Delay Stability of Back-Pressure Policies in the Presence of Heavy-Tailed Traffic

Mihalis G. Markakis, Member, IEEE, Eytan Modiano, Fellow, IEEE, and John N. Tsitsiklis, Fellow, IEEE

Abstract—We study multihop networks with flow-scheduling constraints, no constraints on simultaneous activation of different links, potentially multiple source–destination routes, and a mix of heavy-tailed and light-tailed traffic. In this setting, we analyze the delay performance of the widely studied class of Back-Pressure scheduling policies, known for their throughput optimality property, using as a performance criterion the notion of delay stability, i.e., whether the expected end-to-end delay in steady state is finite. Our analysis highlights the significance of “bottleneck links,” i.e., links that are allowed to serve the source queues of heavy-tailed flows. The main idea is that traffic that has to pass through bottleneck links experiences large delays under Back-Pressure. By means of simple examples, we provide insights into how the network topology, the routing constraints, and the link capacities may facilitate or hinder the ability of light-tailed flows to avoid bottlenecks. Our delay-stability analysis is greatly simplified by the use of fluid approximations, allowing us to derive analytical results that would have been hard to obtain through purely stochastic arguments. Finally, we show how to achieve the best performance with respect to the delay stability criterion, by using a parameterized version of the Back-Pressure policy.

Index Terms—Back-Pressure, delay stability, fluid approximations, heavy-tailed traffic, multihop networks.

I. INTRODUCTION

W

E STUDY scheduling problems arising in multihop wireline networks with a mix of heavy-tailed (i.e., arrival processes with infinite variance) and light-tailed traffic and, potentially, multiple source–destination routes for each traffic flow. We analyze the delay performance of the widely studied class of Back-Pressure policies, known for their throughput optimality property. (More concretely, we focus on a particular variant of Back-Pressure policies, known as “Max-Pressure.”) Classical results, e.g., the Pollaczek–Khinchin formula, imply that heavy-tailed flows experience large delays, infinite in steady-state expectation. Thus, we focus on the (policy-dependent) impact of heavy-tailed traffic on light-tailed flows, using as a performance criterion the notion of delay stability, i.e., whether the expected end-to-end delay of a traffic flow in steady state is finite.

The class of Back-Pressure policies was introduced in the seminal work of Tassiulas and Ephremides [21], and since then numerous studies have analyzed these policies in a variety of settings; see [6] for an overview. A remarkable property of Back-Pressure policies is their throughput optimality, i.e., their ability to stabilize a queueing network whenever this is possible. Moreover, Back-Pressure policies have been combined with congestion control in “cross-layer control” schemes that are provably stabilizing and utility-optimizing, e.g., see [5] and [18].

We are motivated to study networks with a mix of heavy-tailed and light-tailed traffic by empirical evidence of strong correlations and statistical similarity over different time scales in real-world networks. This observation was first made by Leland et al. [13] through analysis of Ethernet traffic traces. Subsequent empirical studies have documented this phenomenon in other networks, while accompanying theoretical studies have associated it with bursty/heavy-tailed arrivals.

The impact of heavy tails has been analyzed extensively in relatively simple queueing systems, e.g., single- or multiserver queues; for an overview of existing results, see [1] and the references therein. Moreover, as alluded to above, there is vast literature on the performance of Back-Pressure policies under light-tailed traffic. However, the delay analysis of Back-Pressure policies in networks with a mix of heavy-tailed and light-tailed traffic has only recently attracted attention. Jagannathan et al. [9] consider a system with two parallel queues, receiving heavy-tailed and light-tailed traffic while sharing a single server, and determine the queue-length asymptotics under the Generalized Max-Weight policy. In follow-up work, Jagannathan et al. [10] study the case of a server with intermittent connectivity to the queues, and explore the impact of connectivity on queue length asymptotics. In a similar setting, Nair et al. [17] analyze the role of intraqueue scheduling, i.e., the way that jobs are served within each queue, on the response time asymptotics.

Closer to the present paper comes our earlier work [15], which studies the delay stability of Max-Weight policies (the single-hop equivalent of Back-Pressure) in networks with a mix of heavy-tailed and light-tailed traffic. In single-hop networks, the decision problem reduces to link-scheduling, i.e., which subset of communication links to activate at any given time-slot. This determines directly which traffic flows are to be served because in single-hop networks there is a one-to-one correspondence between links and flows. However, in multihop
networks, multiple flows may traverse the same communication link. Thus, apart from link-scheduling, the decision problem in multihop networks has an additional dimension, that of flow-scheduling: given the links to be activated, which flow to send through each of them. This can be interpreted as a joint scheduling and routing decision. This added dimension makes it very difficult to follow the stochastic dynamics of the systems, thus requiring new methodology for delay analysis. In particular, in this paper we utilize fluid approximation techniques that facilitate delay analysis without resorting to tracking the stochastic dynamics. Moreover, since the link-scheduling part of the problem has been analyzed extensively in [15] and [16], here we consider a wireline multihop network model, where only the flow-scheduling part remains relevant. Thus, in the present paper we focus only on phenomena and insights that originate from the multihop nature of the network.

The main contributions of the paper can be summarized as follows.

1) Through simple examples, we provide insights into how the network topology, the routing constraints, the arrival rates, and the link capacities may affect the delay performance of the Back-Pressure policy in the presence of heavy-tailed traffic.

2) We illustrate the value of the fluid approximation methodology, developed in the companion paper [16], for the delay analysis of multihop networks with heavy-tailed traffic. More specifically, fluid approximations simplify significantly the analysis and allow us to obtain results that would have been hard to prove solely through stochastic arguments.

3) We show how one can achieve optimal performance with respect to the delay stability criterion by using a parameterized version of the Back-Pressure policy, provided the parameters are chosen suitably.

The remainder of the paper is organized as follows. Section II includes a detailed description of a multihop wireline network, together with some useful definitions and lemmas. In Section III, we present briefly the fluid model of this multihop network and state two essential results, from the companion paper [16], that associate fluid approximations to delay stability. In Section IV, we show through simple examples which “system parameters” may affect the delay performance of the Back-Pressure policy and in what way. Section V contains a delay-stability analysis of the parameterized Back-Pressure-α policy. We conclude with a discussion of our findings in Sections VI and VII.

II. MULTIHOP WIRELINE NETWORK UNDER THE BACK-PRESSURE POLICY

We start with a detailed description of the multihop switched queueing network studied in this paper. Subsequently, we present the Back-Pressure policy and we provide some useful definitions and lemmas.

We denote by \(\mathbb{R}_+, \mathbb{Z}_+, \) and \(\mathbb{N} \) the sets of nonnegative reals, nonnegative integers, and positive integers, respectively. Also, \([x]^+ \) represents \(\max\{x, 0\} \), the nonnegative part of scalar \(x \). Finally, \(1_E \) stands for the indicator variable of event \(E \).

The network operates in discrete time-slots, which we index by \(t \in \mathbb{Z}_+ \). The topology of the network is captured by a directed graph \(G = (\mathcal{N}, \mathcal{L}) \), where \(\mathcal{N} \) is the set of nodes and \(\mathcal{L} \) is the set of directed links. Nodes represent the physical or virtual locations where traffic is buffered before transmission, and edges represent communication links, i.e., the means of transmission. With few exceptions, we use variables \(i \) and \(j \) to represent nodes, and \((i, j) \) to denote a directed link from node \(i \) to node \(j \).

Central to our model is the notion of a traffic flow \(f \in \mathcal{F} \), where \(\mathcal{F} = \{1, \ldots, F\} \), \(F \in \mathbb{N} \), which is a long-lived stream of packets that arrives to the network according to a discrete-time stochastic arrival process \(\{A_f(t); \ t \in \mathbb{Z}_+\} \). Each traffic flow \(f \in \mathcal{F} \) has a unique source node \(s_f \in \mathcal{N} \) where it enters the network, and a unique destination node \(d_f \in \mathcal{N} \) where it exits the network. The quantity \(A_f(t) \) can be interpreted as the random number of packets that flow \(f \) brings (exogenously) to \(s_f \) at the end of time-slot \(t \). We use \(A(t) \) to represent the vector \(\{A_f(t); \ f = 1, \ldots, F\} \). In the remainder of the paper, we use the terms “flow” and “traffic flow” interchangeably, while we often use “traffic” to refer to a specific collection of traffic flows. (To what collection we refer will be clear from the context.)

We assume that all arrival processes take values in \(\mathbb{Z}_+ \) and are independent and identically distributed (IID) over time. Furthermore, different arrival processes are independent. We denote by \(\lambda_f = \mathbb{E}[A_f[0]] > 0 \) the rate of traffic flow \(f \) and by \(\lambda = (\lambda_f; \ f = 1, \ldots, F) \) the vector of the rates of all traffic flows.

Definition 1: (Heavy Tails): A nonnegative random variable \(X \) is heavy-tailed if \(\mathbb{E}[X^2] \) is infinite, and is light-tailed otherwise. Moreover, \(X \) is exponential-type (light-tailed) if there exists \(\theta > 0 \) such that \(\mathbb{E}[\exp(\theta X)] < \infty \).

An IID traffic flow is heavy-tailed/light-tailed/exponential-type if the distribution that underlies the corresponding arrival process is heavy-tailed/light-tailed/exponential-type, respectively. We note that there are several definitions of heavy/light tails in the literature. In fact, a random variable is often defined as light-tailed if it is exponential-type, and heavy-tailed otherwise. Definition 1 has been used in the literature on data communication networks, e.g., see [19], due to its close connection to long-range dependence.

For technical reasons, we assume the existence of some \(\gamma \in (0, 1) \) such that \(\mathbb{E}[A_f^{\gamma+[0]}] < \infty \), for all \(f \in \mathcal{F} \).

Each traffic flow \(f \) has a predetermined set of links \(\mathcal{L}_f \subset \mathcal{L} \) that it is allowed to access. We assume that \(s_f \neq d_f \) and that there exists at least one directed path from \(s_f \) to \(d_f \) within the links in \(\mathcal{L}_f \). If the set \(\mathcal{L}_f \) includes exactly one directed path from source to destination, we say that flow \(f \) has fixed routing.

