives at most one packet at each time slot
(b slots), the total number cannot exceed n2b.
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6.3. Backlog analysis. We are now in a position to show that the ex-
pected backlog is very small.

Lemma 6.5. Assuming that n is sufficiently large, we have that E[Bk] ≤
1, for all k.

Proof. Using Eq. (13), the backlog satisfies

Bk+1 ≤ max{0, Bk + Uk − r} ≤ max{0, Bk + Uk − 1},

where the last inequality follows from Lemma 5.1. Let us define a sequence
B̂k with the recursion B̂0 = 0 and

B̂k+1 = max{0, B̂k + Uk − 1}.

We then have Bk ≤ B̂k, so it suffices to derive an upper bound on E[B̂k].
We use the discrete-time Kingman bound (Theorem 4.2), where we iden-

tify Z(τ) with B̂k, X(τ) with Uk, and Y (τ) with 1. Using the notation in
Theorem 4.2, we have μ = 1, and m2y = 1. Furthermore, as in Eq. (16), we
have n2b ≤ f6

n for sufficiently large n. Using Lemma 6.4,

λ = E[Uk] ≤ f6
n · P(Uk > 0) ≤ f6

n · 1

f13
n

=
1

f7
n

,

and

m2x = E[U2
k ] ≤ f12

n · P(Uk > 0) = f12
n · 1

f13
n

=
1

fn
.

Then, using the bound in (7), we have

E[Bk] ≤ E[B̂k] ≤
m2x +m2y

2(μ− λ)
≤ f−1

n + 1

2(1− f−7
n )

.

As n increases, the right-hand side converges to 1/2 and is therefore bounded
above by 1 when n is sufficiently large.

6.4. Queue size analysis. In this subsection, we prove Theorem 3.1, the
main result of the paper. Toward this end, we show that at any time, the
sum of the queue sizes is of order O(nd). We fix some time τ and consider
two cases, depending on whether this time belongs to a round-robin phase
or not.

Queue sizes during the round-robin phase. Suppose that τ satisfies kb +
d + 1 ≤ τ ≤ (k + 1)b, so that τ belongs to the round-robin phase of the
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kth service period, and let us look at the queue size Qi,j(τ +1). This queue
size may include some packets that arrived during earlier arrival periods and
that were backlogged; their total expected number (summed over all i and
j) is E[Bk] ≤ 1.

Let us now turn our attention to packets that belong to the kth batch.
Recall that the number of such packets in queue (i, j) at the beginning of
the (t + 1)st slot (equivalently, the end of the tth slot) of the kth arrival
period is denoted by Qk

i,j(t+1). For t = d+1, . . . , b, we have, as in Eq. (14),

Qk
i,j(t+ 1) = Ak

i,j(t)− Sk
i,j(t),

and ∑
i,j

E[Qk
i,j(t+ 1)] = nρt− E

[∑
i,j

Sk
i,j(t)

]
.

By the same argument as in the proof of Lemma 6.4(a), if event W k does
not occur, the service during the round-robin phase is never wasted: a total
of n packets are served at each time, and for t = d + 1, . . . , b, a total of
n(t − d) packets are served by the tth slot of the kth arrival period. Using
also the inequality (cf. Lemma 6.2)

1− P(W k) ≥ 1− 1

2f13
n

≥ 1− 1

fn
= ρ,

we obtain

E

[∑
i,j

Sk
i,j(t)

]
≥ n(t− d)

(
1− P(W k)

)
≥ nρ(t− d).

Therefore,

(18)
∑
i,j

E[Qk
i,j(t+ 1)] ≤ nρt− nρ(t− d) = nρd ≤ nd, t = d+ 1, . . . , b.

which is an upper bound of the desired form.

Queue sizes outside the round-robin phase. Suppose now that τ satisfies
(k + 1)b + 1 ≤ τ ≤ (k + 1)b + d, so that τ belongs to one of the last
two phases of the kth service period, and let us look again at the queue
size Qi,j(τ + 1). As before, we may have some backlogged packets. These
are either packets backlogged during the current period (the kth one) or in
previous periods. Their total expected number (summed over all i and j) at
any time in this range is upper bounded by E[Bk + Uk] ≤ 2.

Let us now turn our attention to packets that belong to the kth batch.
Since there are no further arrivals from the kth batch from slot (k+1)b+1
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onwards, the number of such packets is largest at the beginning of slot
(k + 1)b+ 1. Their expected value at that time satisfies

∑
i,j

E
[
Qk

i,j(b+ 1)
]
≤ nd,

where in the inequality we used Eq. (18) with t = b.
Finally, we need to account for arrivals that belong to the (k+1)st arrival

batch. The total number of such accumulated arrivals is largest when we
consider the largest value of τ , namely, τ = (k + 1)b + d. By that time, we
have had a total of d slots of the (k+1)st arrival period, and a total expected
number of arrivals equal to ρnd, which is bounded above by nd.