Node \(i \) belongs to set \(\mathcal{N}_f \) if there exists a directed path from \(s_f \) to \(i \) that includes only links in \(\mathcal{L}_f \). Thus, \(\mathcal{N}_f \subset \mathcal{N} \) is the set of nodes that traffic flow \(f \) can access. Note that the source node \(s_f \) is trivially included in \(\mathcal{N}_f \), while the destination node \(d_f \) is included in \(\mathcal{N}_f \), due to our assumptions on \(\mathcal{L}_f \).

An additional assumption is that there are no “dead-ends,” i.e., from every node in \(i \in \mathcal{N}_f \), there exists a directed path within the links in \(\mathcal{L}_f \) that leads to \(d_f \).

Traffic flow \(f \) maintains a queue at every node \(i \in \mathcal{N}_f \). We refer to this queue as queue \((f, i) \) and denote its length at the beginning of time-slot \(t \in \mathbb{Z}_+ \) by \(Q_f, i(t) \). We emphasize that
queue \((f, i)\) buffers only packets of flow \(f\). The service discipline within each queue is “First Come, First Served.” We use the shorthand notation \(Q(t)\) for the set of queue lengths \(\{Q_{f,i}(t); \; i \in N_f, \; f \in F\}\). We also denote by \(Q(t)\) the \(\sigma\)-algebra generated by \(Q(0), \lambda(0), \ldots, Q(t-1), \lambda(t-1), Q(t)\), which should be distinguished from the set of traffic flows \(F\).

Traffic may arrive to queue \((f, i)\) either exogenously, if \(i\) is the source node \(s_f\), or endogenously, through a link in \(L_f\) whose destination node is \(i\). We refer to queue \((f, s_f)\) as the source queue of traffic flow \(f\). We denote by \(S_{f,i,j}(t)\) the number of packets that are scheduled for transmission from queue \((f, i)\) through link \((i, j)\) in \(L_f\), at time-slot \(t\). These packets serve as (potential) departures from queue \((f, i)\) and arrivals to queue \((f, j)\), at time-slot \(t\). We use the shorthand notation \(S(t)\) for the set of scheduling decisions \(\{S_{f,i,j}(t); \; (i, j) \in L_f, \; f \in F\}\), \(t \in \mathbb{Z}_+\). For simplicity, we assume that the capacity of all links is equal to one packet per time-slot.

We assume that all links can transmit packets simultaneously, and that all attempted transmissions are successful. Thus, our queueing model is suitable for several wireline applications (although not in the presence of “interference constraints” between links, as for example in switches).

Each link can only serve one traffic flow at any given time-slot, giving rise to flow-scheduling constraints. The set of decisions regarding which flow is scheduled through each link can be interpreted as joint scheduling and routing. A scheduling vector \(S(t)\) is feasible if:

1. \(S_{f,i,j}(t) \in \{0, 1\}\), for all \((i, j) \in L_f, \; f \in F\);
2. \(\sum_{f \in F} S_{f,i,j}(t) \leq 1\), for all \((i, j) \in L\);
3. \(\sum_{j \in \mathcal{L}} S_{f,i,j}(t) \leq Q_f(t), \; \forall i \in N_f, \; f \in F\).

A queue length-based policy is a sequence of mappings from the history of queue lengths \(\{Q(t)\}; \; \tau = 0, \ldots, t\) to scheduling decisions \(S(t), t \in \mathbb{Z}_+\). For much of the paper, we focus on a particular stationary and Markovian queue-length-based policy, the Back-Pressure policy: At each time-slot \(t\), \(S(t)\) is a feasible scheduling vector that maximizes the aggregate Back-Pressure in the network, i.e.,

\[
S(t) = \arg \max_{f \in F} \sum_{(i,j) \in \mathcal{L}_f} (Q_{f,i}(t) - Q_{f,j}(t)) S_{f,i,j}(t).
\]

If the solution is not unique, then each of the maximizing scheduling vectors is chosen with equal probability.

We note that the above description, which is referred to as Max-Pressure in [4], is slightly different from the original, and most studied, version of Back-Pressure [21]. The original policy is a greedy one, in the sense that it maximizes the “back-pressure” on individual links, one at a time. It is not hard to see that on certain occasions, namely when queues have few packets to transmit but many outgoing links, the original Back-Pressure policy may result in different scheduling decisions compared to our version. However, in the regime of large queue lengths/delays that we are interested in this paper, the two policies are indistinguishable.

With slight abuse of notation, i.e., if we now let \(S(t)\) represent the final scheduling decisions made by the Back-Pressure policy at time-slot \(t\), the dynamics of the multihop switched queueing network can be written in the following form:

\[
Q_{f,s_f}(t+1) = Q_{f,s_f}(t) - \sum_{j : (s_f,j) \in L_f} S_{f,i,j}(t) + A_f(t)
\]
follows from the findings of [4]. For a formal proof, the reader is referred to [16].

All the networks that we analyze in this paper are under the assumption of an arrival rate vector in the respective stability region. We denote by $Q_{f,i}$ the steady-state length of queue (f,i), while we reserve D_f for the steady-state end-to-end delay of traffic flow f. The dependence of these random variables on the scheduling policy that is applied has been suppressed from the notation, but will be clear from the context.

Definition 3: (Delay Stability): Traffic flow f is delay stable under a specific policy if the network is stable under that policy and $E[D_f]$ is finite; otherwise, f is delay unstable.

Similarly, queue (f,i) is stable if $E[Q_{f,i}]$ is finite, and delay unstable otherwise. We note that the latter notion of delay stability is related to the delay of packets, whereas the former to the delay of files.

Theorem 1: (Delay Instability of Heavy Tails): Consider the multihop switched queuing network described above under any scheduling policy. The source queue of every heavy-tailed flow is delay unstable. Consequently, every heavy-tailed flow is delay unstable.

Proof: Consider the best case for the source queue of a heavy-tailed flow, which is that it is served at each time-slot. Then, this queue is a discrete-time M/G/1 queue with infinite variance of service time (here, a customer is equivalent to a file). The Pollaczek–Khinchin formula [20] implies that this queue is delay unstable. Then, the BASTA property (e.g., see [15, Theorem 5]) implies that the heavy-tailed flow is delay unstable as well. This argument can be formalized in exactly the same way as in the proof of [15, Theorem 1].

Since there is little that can be done regarding the delay stability of heavy-tailed flows, we turn our attention to light-tailed traffic. It is well known that in a multihop network with just light-tailed traffic and under the Back-Pressure policy, all traffic flows are delay stable [21]. However, the existence of flow-scheduling constraints couples the evolution of different queues and flows. In what follows, we show that this coupling may cause light-tailed flows to become delay unstable, giving rise to a form of propagation of delay instability.

III. DELAY STABILITY ANALYSIS VIA FLUID MODELS

Before we proceed to the findings of this study, we briefly present the Fluid Model (FM) of the multihop network described above. Fluid models of multihop networks with fixed routing under the Back-Pressure policy have been employed in previous works in order to show stability, e.g., see [3], [11], [12], and [14]. The FM presented below is derived from that in [4], which studies a stochastic processing network (SPN) under the Max-Pressure policy. We note that the SPN in [4] is a quite general model that includes our multihop network as a special case, and which allows for multiple source–destination paths, as well as a variety of other capabilities beyond the scope of switched networks. We also state two results, from the companion paper [16], that relate fluid approximations to delay stability. We will make frequent use of these results throughout the paper since they simplify significantly our delay stability analysis. An in-depth discussion about the derivation of the FM equations and the justification of the fluid approximation (existence of fluid limit, existence and uniqueness of fluid model solution) can be found in [16].

The FM of the multihop network of Section II under the Back-Pressure policy is a deterministic dynamical system that aims to capture the evolution of its stochastic counterpart on longer timescales. Fix $T \in \mathbb{R}_+$. The FM is defined by the following relations and differential equations, for every time $t \in [0,T]$ that the derivatives exist (such t is often called a regular time):

\[
\begin{align*}
\dot{q}_{f,i}(t) &= - \sum_{j:(i,j) \in C_f} s_{f,i,j}(t) + \sum_{j:(j,i) \in C_f} s_{f,j,i}(t) + \lambda_f \cdot 1_{\{i=s_f\}} \\
q_{f,i}(t) &> 0 \quad \text{and} \quad s_{f,i,j}(t) \geq 0 \\
\sum_{j:(i,j) \in C_f} s_{f,i,j}(t) &\leq 1 \\
[f'] : q_{f,i}(t) - q_{f,j}(t) > 0 &\quad \Rightarrow \quad \sum_{j:(i,j) \in C_f} s_{f,i,j}(t) - 1 \\
[q_{f,i}(t) - q_{f,j}(t) < \max_{j:(i,j) \in C_f} \{q_{f,i}(t) - q_{f,j}(t)\}^+] &\quad \Rightarrow \quad s_{f,i,j}(t) = 0.
\end{align*}
\]

In the equations above, $i \neq d_f$, $q_{f,i}(t)$ represents the length of queue (f,i) at time t and $s_{f,i,j}(t)$ represents the amount of time that link $(i,j) \in L_f$ has been serving queue (f,i) up to time t. Equations (8)–(9) are the fluid model equations for the variant of Back-Pressure (Max-Pressure) that we use in this paper.

Our convention regarding zero queue lengths in destination nodes provides a final equation for the description of the FM

\[
q_{f,d_f}(t) = 0.
\]

Henceforth, we use the shorthand notation $q(t)$ for the set of queue lengths $\{q_{f,i}(t) : i \in N_f, f \in F\}$, and $s(t)$ for the set of scheduling decisions $\{s_{f,i,j}(t) : (i,j) \in L_f, f \in F\}$. A Lipschitz continuous function $(q(\cdot), s(\cdot))$ satisfying (4)–(10), for all $t \in [0,T]$, is called a Fluid Model Solution (FMS).

The following result illustrates how fluid models can be used for proving delay instability in the presence of heavy-tailed traffic.

Theorem 2 (Delay Instability via Fluid Models [16]): Consider the multihop network of Section II under the Back-Pressure policy, and its FM described above. Let $h \in F$ be a heavy-tailed traffic flow, and $q^*(\cdot)$ be the (necessarily unique) queue-length part of an FMS from initial condition $q^*_{f,i}(0) = 1$ and zero for every other queue. If there exists $\tau \in [0,T]$ such that $q^*_{f,i}(\tau) > 0$, then queue $(f,i) \neq (h,s_h)$ is delay unstable.

Proof (Outline): Suppose that there exists $\tau \in [0,T]$ such that $q^*_{f,i}(\tau) > 0$. The results of [4] establish the existence of a fluid limit and, consequently, of an FMS. This, together with the uniqueness of the queue-length part of an FMS (which is established in [16]) imply that after a big arrival to queue (h,s_h), queue (f,i) builds to the order of magnitude of the heavy-tailed queue with high probability. In turn, renewal theory and Little’s Law provide the desired delay instability result. For a formal proof, the reader is referred to [16].
Finally, the result that follows is helpful in proving delay stability in networks with a mix of heavy-tailed and exponential-type light-tailed traffic.

Theorem 3 (Delay Stability via Fluid Models [16]): Consider the multihop switched queueing network of Section II under the Back-Pressure policy and its FM described above. Consider also a piecewise linear function \(V : \mathbb{R}^+_J \rightarrow \mathbb{R}_+ \) of the form

\[
V(x) = \max_{j \in J} \left\{ \sum_{t \in F} c_{j,t} x_t \right\}
\]

where \(J = \{1, \ldots, J\} \) is the set of indices of the different pieces of the function, and where \(c_{j,t} \in \mathbb{R} \), for all \(j \in J, f \in F \). Suppose that there exists \(l > 0 \) such that, for every initial condition \(q(0) \) and regular time \(t \geq 0 \), the FMS satisfies \(\dot{V}(q(t)) < -l \), whenever \(V(q(t)) > 0 \). Then, there exist \(\alpha, \zeta > 0 \) and \(b_0 \in \mathbb{N} \) such that

\[
\mathbb{E}[V(Q(t+b)) - V(Q(t)) + b\zeta; V(Q(t)) > \alpha b | F_t] < 0
\]

for all \(b \geq b_0 \). This implies that the sequence \(\{V(Q(t)) \}; t \in \mathbb{Z}_+ \) converges in distribution to the random variable \(V(Q) \), where \(Q \) is the limiting distribution of \(Q(t) \).

Moreover, if \(c_{j,t} > 0 \), for some \(j \in J \), only when \(f \in F \) is an exponential-type traffic flow, then there exists \(\theta > 0 \) such that \(\mathbb{E}[\exp(\theta V(Q))] < \infty \).

Proof (Outline): The first part of the result is established by showing that if a continuous and piecewise linear Lyapunov function can be found for the FM, then the same function is a Lyapunov function for the stochastic system. The second part is established using results from [7] by showing that if this Lyapunov function has exponential-type “upward-jumps,” then its stationary version is also exponential-type, which, in turn, leads to delay stability. For a formal proof, the reader is referred to [16].

IV. DELAY STABILITY ANALYSIS OF BACK-PRESSURE

We start by analyzing the performance of the Back-Pressure policy with respect to the delay stability criterion. By means of simple examples, we investigate the role of the network topology, the routing constraints, and the arrival rates relative to link capacities on the delay stability of queues and flows. Our analysis highlights the importance of links that are allowed to serve the source queues of heavy-tailed flows, which we call bottleneck links. If \(h \in F \) is a heavy-tailed traffic flow, the set of bottleneck links associated with \(h \) is defined as follows:

\[
B_h = \{(s_h, i) : (s_h, i) \in L_h \}.
\]

To illustrate the importance of bottleneck links let us consider the simple system of Fig. 1, which includes two traffic flows, the heavy-tailed flow 1 and the light-tailed flow 2. Both flows arrive exogenously at node 1, their packets get buffered in the respective queues, eventually get transmitted through link \((1,0)\), and exit the network as soon as they reach node 0. Link \((1,0)\) is a bottleneck link since it is allowed to serve the source queue of flow 1. It is not hard to see that this model is equivalent to a single-server system of two parallel queues, where

![Fig. 1. Single-server system with two parallel queues, cast as a multihop network.](image)

The light-tailed flow 2 enters the network at node 1 and exits at node 0. The heavy-tailed flow 1 enters the network at node 2, and passing through node 1, it also exits the network at node 0. Traffic flow 2 is delay unstable under the Back-Pressure policy because it has to pass through the bottleneck link \((1,0)\).

![Fig. 2. Heavy-tailed flow 1 enters the network at node 1 and exits at node 0. The light-tailed flow 2 enters the network at node 2, and passing through node 1, it also exits the network at node 0. Traffic flow 2 is delay unstable under the Back-Pressure policy because it has to pass through the bottleneck link \((1,0)\).](image)

the Back-Pressure policy reduces to Max-Weight scheduling. Theorem 2 of [15] implies that the light-tailed flow 2 is delay unstable. The main idea behind this result is that queue \((1,1)\) is occasionally very long due to the heavy-tailed arrivals that it receives exogenously. During those time periods, flow 1 has very large differential backlog over link \((1,0)\), which implies that under the Back-Pressure policy, queue \((2,1)\) is deprived of service until it builds up a comparable backlog.

In general, light-tailed flows experience large delays whenever they have to traverse bottleneck links. Consequently, the delay performance of Back-Pressure depends crucially on the ability of light-tailed flows to avoid bottlenecks, in static or dynamic ways. This ability is dictated by a number of “system parameters,” as we show in the following.

A. Role of Network Topology

We start by illustrating the role of network topology in the delay stability of light-tailed flows. Consider the “line” network depicted in Fig. 2. The heavy-tailed flow 1 arrives exogenously at node 1, eventually gets transmitted through link \((1,0)\), and exits the network as soon as it reaches node 0. The light-tailed flow 2 arrives exogenously at node 2, eventually gets transmitted through link \((2,1)\) first, and through link \((1,0)\) next, and exits the network when it reaches node 0. We are interested in the delay stability of flow 2 under the Back-Pressure policy.

Proposition 1: Consider the network of Fig. 2 under the Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: This result is a special case of Theorem 4, which follows shortly. Here, we sketch the proof for the network topology of Fig. 2. The main idea behind it is that queue \((2,1)\) becomes very long, occasionally, because it competes with the heavy-tailed queue \((1,1)\) for link \((1,0)\). During those occasions, there are no transmissions from queue \((2,2)\) to queue \((2,1)\) under the Back-Pressure policy, unless queue \((2,2)\) builds up to the order of magnitude of the heavy-tailed queue. This leads to the delay...
Fig. 3. Both the heavy-tailed flow 1 and the light-tailed flow 2 enter the network at node 1 and exit at node 0. They are both allowed to access all links of the network. Traffic flow 2 is delay unstable under the Back-Pressure policy because it has to pass through, either link \(\{1,2\} \) or link \(\{1,3\} \), which are both bottleneck links.

instability of both queues \(\{2,1\} \) and \(\{2,2\} \), and as a result of flow 2 as well.

The reason that traffic flow 2 is delay unstable is the topology of the network, and more specifically the fact that the only source–destination path of flow 2 includes a bottleneck link. We will see shortly that this condition leads to delay instability more generally.

B. Role of Routing Constraints

We continue with the role of routing constraints. Consider the network of Fig. 3: The heavy-tailed flow 1 arrives exogenously at node 1, and may reach its destination node 0 through the path \(\{(1,2),(2,0)\} \) or through the path \(\{(1,3),(3,0)\} \). The same applies to the light-tailed flow 2. In other words, both flows have dynamic routing. We are interested in the delay stability of flow 2 under the Back-Pressure policy.

Proposition 2: Consider the network of Fig. 3 under the Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: This result is another special case of Theorem 4, so here we only sketch the proof for the network topology of Fig. 3. The main idea behind it is that whenever the heavy-tailed queue \(\{1,1\} \) receives exogenously a very large batch of packets, it creates simultaneously a very large differential backlog over links \(\{1,2\} \) and \(\{1,3\} \). Thus, under the Back-Pressure policy queue \(\{2,1\} \) will be denied access to both of those links, unless it builds up to a similar length.

The reason that traffic flow 2 is delay unstable in Fig. 3 lies in the routing constraints of the heavy-tailed flow 1, or, more accurately, the lack of constraints. By not restricting the links that flow 1 is allowed to access, both links \(\{1,2\} \) and \(\{1,3\} \) become bottleneck links. In turn, all feasible source–destination paths of flow 2 pass through bottleneck links.

Similar conclusions can be reached if we force both flows 1 and 2 to follow the same fixed route to their destination node. The insights derived from the simple examples of Figs. 1–3 can be unified in a general result. We say that traffic flow \(f \in \mathcal{F} \) has to pass through a set of links \(\mathcal{L}' \subset \mathcal{L} \), if every packet arriving at queue \(\{f,s_f\} \) must traverse one of the links in \(\mathcal{L}' \) in order to reach \(d_f \).

Clearly, whether a traffic flow has to pass through a given set of links or not depends on the network topology, the routing constraints, and the routing policy applied.

Theorem 4: Consider the multihop switched queueing network of Section II under the Back-Pressure policy. Let \(f \in \mathcal{F} \) be a light-tailed flow. If there exists a heavy-tailed flow \(h \in \mathcal{F} \) such that \(f \) has to pass through the set of bottleneck links \(B_h \), then \(f \) is delay unstable.

Proof: The proof of this result is based on Theorem 2, i.e., we study the evolution of the fluid model of the network from initial condition \(q_{h,n_1}(0) = 1 \) and zero for all other queues.