Putting together all of the bounds that we have developed, we see that at
any time, the expected total number of packets is bounded above by 2nd+
2 ≤ 3nd. This being true for all sufficiently large n, establishes Theorem 3.1.

7. Extension to More General Arrival Rates. As mentioned in the
Introduction, it is possible to modify the policy presented in Section 5 so
that it can accommodate non-uniform arrival rates, while achieving a similar
performance bound of O(n1.5fn log fn) (see Theorem 7.1). We first define
the class of arrival rates that we consider in Section 7.1, and then state the
performance properties of the modified policy in Section 7.2. The modified
policy is described in Section 7.3. We provide a sketch of the performance
analysis of the modified policy in Section 7.4, which is very similar to the
analysis presented in Section 6.

7.1. Assumption on arrival rates. As in Section 2, we assume that the
arrival processes Ai,j(·) are independent for different pairs (i, j), and that
for each input-output pair (i, j), {Ai,j(τ) − Ai,j(τ − 1)}τ∈N is a Bernoulli
process with parameter λi,j . For each i, define ρ̃i =

∑
j λi,j to be the load

on input port i; and for each j, define ρ̃j =
∑

i λi,j to be the load on output
port j. Let ρ = max

{
maxi ρ̃

i,maxj ρ̃j
}
be the system load. As in Section 2,

we assume that ρ = 1− 1/fn with fn ≥ n for all n. Furthermore, we assume
that the arrival rates are not heavily skewed, in the following sense.

Assumption 1. There exists a positive constant c0 such that for all n,
and for all i, j ∈ {1, 2, . . . , n},

λi,j ≥
c0
n
.

Let us remark that when the arrival rates are uniform, i.e., when λi,j =
ρ/n for all i and j, and when ρ = 1−fn with fn ≥ n, Assumption 1 holds with
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c0 = 1/2. As a result, the modified policy to be described in Section 7.3 can
be applied to the case of uniform arrival rates, and achieves a performance
bound of the same order as the policy in Section 5. In this paper, we have
chosen to present the policy of Section 5 in detail, because its analysis is
cleaner and better conveys the essential ideas, while only providing a sketch
for the general case, in this section. We also note that the class of arrival rates
considered in this section is fairly restrictive, excluding many instances of
non-uniform arrival rates. We leave the investigation of general non-uniform
arrival rates as future work.

7.2. Main result. The following theorem and corollary are extensions of
Theorem 3.1 and Corollary 3.2, respectively, for arrival rates that satisfy
Assumption 1.

Theorem 7.1. Consider an n× n input-queued switch in which the ar-
rival processes are independent Bernoulli processes with arrival rates satis-
fying Assumption 1, and where ρ = 1− 1/fn and fn ≥ n. For any n, there
exists a scheduling policy under which the expected total queue size is upper
bounded by c̃n1.5fn log fn. That is,

n∑
i,j=1

E[Qi,j(τ)] ≤ c̃n1.5fn log fn, for all τ,

where c̃ is a constant that only depends on c0, and which, in particular, does
not depend on n.

Corollary 7.2. Consider the setup in Theorem 7.1, with fn = n. For
any n, there exists a scheduling policy under which the expected total queue
size is upper bounded by c̃n2.5 log n. That is,

n∑
i,j=1

E[Qi,j(τ)] ≤ c̃n2.5 logn, for all τ,

where c̃ is a constant that only depends on c0, and which, in particular, does
not depend on n.

7.3. Policy description. The modified policy, for the case of arrival rates
that satisfy Assumption 1, is very similar to the one described in Section
5. Indeed, the modified policy also consists of service periods, which are
offset from the corresponding arrival periods by a delay of d̃ (see (20)). Each
service period of the modified policy also consists of three phases, which we
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call the randomized service phase, the normal clearing phase, and the backlog
clearing phase. We now proceed with further details.

Similar to the description in Section 5, we introduce three parameters b̃,
d̃, and s̃, given by

b̃ = c̃bf
2
n log fn,(19)

d̃ = c̃d
√
nfn log fn,(20)

s̃ = ρb̃+ 2

√
c̃sb̃ log fn.(21)

The positive constants c̃b, c̃d and c̃s are chosen so that

(22) c̃dc0 > 15c̃b, c̃s ≥ 40, c̃d > c̃b > 4c̃s.

The kth arrival period consists of slots kb̃+ 1, kb̃+ 2, . . . , (k + 1)b̃, and the
kth service period consists of slots kb̃ + d̃ + 1, kb̃ + d̃ + 2, . . . , (k + 1)b̃ + d̃.
The kth service period is divided into three phases: a randomized service
phase consisting of the first b̃ − d̃ slots, a normal clearing phase consisting
of the next �̃ = d̃+ s̃− b̃ slots, and a backlog clearing phase consisting of the
last r̃ = b̃ − s̃ slots. Similar to the proofs of Lemmas 5.1 and 5.2, it can be
shown that the quantities r̃ and �̃ are positive for sufficiently large n, so that
the phases are well-defined. The descriptions of the normal clearing and the
backlog clearing phases are exactly the same as those of the policy described
in Section 5, so we focus on the description of the randomized service phase.