At time zero, the differential backlog of flow \(h \) over every link in \(B_h \) is 1, while the differential backlog of flow \(f \) over any of those links is zero. Moreover, the differential backlog of flow \(h \) can decrease at a rate no more than \(2 |B_h| \) (since the capacity of all links is equal to one), while the differential backlog of flow \(f \) can increase at rate no more than \(\lambda_f \). Hence, there exists \(\tau > 0 \) such that

\[
q_{h,i}(t) - q_{h,j}(t) > q_{f,i}(t) - q_{f,j}(t)
\]

for all \(t \in [0,\tau] \), for all \((i,j) \in B_h \). Equation (7) implies that flow \(f \) receives none of the available capacity of links in \(B_h \) during \([0,\tau] \) under the Back-Pressure policy. Therefore, the traffic of flow \(f \) that arrives exogenously at queue \(\{f,s_f\} \) cannot move past queue \(\{f,s_h\} \) during the interval \([0,\tau] \).

Now it is useful to view the total traffic of flow \(f \) between the source node \(s_f \) and the bottleneck node \(s_h \) (the source node of flow \(h \)) as one fictitious queue, whose length at time \(t \) is denoted by \(\bar{q}_f(t) \). The argument above implies that this queue has arrivals at rate \(\lambda_f > 0 \) and no departures during the interval \([0,\tau]\). Hence, \(\bar{q}_f(\tau) = \lambda_f \tau > 0 \), so according to Theorem 2 the fictitious queue is delay unstable. This also implies the delay instability of flow \(f \) since the delay experienced in the fictitious queue bounds from below the end-to-end delay, sample path-wise.

C. Role of Link Capacities

In this section, we illustrate the impact of link capacities, relative to the arrival rates, on the delay stability of light-tailed flows. Let us consider a variation of the network of Fig. 3, where the heavy-tailed flow 1 has to reach node 0 through the path \(\{(1,2),(2,0)\} \), whereas the light-tailed flow 2 can access all links.

Let us first look at the case where \(\lambda_1,\lambda_2 < 1 \). The importance of this assumption lies in the fact that, with high probability, it allows flow 2 to route all its traffic through the path \(\{(1,3),(3,0)\} \) whenever the path of the heavy-tailed flow is congested.

Proposition 3: Consider the network of Fig. 3 under the Back-Pressure policy, where flow 1 has fixed routing, along the path \(\{(1,2),(2,0)\} \), and flow 2 has dynamic routing. If the arrival rates satisfy \(\lambda_1,\lambda_2 < 1 \), then traffic flow 2 is delay stable.

Proof: Without loss of generality, we assume that all queues are empty at time-slot zero. First, notice that no more
than one packet per time-slot arrives at nodes 2 and 3 because
that is the capacity of links \((1, 2)\) and \((1, 3)\). Moreover, traffic
departs from each of these nodes at rate of one packet per
time-slot, as long as there are packets waiting for transmission.
This is due to the fact that both flows exit the network at node 0,
so whenever packets are available, there is positive differential
backlog over links \((2, 6)\) and \((3, 0)\). Therefore, it can be easily verified
that
\[
Q_{2,i}(t) \leq 1 \quad \forall t \in \mathbb{Z}_+, \quad \forall i \in \{2, 3\}.
\]

Furthermore, Lemma 1 implies that the queue-length pro-
cesses \(\{Q_{2,2}(t); t \in \mathbb{Z}_+\}\) and \(\{Q_{2,3}(t); t \in \mathbb{Z}_+\}\) converge to
some limiting distributions \(Q_{2,2}\) and \(Q_{2,3}\), respectively. Hence
\[
F[Q_{2,i}] < 1 \quad \forall i \in \{2, 3\}.
\]

Little’s Law implies that both queues \((2, 2)\) and \((2, 3)\) are
delay stable. In order to show that flow 2 is delay stable, it suf-
fices to show that queue \((2, 1)\) is delay stable as well.

Link \((1, 3)\) is allowed to transmit only packets of flow 2, and,
as we showed above, the length of queue \((2, 3)\) is never more
than one packet. Hence, under the Back-Pressure policy
\[
Q_{2,1}(t) > 1 \iff S_{2,1,3}(t) = 1, \quad \forall t \in \mathbb{Z}_+.
\]

Consider the candidate Lyapunov function \(V(t) = Q_{2,1}^2(t)\).
Through simple algebra, it can be verified that
\[
\begin{align*}
E[V(t + 1) - V(t); V(t) > 1] & \\
& \leq -2E[(S_{2,1,3}(t) + S_{2,1,3}(t) - A_2(t))Q_{2,1}(t); V(t) > 1] \\
& + E[(A_2(t) + 2)^2; V(t) > 1] \\
& \leq 2E[(S_{2,1,3}(t) - A_2(t))Q_{2,1}(t); V(t) > 1] \\
& + E[(A_2(t) + 2)^2; V(t) > 1] \\
& = (-2(1 - \lambda_2)Q_{2,1}(t) + E[(A_2(t) + 2)^2]) \cdot 1\{Q_{2,1}(t) > 1\}.
\end{align*}
\]
(We recall that \(\mathcal{F}_t\) is the \(\sigma\)-algebra generated by
\(Q(0), A(0), \ldots, Q(t - 1), A(t - 1), Q(t)\).)

Notice that \(\lambda_2 < 1\), \(E[A_2(t)] < \infty\), and \(\{Q_{2,1}(t) \leq 1\}\)
is a finite set. Then, the Foster–Lyapunov stability criterion
and moment bound (e.g., see [8, Corollary 2.1.5]) implies that
\(E[Q_{2,2}] < \infty\). Thus, all queues of flow 2 are delay stable,
implying that traffic flow 2 is delay stable.

Now let us consider the case where \(\lambda_2 > 1\). It is intuitively
clear that irrespective of the specific routing decisions made at
each time-slot, a nonvanishing fraction of the traffic of flow 2
has to pass through the bottleneck link \((1, 2)\). This fraction of
the traffic experiences large delays under the Back-Pressure policy,
which implies that the delays of flow 2 are, on average, large as
well.

Proposition 4: Consider the network of Fig. 3 under the
Back-Pressure policy, where flow 1 has fixed routing, along the path \((1, 2), (2, 0)\), and flow 2 has dynamic routing. If \(\lambda_2 > 1\),
then traffic flow 2 is delay unstable.

Proof: We will make use of Theorem 2, i.e., we will con-
sider the FM of the network of Fig. 3, with initial conditions
\(q_{1,1}(0) = 1\) and zero for all other queues. Equation (7) implies
the existence of \(\tau > 0\), such that \(\dot{q}_{2,1,2}(t) = 0\) for all \(t \in [0, \tau]\).
In turn, (4) and (6) imply that
\[
\dot{q}_{2,1}(t) = \lambda_2 - 1 > 0 \quad \forall t \in [0, \tau].
\]

Therefore, \(q_{2,1}(\tau) > 0\), which implies that queue \((2, 1)\) is delay
unstable according to Theorem 2. Consequently, flow 2 is delay
unstable since its end-to-end delay is bounded from below by
the delay experienced in its source queue.

D. Impact of Heavy Tails on Cross-Traffic

Consider the multihop network of Fig. 4, which includes three
traffic flows: the heavy-tailed flow 1 and the light-tailed flows 2
and 3. The source of flow 1 is node 2, whereas the source of
flows 2 and 3 is node 1. The destination of flows 1 and 2 is
node 3, whereas the destination of flow 3 is node 4.

Clearly, traffic flow 2 is delay unstable because it has to pass
through the bottleneck link \((2, 3)\). Thus, the remaining question
concerns the delay stability of flow 3, which serves as cross-
traffic to flow 2. The following results establish that flow 3 has
a nontrivial delay stability region and provide a sharp charac-
terization of it.

Proposition 5: Consider the network of Fig. 4 under the
Back-Pressure policy. If \(\lambda_3 > (2 + \lambda_1 - 2\lambda_2)/3\), then traffic
flow 3 is delay unstable.

Proof (Outline): The proof of this result is based on
Theorem 2, i.e., we study the evolution of the fluid model of the
network of Fig. 4, from initial condition \(q_{3,1}(0) = 1\) and zero
for all other queues. We show that there exists \(\tau > 0\) such that
\(q_{3,1}(\tau) > 0\), which implies the delay instability of the source
queue of flow 3 and, thus, the delay instability of flow 3 itself.
A detailed proof can be found in Appendix I.

Proposition 6: Consider the network of Fig. 4 under the
Back-Pressure policy. If \(\lambda_3 < (2 + \lambda_1 - 2\lambda_2)/3\) and flows 2
and 3 are exponential-type, then traffic flow 3 is delay stable.

Proof (Outline): The proof of this result relies on
Theorem 3, i.e., we show that the function
\[
H(q(t)) = V(q(t)) + G(q(t))
\]
where
\[
V(q(t)) = \max\{q_{3,1}(t) - q_{3,2}(t)^+, q_{2,1}(t) - q_{2,2}(t)^+\}
\]
\[
= \max\{q_{3,1}(t), [q_{2,1}(t) - q_{2,2}(t)]^+\}
\]
and

\[G(q(t)) = |q_{2,2}(t) - q_{1,2}(t)|^+ \]

is a Lyapunov function for the FM of the network of Fig. 4. Note that this function is also continuous, piecewise linear, and has exponential-type “upward-jumps” in the stochastic domain because flows 2 and 3 are assumed to be exponential-type. Thus, the steady-state length of queue (3, 1) is exponential-type and, consequently, flow 3 is delay stable. A detailed proof can be found in Appendix II.

The above example illustrates that under the Back-Pressure policy, heavy-tailed flows may affect light-tailed flows directly, if the latter have to pass through bottleneck links, or indirectly, if they serve as cross-traffic to other light-tailed flows that have become delay unstable.

E. Role of Intersecting Paths

Finally, consider the network of Fig. 5: The heavy-tailed flow 1 enters the network at node 1 and exits the network as soon as it reaches node 5. Flow 1 is allowed to access all links in the network. Queues (1, 2), (1, 3), and (1, 4) are delay unstable under the Back-Pressure policy because the two alternative paths of flow 1 intersect.

Proposition 7: Consider the network of Fig. 5 under the Back-Pressure policy. All queues are delay unstable.

Proof: Again, we make use of Theorem 2 to simplify the proof of this result. More specifically, we consider the fluid model of the network of Fig. 5 from initial condition \(q_{1,1}(0) = 1 \) and zero for all other queues. Since queues (1, 2) and (1, 3) cannot grow at rate higher than one (the capacity of the respective links), there exists \(\tau > 0 \) such that \(q_{1,1}(t) > q_{1,2}(t) \) and \(q_{1,1}(t) > q_{1,3}(t) \), for all \(t \in [0, \tau] \). Equations (6) and (7) imply that

\[\dot{q}_{1,1,2}(t) = \dot{q}_{1,1,3}(t) = 1 \quad \forall t \in [0, \tau]. \]

On the other hand, \(\dot{q}_{1,4,5}(t) = 1 \), for all \(t \in [0, \tau] \), so it is clear that on aggregate traffic is accumulating at rate one between queues (1, 2), (1, 3), and (1, 4) during that interval. As a consequence of (7), it follows that traffic does not flow from node 2 (or 3) to 4 when the queue length at node 2 (or 3) exceeds that of node 4. As a result, the three queues grow at the same rate, i.e., \(\dot{q}_{1,2}(t) = \dot{q}_{1,3}(t) = \dot{q}_{1,4}(t) = 1/3 \), for all \(t \in [0, \tau] \). Therefore, \(q_{1,2}(\tau) = q_{1,3}(\tau) = q_{1,4}(\tau) = \tau/3 \), so all three queues are delay unstable according to Theorem 2.

In contrast, if node 4 was the destination node of flow 1, then it is easy to show that queues (1, 2) and (1, 3) would have become delay stable. Thus, it is precisely the intersection of paths, combined with the dynamics imposed by Back-Pressure, that causes the delay instability.

Theorem 1 states that the traffic of heavy-tailed flows experiences large end-to-end delays overall, and definitely at the source queues. Whether these large delays are experienced only at the source queues, or at several other queues as well, is not as important from a practical standpoint. What is important, though, is the case of intersecting paths in networks with multiple flows. There, the delay unstable queues that are created by the intersecting paths may cause cross-traffic light-tailed flows to be delay unstable, similarly to the network of Fig. 4. We conjecture that, again, the delay stability of cross-traffic flows depends on the exact values of the arrival rates.

V. BACK-PRESSURE-\(\alpha \) POLICY

The results and discussion presented above suggest that the Back-Pressure policy may perform poorly in the presence of heavy-tailed traffic. The reason is that by treating heavy-tailed and light-tailed flows “equally,” there are long stretches of time during which the source queues of heavy-tailed flows dominate the service. This creates bottleneck links, which, in turn, may affect the delay stability of light-tailed flows directly or indirectly.

Intuitively, by discriminating against heavy-tailed flows, one should be able to eliminate bottlenecks and improve the overall performance of the network. One way to do this would be by giving preemptive priority to light-tailed flows. However, priority policies are undesirable because of fairness considerations, and also because they can be unstable in many network settings [10].

Motivated by the Max-Weight-\(\alpha \) scheduling policy, studied in [15] in the context of single-hop networks, here we consider the Back-Pressure-\(\alpha \) policy: Instead of comparing the differential backlogs of the various flows, we compare the differential backlogs raised to different \(\alpha \)-powers, smaller for heavy-tailed
flows and larger for light-tailed flows. In that way, we give partial priority to light-tailed flows.

More concretely, fix \(\alpha_f > 0 \), for every traffic flow \(f \in \mathcal{F} \). Under the Back-Pressure-\(\alpha \) policy, \(S(t) \) is a feasible scheduling vector that maximizes the aggregate \(\alpha \)-weighted Back-Pressure in the network, i.e.,

\[
S(t) \in \arg \max \sum_{f \in \mathcal{F}} \sum_{i,j \in \mathcal{E}_f} \left(Q_{f,i}^\alpha(t) - Q_{f,j}^\alpha(t) \right) S_{f,i,j}(t).
\]

If the solution is not unique, then each of the maximizing scheduling vectors is chosen with equal probability.

Before we state our main result regarding the Back-Pressure-\(\alpha \) policy, we make an additional assumption: The set of links that flow \(f \) is allowed to access, \(\mathcal{L}_f \), together with the associated nodes form a directed acyclic graph (DAG) in which nodes \(s_f \) and \(d_f \) are the only source and sink nodes, respectively. While most of the proof of Theorem 5 goes through without it, the DAG assumption is required in the derivation of (23), which helps translate the admissibility of the arrivals into negative drift of the considered Lyapunov function.

Theorem 5: Consider the multihop switched queueing network of Section II with the additional DAG assumption, under the Back-Pressure-\(\alpha \) policy. If \(E \left[A_f^{\alpha, t+1} \right] \) is finite, for all \(f \in \mathcal{F} \), then the network is stable and

\[
\sum_{f \in \mathcal{F}} \sum_{i \in N_f} E \left[Q_{f,i}^\alpha(t) \right] < \infty.
\]

Proof: See Appendix III.

Corollary 1: (Delay Stability Under Back-Pressure-\(\alpha \)): Consider the multihop network of Section II with the additional DAG assumption, under the Back-Pressure-\(\alpha \) policy. If the \(\alpha \)-parameters of all light-tailed flows are equal to one, and the \(\alpha \)-parameters of heavy-tailed flows are sufficiently small, then all light-tailed flows are delay stable.

Proof: We recall our standing assumption that all traffic flows have \((1 + \gamma) \) moments, for some \(\gamma > 0 \). If the \(\alpha \)-parameters of all light-tailed flows are equal to one, and the \(\alpha \)-parameters of heavy-tailed flows are less than \(\gamma \), then Theorem 5 and Little’s Law imply that every queue of every light-tailed flow is delay stable. The linearity of expectations implies the delay stability of all light-tailed flows.

Combining Corollary 1 with Theorem 1, we conclude that the Back-Pressure-\(\alpha \) policy achieves the best possible performance with respect to the delay stability criterion, provided the \(\alpha \)-parameters are suitably chosen.

A special case of the Back-Pressure-\(\alpha \) policy has been considered by Bui et al. [2], where all \(\alpha \)-parameters take the same value. We note that their setting includes just light-tailed traffic and, additionally, the existence of congestion controllers. Thus, the insight that smaller parameter values should be used for heavy-tailed flows, so that light-tailed flows are given some form of priority, does not arise in their setting.

VI. RELATIONSHIP TO PRIOR WORK

The present paper naturally builds upon and extends previous works that have analyzed single-hop networks with heavy-tailed traffic under Max-Weight-type policies [9], [15]. As a consequence, certain similarities with existing literature can be found at the technical level, e.g., sample path arguments are used to prove delay instability under Max-Weight and Back-Pressure; drift analysis of \(\alpha \)-weighted Lyapunov functions is used to prove delay stability under Max-Weight-\(\alpha \) and Back-Pressure-\(\alpha \). Moreover, some parallels can be drawn in terms of high-level insights, e.g., a light-tailed flow passing through a bottleneck link resembles, to some extent, the notion of conflict between heavy-tailed and light-tailed flows, cf. [15, Theorem 2]; the fact that light-tailed flows must be given some form of priority over heavy-tailed traffic is the main reason that both the Back-Pressure-\(\alpha \) policy and the Max-Weight-\(\alpha \) policy perform well. However, the concrete insights that we derived regarding the impact of network topology, routing constraints, and link capacities on the delay performance of Back-Pressure policies, and the corresponding “network design guidelines,” are meaningful only in a multihop setting and, thus, novel compared to prior work on single-hop networks.

In terms of methodology, by employing the advanced machinery of fluid approximations for delay stability analysis developed in the companion paper [16], we are able to obtain results that would have been difficult to prove through the direct stochastic analysis adopted in prior works, e.g., Propositions 5 and 6. Moreover, the drift analysis of piecewise linear Lyapunov functions, such as the one we introduce in the proof of Proposition 6, provides a systematic way for the delay analysis of the Back-Pressure policy in networks with a mix of heavy-tailed and exponential-type traffic.

In this work, we have attempted to illustrate the behavior of multihop networks with heavy-tailed traffic under Back-Pressure policies in the clearest and most concrete way. Thus, we focused on phenomena and insights whose origin is precisely the multihop nature of the network and the corresponding flow-scheduling constraints. We believe the behavior of more complex network models that include a combination of flow-scheduling and link-scheduling constraints, can be understood in terms of the insights derived here as well as in previous papers. For example, [15, Theorem 2] implies that if a link conflicts with a bottleneck link, then it becomes a bottleneck link itself. As another example, we expect that the Back-Pressure-\(\alpha \) policy performs well even in multihop networks with link-scheduling constraints, at least for arrival rates that can be stably supported by these networks.

VII. CONCLUSION

The main objective of this paper was to obtain insights on the delay performance of multihop networks with heavy-tailed traffic under the widely studied class of Back-Pressure policies. Our analysis highlighted the significance of “bottleneck links,” i.e., links that are allowed to serve the source queues of heavy-tailed traffic flows. The fundamental insight was that traffic flows that have to pass through bottleneck links experience large delays under Back-Pressure. We then investigated reasons that may force a light-tailed flow to pass through a bottleneck link, identifying the following: 1) the network topology, i.e., the source–destination paths that the network offers to the given flow; 2) the routing constraints, i.e., the \(a \) priori decisions.
regarding which links the particular flow is allowed to traverse; 3) the link capacities relative to the arrival rates, i.e., whether the combined capacity of nonbottleneck paths is sufficient to support the arrival rate of the flow.

These insights can be interpreted as rough “network design guidelines.” For example, in a multihop network under the Back-Pressure policy, heavy-tailed flows should be relatively constrained in terms of the links that they are allowed to access, whereas the network should provide multiple source–destination paths to light-tailed flows; the latter flows should be left unconstrained to dynamically find their way around heavy-tailed traffic. Moreover, these alternate paths should have enough capacity to support the rates of light-tailed traffic. In contrast, leaving heavy-tailed flows unconstrained while forcing light-tailed flows to compete with them could be detrimental to the overall delay performance of the network.