The randomized service phase. For each pair (i, j), define

λ̃i,j = λi,j +
1

nfn
.

Then, it is easy to see that

∑
j

λ̃i,j ≤ 1 for all i, and
∑
i

λ̃i,j ≤ 1 for all j.

Let Λ̃ = (λ̃i,j)
n
i,j=1 be the matrix with entries λ̃i,j . By the Birkhoff-von

Neumann theorem [1], there exist schedules π(1),π(2), . . . ,π(m) ∈ S (recall
the definition of the set S of feasible schedules in (1)) and positive constants
α1, α2, . . . , αm such that

Λ̃ = α1π
(1) + α2π

(2) + . . .+ αmπ(m), and α1 + · · ·+ αm = 1.

At each time slot during the randomized service phase, schedule π(u) is
chosen with probability αu, u = 1, 2, . . . ,m, independently from other time
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slots. In particular, this implies that for each pair (i, j), input i is matched
to output j with probability λ̃i,j .

Similar to the round-robin phase of the policy in Section 5, we do not
serve any of the backlogged packets during the randomized service phase,
and only serve packets that belong to the kth batch. This completes the
description of the randomized service phase.

7.4. Sketch of policy analysis. The analysis of the modified policy follows
the same line of argument as the analysis presented in Section 6: (a) in the
first d̃ slots of the kth arrival period, we have an expected number O(nd̃)
of arrivals; (b) offered service is never wasted with high probability, during
the randomized service phase; (c) with high probability, all packets from the
kth batch get cleared at the end of the normal clearing phase; and (d) the
expected number of backlogged packets at any time is small.

Let us remark that Assumption 1 is used to show statement (b): with high
probability (w.h.p.), offered service is never wasted during the randomized
service phase. To see this, let us use the notation Ak

i,j(t) and Sk
i,j(t) from

Section 6.1. Then, under the modified policy, w.h.p., for all t ∈ {d̃, . . . , b̃−1}
and for all pairs (i, j),

Ak
i,j(t) > λi,jt−

√
40λi,j b̃ log fn, and Sk

i,j(t) < λ̃i,j(t− d̃) +

√
40λ̃i,j b̃ log fn.

Offered service is never wasted as long as Sk
i,j(t) < Ak

i,j(t), for all t ∈
{d̃, . . . , b̃− 1}, which happens, w.h.p., if

λi,jt−
√
40λi,j b̃ log fn > λ̃i,j(t− d̃) +

√
40λ̃i,j b̃ log fn.

The choice of constants satisfying (22) and Assumption 1 are used to estab-
lish the preceding inequality. Intuitively, Assumption 1 ensures that enough
packets arrive to each queue during the first d̃ time slots of the kth arrival
period, which is required to offset the stochastic fluctuations during the
randomized service phase. We omit further details.

8. Discussion. We presented a novel scheduling policy for an n × n
input-queued switch. In the regime where the system load satisfies ρ =
1−1/n, and the arrival rates at the different queues are all equal, our policy
achieves an upper bound of order O(n2.5 log n) on the expected total queue
size, a substantial improvement upon earlier upper bounds, all of which
were of order O(n3), ignoring poly-logarithmic dependence on n. Our policy
is of the batching type. However, instead of waiting until an entire batch
has arrived, our policy only waits for enough arrivals to take place for the
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system to exhibit a desired level of regularity, and then starts serving the
batch. This idea may be of independent interest.

Our policy uses detailed knowledge of the arrival statistics, and is heavily
dependent on the fact that all arrival rates are the same. While it is pos-
sible to relax the assumption of uniform arrival rates to some extent, the
description and analysis of similar policies for arbitrary arrival rates (within
the regime considered in this paper), are likely to be more involved.

Finally, for the regime where ρ ≈ 1−1/n, there is a Ω(n2) lower bound on
the expected total queue size under any policy (see [15]), whereas our upper
bound is of order O(n2.5 log n). It is an interesting open question whether
this gap between the upper and lower bound can be closed. Our policy
uses a prespecified set of schedules (round-robin or randomized schedules)
until the entire batch has arrived and then uses an “adaptive” sequence of
schedules to clear remaining packets after the end of the batch. Within the
class of policies of this type, with perhaps different choices of the parameters
involved, it appears to be impossible to obtain an upper bound of O(nα) for
α < 2.5. Thus, in order to come closer to the Ω(n2) lower bound, we will have
to use an adaptive sequence of schedules early on, before the entire batch
has arrived. In fact, if one were to achieve an upper bound close to O(n2), we
would have an approximately constant expected number of packets in each
queue. This means that with positive probability, many of the queues will
be empty. Therefore, an elaborate policy would be needed to avoid offering
service to empty queues and thus avoid queue buildup. But the analysis of
such elaborate policies appears to be a difficult challenge.
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