An alternative way to achieve good delay performance in a multihop network with heavy-tailed traffic is through the parameterized Back-Pressure-α policy. We showed that this policy can delay stabilize all light-tailed flows in the network, provided that its α-parameters are chosen suitably. In order to pick appropriate parameter values, though, some knowledge of higher order moments of the different traffic flows is required.

The results of this paper were consistently presented in terms of delay stability, a rather crude performance metric that attempts to capture the notion of large delays in a binary manner. However, many of them can be significantly refined. For instance, if we generalize the notion of a heavy-tailed flow to be one that has infinite $(k + 1)$st moment of arrivals, for some $k \in \mathbb{N}$, then any light-tailed flow that has to pass through the bottleneck links of a heavy-tailed flow has infinite kth moment of steady-state aggregate queue length under the Back-Pressure policy; this can be established through a straightforward extension of Theorem 2. Under certain regularity assumptions, this approach could also give lower bounds on queue length asymptotics. Moreover, regarding networks with a mix of heavy-tailed and exponential-type traffic, delay stability can be proved via drift analysis of piecewise linear Lyapunov functions. As Theorem 3 suggests, this type of analysis guarantees not only the delay stability of light-tailed flows, but also exponential upper bounds on the respective steady-state queue-length asymptotics; see [7, Theorem 2.3].

Finally, while strictly speaking the existence of heavy-tailed traffic, i.e., arrival processes with infinite variance, could be a subject of debate, our results can be directly interpreted in the context of a network with a mix of bursty and nonbursty traffic, a setting that is prevalent in data communication networks.

APPENDIX I

Proof of Proposition 5

The proof of this result is based on Theorem 2, i.e., we study the evolution of the fluid model of the network of Fig. 4, from initial condition $q_{1,2}(0) = 1$ and zero for all other queues. We distinguish between two phases in the evolution of the (fluid) system.

In the first phase, the length of queue $(1, 2)$ is greater than the length of queue $(2, 2)$; due to the initial conditions, so (7) implies that the service capacity of link $(2, 3)$ is allocated solely to flow 1. Moreover, link $(2, 4)$ transmits only traffic of flow 3, which results in queue $(3, 2)$ being always empty. Equation (7) implies that Back-Pressure splits the service capacity of link $(1, 2)$ in such a way so that the differential backlogs of flows 2 and 3 over that link remain the same, i.e., zero. Consequently, queues $(2, 1)$ and $(2, 2)$ build up together and at a constant rate throughout this phase. In mathematical terms, (4) implies that $q_{1,2}(t) < 0$, whereas $q_{2,2} - q_{2,1}(t) > 0$. Therefore, there exists $\tau' > 0$ such that $q_{1,2}(\tau') - q_{2,2}(\tau') - q_{2,1}(\tau') > 0$.

In the second phase, the differential backlog of flows 1 and 2 over link $(2, 3)$ is the same, so (7) implies that this link serves both flows simultaneously until one of the two queues empties. Throughout this interval, the arrival and service rates need to satisfy the following linear system:

$$\begin{align*}
(\lambda_2 - \delta_{2,1,2}(t)) - (\delta_{2,1,2}(t) - \delta_{2,2,3}(t)) = \lambda_3 - \delta_{3,1,2}(t) \\
\lambda_1 - \delta_{2,1,3}(t) = \delta_{2,1,2}(t) - \delta_{2,2,3}(t) \\
\delta_{2,1,2}(t) + \delta_{1,1,2}(t) = 1 \\
\delta_{1,1,3}(t) + \delta_{2,2,3}(t) = 1.
\end{align*}$$

Equation (11) follows from (7) and is due to the fact that the Back-Pressure policy tries to keep the differential backlogs of flows 2 and 3 over link $(1, 2)$ the same. We note that queue $(3, 2)$ remains zero throughout both phases, so that the rate of change of its length is also zero. Equation (12) follows from a similar argument for link $(2, 3)$. Equations (13) and (14) result from (6).

The above equations and some simple algebra imply that

$$\delta_{3,1,2}(t) = \frac{2 + \lambda_1 - 2\lambda_2 + 2\lambda_3}{5}.$$

Therefore

$$\lambda_3 > \delta_{3,1,2}(t) \iff \lambda_3 > \frac{2 + \lambda_1 - 2\lambda_2}{3}.$$

Finally, notice that the duration of the second phase is bounded away from zero since the queue lengths $q_{1,2}(\tau')$ and $q_{2,2}(\tau')$ are also bounded away from zero. Therefore, if $\lambda_3 > (2 + \lambda_1 - 2\lambda_2)/3$, then there exists $\tau > \tau'$ such that $q_{3,1}(t) > 0$, for all $t \in [\tau', \tau]$, because of (4). Therefore, $q_{3,1}(\tau) > 0$, which implies that queue $(3, 1)$ is delay unstable according to Theorem 2. Flow 3 is, thus, delay unstable since the delay experienced in the source queue bounds from below the end-to-end delay.

APPENDIX II

Proof of Proposition 6

Consider the candidate Lyapunov function for the FM

$$H(q(t)) = V(q(t)) + G(q(t))$$

where $G(q(t)) = q_{2,2}(t) - q_{1,2}(t)^+$ and

$$V(q(t)) = \max \left\{ \left[q_{3,1}(t) - q_{3,2}(t) \right]^+, \left[q_{2,1}(t) - q_{2,2}(t) \right]^+ \right\}.$$

Note that this function is continuous, piecewise linear, and has exponential-type “upward-jumps” in the stochastic domain, because flows 2 and 3 are assumed to be exponential-type. Thus, by means of Theorem 3, it suffices to show that $H(\cdot)$ is, indeed, a Lyapunov function for the FM.
Our proof strategy is as follows. First, we distinguish cases regarding the derivatives of the two terms of \(H(\cdot) \): cases (a), (b), and (c) pertaining to term \(V(\cdot) \), cases (1), (2), and (3) pertaining to term \(G(\cdot) \). Then, we combine these cases to compute the derivative of \(H(\cdot) \) in the different regions of the state space.

Case (a): If \(q_{3,1}(t) > [q_{2,1}(t) - q_{2,2}(t)]^+ \), then \(V(q(t)) = q_{3,1}(t) > 0 \), which implies that
\[
\dot{V}(q(t)) = \lambda_3 - 1 < 0.
\]

Case (b): If \(q_{3,1}(t) < [q_{2,1}(t) - q_{2,2}(t)]^+ \), then \(V(q(t)) = q_{2,1}(t) - q_{2,2}(t) > 0 \), which implies that
\[
\dot{V}(q(t)) = (\lambda_2 - 1) - (\dot{s}_{2,2,3}(t) - \dot{s}_{2,1,2}(t)) = \lambda_2 - \lambda_1 - 2 < 0.
\]

Case (c): If \(q_{3,1}(t) = [q_{2,1}(t) - q_{2,2}(t)]^+ \), then \(V(q(t)) = q_{3,1}(t) = q_{2,1}(t) - q_{2,2}(t) \), which implies that
\[
\dot{V}(q(t)) = \lambda_3 - \dot{s}_{3,1,2}(t) - (\dot{s}_{2,1,2}(t) - \dot{s}_{2,2,3}(t))
\]
where the service rates satisfy (11).

Case (1): If \(q_{2,2}(t) > q_{1,2}(t) \), then \(G(q(t)) = q_{2,2}(t) - q_{1,2}(t) > 0 \), which implies that
\[
\dot{G}(q(t)) = \dot{s}_{1,2,1}(t) - \lambda_2 < 0.
\]

Case (2): If \(q_{2,2}(t) < q_{1,2}(t) \), then \(G(q(t)) = 0 \), and also
\[
\dot{G}(q(t)) = 0.
\]

Case (3): If \(q_{2,2}(t) = q_{1,2}(t) \), then \(G(q(t)) = 0 \), but now
\[
\dot{G}(q(t)) = \dot{s}_{2,1,2}(t) - \dot{s}_{2,2,3}(t) - (\lambda_3 - \dot{s}_{1,2,3}(t)) = 0
\]
according to (12).

Now, in order to show that \(H(\cdot) \) is a Lyapunov function for the FM, we have to show that its derivative is negative and bounded away from zero in all nine regions of the state space, whenever \(H(\cdot) \) is greater than zero. We note that the stability conditions in this example translate to \(\lambda_1 + \lambda_2 < 1 \) and \(\lambda_2 + \lambda_3 < 1 \).

Region (a,1):
\[
\dot{G}(q(t)) = \lambda_3 - 1 - \dot{s}_{2,1,2}(t) - \lambda_1 - \lambda_3 - \dot{s}_{2,2,3}(t) - \dot{\lambda}_1 < 0.
\]

Region (a,2):
\[
\dot{G}(q(t)) = \lambda_3 - 1 < 0;
\]

Region (a,3):
\[
\dot{G}(q(t)) = \lambda_3 - 1 < 0;
\]

Region (b,1):
\[
\dot{G}(q(t)) = \lambda_3 + \dot{s}_{2,1,2}(t) - \dot{s}_{2,2,3}(t) - \dot{\lambda}_1 < 0.
\]

Region (b,2):
\[
\dot{G}(q(t)) = \lambda_3 + \dot{s}_{2,2,3}(t) - \dot{\lambda}_1 < 0;
\]

Region (b,3):
\[
\dot{G}(q(t)) = \lambda_3 + \dot{s}_{2,2,3}(t) - \dot{\lambda}_1 < 0;
\]

Region (c,1):
\[
\dot{G}(q(t)) = \lambda_3 - \dot{s}_{2,1,2}(t).
\]

We note that in this region we have that \(q_{3,1}(t) = [q_{2,1}(t) - q_{2,2}(t)]^+ \), thus \(s_{2,1,2}(t) \) satisfies (11) and (13) with \(s_{2,1,2}(t) = 1 \). The solution to this linear system gives \(s_{2,1,2}(t) = (2 + \lambda_2 - \lambda_3)/3 \), which implies that
\[
\dot{G}(q(t)) = \lambda_3 - \dot{s}_{2,1,2}(t) = \frac{2 + \lambda_2 - \lambda_3}{3} < 0.
\]

Region (c,2):
\[
\dot{G}(q(t)) = \lambda_3 - 2 \dot{s}_{2,1,2}(t).
\]

Here, we have to assume that \(q_{3,1}(t) = [q_{2,1}(t) - q_{2,2}(t)]^+ > 0 \), otherwise \(H(\cdot) \) would have zero value. Thus, \(s_{2,1,2}(t) \) satisfies (11) and (13) with \(s_{2,1,2}(t) = 0 \). The solution to this linear system gives \(s_{2,1,2}(t) = (1 + \lambda_2 - \lambda_3)/3 \), which implies that
\[
\dot{G}(q(t)) = \lambda_3 - \frac{2 + 2\lambda_2 - 2\lambda_3}{3} = \frac{-2 + 2\lambda_2 + 2\lambda_3}{3} < 0.
\]

Region (c,3): \(\dot{G}(q(t)) = \lambda_3 - \dot{s}_{3,1,2}(t) \).

Similarly to the previous case, we have to assume that \(q_{3,1}(t) = [q_{2,1}(t) - q_{2,2}(t)]^+ > 0 \), otherwise \(H(\cdot) \) would have zero value. Thus, \(s_{3,1,2}(t) \) satisfies (11)–(14). The solution to this linear system, as we saw in Proposition 6, gives \(s_{3,1,2}(t) = (2 + \lambda_1 - 2\lambda_2 + 2\lambda_3)/5 \), which implies that
\[
\dot{G}(q(t)) < 0
\]
precisely when \(\lambda_5 < (2 + \lambda_1 - 2\lambda_2)/3 \).

Appendix III

Proof of Theorem 5

Under the dynamics induced by the Back-Pressure-\(\alpha \) policy, the sequence \(\{Q(t); t \in \mathbb{Z}_+\} \) is a time-homogeneous, irreducible, and aperiodic Markov chain on a countable state space. We will show that this Markov chain is also positive recurrent, and we will obtain moment bounds on the steady-state queue lengths, through drift analysis of the candidate Lyapunov function
\[
V(Q(t)) = \sum_{f \in F} \sum_{i \in N_f} \frac{1}{a_f + 1} Q^{\alpha_f + 1}(t).
\]

Throughout the proof, we use the shorthand notation
\[
T_{f,i}(t) = \sum_{j \in \{1, \ldots, c\}_{f,i}} S_{f,i,j}(t)
\]
for the departures from queue \((f, i) \), and
\[
R_{f,i}(t) = \sum_{j \in \{1, \ldots, c\}_{f,i}} S_{f,i,j}(t) + A_f(t) \cdot 1_{\{i \in \mathcal{S}_f\}}
\]
for the arrivals at queue \((f, i) \), at time-slot \(t \).

Moreover, we let
\[
V_{f,i}(Q(t)) = \frac{1}{a_f + 1} Q^{\alpha_f + 1}(t).
\]

The Lyapunov function can be written in the form
\[
V(Q(t)) = \sum_{f \in F} \sum_{i \in N_f} V_{f,i}(Q(t))
\]
which implies that
\[
E \left[V(Q(t + 1)) - V(Q(t)) \right] \mathcal{F}_t
\]
\[
= \sum_{f \in F} \sum_{i \in N_f} E \left[V_{f,i}(Q(t + 1)) - V_{f,i}(Q(t)) \middle| \mathcal{F}_t \right].
\]

We will perform the drift analysis of function \(V(\cdot) \) by upper-bounding the terms on the right-hand side of (15).

Using the notation above and the dynamics of the multihop network, we have that
\[
E \left[V_{f,i}(Q(t + 1)) \middle| \mathcal{F}_t \right] \leq \frac{1}{a_f + 1} (Q_{f,i}(t) + \Delta_{f,i}(t))^{\alpha_f + 1}
\]
(16)
\[\Delta f_{ij}(t) = R_{f_{ij}}(t) - T_{f_{ij}}(t). \]

Now we distinguish between three cases:

1) if \(i = d_f \) then (3) implies that
\[E \left[V_{f_{ij}}(Q(t + 1)) - V_{f_{ij}}(Q(t)) \mid F_t \right] = 0; \quad (17) \]

2) if \(i \neq d_f \) and \(\alpha_f < 1 \), then we consider the zeroth-order Taylor expansion of the right-hand side of (16) about \(Q_{f_{ij}}(t) \)
\[\frac{1}{\alpha_f + 1} (Q_{f_{ij}}(t) + \Delta f_{ij}(t))^{\alpha_f + 1} + \frac{\alpha_f}{2} \cdot \xi^{\alpha_f - 1} \]
which implies that
\[E \left[V_{f_{ij}}(Q(t + 1)) \mid F_t \right] \leq V_{f_{ij}}(Q(t)) + E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right]. \]

Consider the event \(\Gamma_{f_{ij}}(t) = \{ \Delta f_{ij}(t) < 0 \} \) and its complement. The expression above can be written in the form
\[E \left[V_{f_{ij}}(Q(t + 1)) \mid F_t \right] \leq V_{f_{ij}}(Q(t)) + E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right]. \]

Note that \(Q_{f_{ij}}(t), R_{f_{ij}}(t), \) and \(T_{f_{ij}}(t) \) are nonnegative integers, \(T_{f_{ij}}(t) \leq Q_{f_{ij}}(t) \), and \(T_{f_{ij}}(t) \leq d_{\text{max}} \), where \(d_{\text{max}} \) is the maximum number of outgoing edges of any node in \(G \). It can be verified that
\[(Q_{f_{ij}}(t) + R_{f_{ij}}(t))^{\alpha_f} \leq Q_{f_{ij}}^{\alpha_f}(t) + R_{f_{ij}}^{\alpha_f}(t) \]
and
\[(Q_{f_{ij}}(t) - T_{f_{ij}}(t))^{\alpha_f} > Q_{f_{ij}}^{\alpha_f}(t) - d_{\text{max}}^{\alpha_f}. \]

Using these inequalities, we can write
\[E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] \leq E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] + E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right]. \]

Considering the event \(\Gamma_{f_{ij}}(t) = \{ \Delta f_{ij}(t) < 0 \} \) and its complement, the expression above can be written in the form
\[E \left[V_{f_{ij}}(Q(t + 1)) \mid F_t \right] \leq V_{f_{ij}}(Q(t)) + E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right]. \]

Thus, for every \(y_{f_{ij}} > 0 \) there exists a constant \(c_{f_{ij}}(y_{f_{ij}}) \) such that
\[\frac{1}{2} E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] \leq y_{f_{ij}} \cdot Q_{f_{ij}}^{\alpha_f}(t) + c_{f_{ij}}(y_{f_{ij}}). \]

Consequently
\[E \left[V_{f_{ij}}(Q(t + 1)) - V_{f_{ij}}(Q(t)) \mid F_t \right] \leq E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] + y_{f_{ij}} \cdot Q_{f_{ij}}^{\alpha_f}(t) + c_{f_{ij}}(y_{f_{ij}}). \]

Equations (15) and (17)–(19) imply that, for every \(\delta > 0 \), there exist constants \(c_{f_{ij}}(\delta), i \in N_f, f \in F \), such that
\[E \left[V(Q(t + 1)) - V(Q(t)) \mid F_t \right] \leq 0 \]
which implies that
\[E \left[V_{f_{ij}}(Q(t + 1)) - V_{f_{ij}}(Q(t)) \mid F_t \right] \leq E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] + c_{f_{ij}}(y_{f_{ij}}) \]

3) if \(i \neq d_f \) and \(\alpha_f \geq 1 \), then we consider the first-order Taylor expansion of the right-hand side of (16) about \(Q_{f_{ij}}(t) \)
\[\frac{1}{\alpha_f + 1} (Q_{f_{ij}}(t) + \Delta f_{ij}(t))^{\alpha_f + 1} + \frac{\alpha_f}{2} \cdot \xi^{\alpha_f - 1} \]
which implies that
\[E \left[V_{f_{ij}}(Q(t + 1)) \mid F_t \right] \leq V_{f_{ij}}(Q(t)) + E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] + \frac{\alpha_f}{2} \cdot \xi^{\alpha_f - 1} \]
for some \(\xi \in [Q_{f_{ij}}(t) - T_{f_{ij}}(t), Q_{f_{ij}}(t) + R_{f_{ij}}(t) \] and \(\alpha_f \geq 1 \), the last term can be bounded from above as follows:
\[\frac{1}{2} E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f - 1} F_t \right] \leq \frac{1}{2} E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f - 1} F_t \right]. \]

It can be verified that
\[(Q_{f_{ij}}(t) + R_{f_{ij}}(t))^{\alpha_f - 1} \leq 2^{\alpha_f - 1} \left(Q_{f_{ij}}^{\alpha_f - 1}(t) + R_{f_{ij}}^{\alpha_f - 1}(t) \right) \]
and
\[\Delta f_{ij}(t) \leq R_{f_{ij}}^{\alpha_f - 1}(t) + d_{\text{max}}^{\alpha_f - 1}. \]

Using these inequalities, we can write
\[\frac{1}{2} E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f - 1} F_t \right] \leq y_{f_{ij}} \cdot Q_{f_{ij}}^{\alpha_f}(t) + c_{f_{ij}}(y_{f_{ij}}). \]

Consequently
\[E \left[V_{f_{ij}}(Q(t + 1)) - V_{f_{ij}}(Q(t)) \mid F_t \right] \leq E \left[\Delta f_{ij}(t) \cdot \xi^{\alpha_f} F_t \right] + y_{f_{ij}} \cdot Q_{f_{ij}}^{\alpha_f}(t) + c_{f_{ij}}(y_{f_{ij}}). \]

Equations (15) and (17)–(19) imply that, for every \(\delta > 0 \), there exist constants \(c_{f_{ij}}(\delta), i \in N_f, f \in F \), such that
\[E \left[V(Q(t + 1)) - V(Q(t)) \mid F_t \right] \leq 0 \]
Now, for notational convenience, define the quantity
\[W_{i,j}(t) = \max_{f:(i,j) \in \mathcal{L}_f} \left[Q_{f,i}^a(t) - Q_{f,j}^a(t) \right] . \]

Through simple algebra, and using the fact that under our policy \(S_{f,i,j}(t) \) is set to 1 for some \(f \) that attains the maximum in the definition of \(W_{i,j}(t) \), we have that
\[
E \left[\sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} Q_{f,i}^a(t) \cdot \left(\sum_{j:(i,j) \in \mathcal{L}_f} S_{f,i,j}(t) - \sum_{j:(i,j) \in \mathcal{L}_f} S_{f,j,i}(t) \right) | \mathcal{F}_t \right] \\
= E \left[\sum_{f \in \mathcal{F}} \sum_{(i,j) \in \mathcal{L}_f} \left(Q_{f,i}^a(t) - Q_{f,j}^a(t) \right) S_{f,i,j}(t) | \mathcal{F}_t \right] \\
= \sum_{(i,j) \in \mathcal{L}} W_{i,j}(t), \quad (21)
\]

On the other hand
\[
\sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} Q_{f,i}^a(t) \cdot E \left[A_f(t); i = s_f \right] | \mathcal{F}_t \] = \sum_{f \in \mathcal{F}} \lambda_f Q_{f,s_f}^a(t). \quad (22)
\]

Let \(\mathcal{P}_f \) be the set of distinct source–destination paths of traffic flow \(f \in \mathcal{F} \). The fact that the arrival rate vector \(\lambda \) is in the stability region of the network implies the existence of constants \(\epsilon > 0 \) and \(\zeta_{f,p} \geq 0 \), for \(p \in \mathcal{P}_f, f \in \mathcal{F} \), such that
\[
\lambda_f = \sum_{p \in \mathcal{P}_f} \zeta_{f,p} \quad \forall f \in \mathcal{F},
\]
\[
\zeta_{f,i,j} = \sum_{p:(i,j) \notin p} \zeta_{f,p} \quad \forall (i,j) \in \mathcal{L}_f, \quad \forall f \in \mathcal{F}
\]
and
\[
\sum_{f:(i,j) \in \mathcal{L}_f} \zeta_{f,i,j} \leq 1 - \epsilon \quad \forall (i,j) \in \mathcal{L}.
\]

Thus
\[
\sum_{f \in \mathcal{F}} \lambda_f Q_{f,s_f}^a(t) = \sum_{f \in \mathcal{F}} \sum_{p \in \mathcal{P}_f} \zeta_{f,p} Q_{f,s_f}^a(t) \\
= \sum_{f \in \mathcal{F}} \sum_{p \in \mathcal{P}_f} \zeta_{f,p} \left(Q_{f,i}^a(t) - Q_{f,j}^a(t) \right) \\
\leq \sum_{f \in \mathcal{F}} \sum_{(i,j) \in \mathcal{L}_f} \zeta_{f,i,j} W_{i,j}(t) \\
- \sum_{(i,j) \in \mathcal{L}_f} \zeta_{f,i,j} W_{i,j}(t) \\
< (1 - \epsilon) \sum_{(i,j) \in \mathcal{L}} W_{i,j}(t). \quad (23)
\]

Equations (20)–(23) imply that
\[
E \left[V(Q(t+1)) - V(Q(t)) \right] | \mathcal{F}_t \] \[
\leq - \epsilon \sum_{(i,j) \in \mathcal{L}} W_{i,j}(t) + \delta \sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} Q_{f,i}^a(t) \\
+ \sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} c_{f,i}(\delta).
\]

Finally, since \(Q_{f,s_f}(t) = 0 \), the sum of the \(\alpha \)-weighted differential backlogs along any (directed and acyclic) source–destination path in \(\mathcal{L}_f \) upper-bounds the \(\alpha \)-power of each of the queue lengths of flow \(f \) along that path. Hence, it can be verified that there exists a large enough \(\epsilon' > 0 \) such that
\[
\sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} Q_{f,i}^a(t) < \epsilon' \sum_{(i,j) \in \mathcal{L}} W_{i,j}(t).
\]

If \(\delta \) is chosen sufficiently small, there exist constants \(\gamma > 0 \) and \(\beta < \infty \) such that
\[
E \left[V(Q(t+1)) - V(Q(t)) \right] | \mathcal{F}_t \] \[
\leq - \gamma \sum_{f \in \mathcal{F}} \sum_{i \in \mathcal{N}_f} Q_{f,i}^a(t) + \beta.
\]

Then, the Foster–Lyapunov stability criterion and moment bound (e.g., see [8, Corollary 2.1.5]) implies that the queueing network is stable and that the sum of the \(\alpha \)-weighted differential backlogs along any (directed and acyclic) source–destination path in \(\mathcal{L}_f \) upper-bounds the \(\alpha \)-power of each of the queue lengths of flow \(f \) along that path.

REFERENCES

Mihalis G. Markakis (S’07–M’12) received the B.S. degree from the National Technical University of Athens, Athens, Greece, in 2005, the M.S. degree from the University of Southern California, Los Angeles, CA, USA, in 2008, and the Ph.D. degree from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2013, all in electrical engineering.

He held an internship position with Alcatel-Lucent Bell Labs, Murray Hill, NJ, USA, in the summer of 2010. He is currently an Assistant Professor with the Department of Economics and Business, Universitat Pompeu Fabra, and also affiliated with the Barcelona School of Management and the Barcelona Graduate School of Economics, Barcelona, Spain. His research interests are in modeling, analysis, and optimization of stochastic systems and their applications to operations research and management science.

Eytan Modiano (S’90–M’93–SM’00–F’12) received the B.S. degree in electrical engineering and computer science from the University of Connecticut, Storrs, CT, USA, in 1986, and the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, MD, USA, in 1989 and 1992, respectively.

He was a Naval Research Laboratory Fellow between 1987 and 1992 and a National Research Council Post Doctoral Fellow during 1992 to 1993. Between 1993 and 1999, he was with the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA. Since 1999, he has been on the faculty with MIT, where he is a Professor with the Department of Aeronautics and Astronautics and the Laboratory for Information and Decision Systems (LIDS). His research is on communication networks and protocols with emphasis on satellite, wireless, and optical networks.

Prof. Modiano is currently an Associate Editor for the IEEE/ACM Transactions on Networking and had served as Associate Editor for the IEEE Transactions on Information Theory. He was the Technical Program Co-Chair for IEEE WiOpt 2006, IEEE INFOCOM 2007, and ACM MobiHoc 2007.

John N. Tsitsiklis (S’80–M’81–SM’97–F’99) received the B.S. degree in mathematics and the B.S., M.S., and Ph.D. degrees in electrical engineering from the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 1980, 1981, 1984, respectively.

He was a Naval Research Laboratory Fellow between 1987 and 1992 and a National Research Council Post Doctoral Fellow during 1992 to 1993. Between 1993 and 1999, he was with the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA. Since 1999, he has been on the faculty with MIT, where he is a Professor with the Department of Aeronautics and Astronautics and the Laboratory for Information and Decision Systems (LIDS). His research is on communication networks and protocols with emphasis on satellite, wireless, and optical networks.

Prof. Modiano is currently an Associate Editor for the IEEE/ACM Transactions on Networking and had served as Associate Editor for the IEEE Transactions on Information Theory. He was the Technical Program Co-Chair for IEEE WiOpt 2006, IEEE INFOCOM 2007, and ACM MobiHoc 2007.

Mihalis G. Markakis (S’07–M’12) received the B.S. degree from the National Technical University of Athens, Athens, Greece, in 2005, the M.S. degree from the University of Southern California, Los Angeles, CA, USA, in 2008, and the Ph.D. degree from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2013, all in electrical engineering.

He held an internship position with Alcatel-Lucent Bell Labs, Murray Hill, NJ, USA, in the summer of 2010. He is currently an Assistant Professor with the Department of Economics and Business, Universitat Pompeu Fabra, and also affiliated with the Barcelona School of Management and the Barcelona Graduate School of Economics, Barcelona, Spain. His research interests are in modeling, analysis, and optimization of stochastic systems and their applications to operations research and management science.

Eytan Modiano (S’90–M’93–SM’00–F’12) received the B.S. degree in electrical engineering and computer science from the University of Connecticut, Storrs, CT, USA, in 1986, and the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, MD, USA, in 1989 and 1992, respectively.

He was a Naval Research Laboratory Fellow between 1987 and 1992 and a National Research Council Post Doctoral Fellow during 1992 to 1993. Between 1993 and 1999, he was with the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA. Since 1999, he has been on the faculty with MIT, where he is a Professor with the Department of Aeronautics and Astronautics and the Laboratory for Information and Decision Systems (LIDS). His research is on communication networks and protocols with emphasis on satellite, wireless, and optical networks.

Prof. Modiano is currently an Associate Editor for the IEEE/ACM Transactions on Networking and had served as Associate Editor for the IEEE Transactions on Information Theory. He was the Technical Program Co-Chair for IEEE WiOpt 2006, IEEE INFOCOM 2007, and ACM MobiHoc 2007.

John N. Tsitsiklis (S’80–M’81–SM’97–F’99) received the B.S. degree in mathematics and the B.S., M.S., and Ph.D. degrees in electrical engineering from the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 1980, 1981, 1984, respectively.

He was a Naval Research Laboratory Fellow between 1987 and 1992 and a National Research Council Post Doctoral Fellow during 1992 to 1993. Between 1993 and 1999, he was with the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, Lexington, MA, USA. Since 1999, he has been on the faculty with MIT, where he is a Professor with the Department of Aeronautics and Astronautics and the Laboratory for Information and Decision Systems (LIDS). His research is on communication networks and protocols with emphasis on satellite, wireless, and optical networks.

Prof. Modiano is currently an Associate Editor for the IEEE/ACM Transactions on Networking and had served as Associate Editor for the IEEE Transactions on Information Theory. He was the Technical Program Co-Chair for IEEE WiOpt 2006, IEEE INFOCOM 2007, and ACM MobiHoc 2007.