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Abstract—We consider an infinite collection of agents who make
decisions, sequentially, about an unknown underlying binary state
of the world. Each agent, prior to making a decision, receives an
independent private signal whose distribution depends on the state
of the world.Moreover, each agent also observes the decisions of its
last immediate predecessors. We study conditions under which
the agent decisions converge to the correct value of the under-
lying state. We focus on the case where the private signals have
bounded information content and investigate whether learning is
possible, that is, whether there exist decision rules for the different
agents that result in the convergence of their sequence of indi-
vidual decisions to the correct state of the world. We first consider
learning in the almost sure sense and show that it is impossible,
for any value of . We then explore the possibility of convergence
in probability of the decisions to the correct state. Here, a distinc-
tion arises: if , learning in probability is impossible under
any decision rule, while for , we design a decision rule that
achieves it. We finally consider a new model, involving forward
looking strategic agents, each of which maximizes the discounted
sum (over all agents) of the probabilities of a correct decision. (The
case, studied in the previous literature, of myopic agents who max-
imize the probability of their own decision being correct is an ex-
treme special case.) We show that for any value of , for any equi-
librium of the associated Bayesian game, and under the assumption
that each private signal has bounded information content, learning
in probability fails to obtain.

Index Terms—Decentralized, decision making, distributed esti-
mation, distributed learning, estimation, estimation error, forward
looking learning, learning, social learning.

I. INTRODUCTION

I N this paper, we study variations and extensions of a model
introduced and studied in Cover’s seminal work [5]. We

consider a Bayesian binary hypothesis testing problem over an
“extended tandem” network architecture whereby each agent
makes a binary decision , based on an independent private
signal (with a different distribution under each hypothesis)
and on the decisions of its immediate pre-
decessors, where is a positive integer constant. We are in-
terested in the question of whether learning is achieved, that is,
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whether the sequence correctly identifies the true hypoth-
esis (the “state of the world,” to be denoted by ), almost surely
or in probability, as . For , this coincides with
the model introduced by Cover [5] under a somewhat different
interpretation, in terms of a single memory-limited agent who
acts repeatedly but can only remember its last decision.
At a broader, more abstract level, our paper is meant to shed

light on the question whether distributed information held by
a large number of agents can be successfully aggregated in a
decentralized and bandwidth-limited manner. Consider a situa-
tion where each of a large number of agents has a noisy signal
about an unknown underlying state of the world . This state
of the world may represent an unknown parameter monitored
by decentralized sensors, the quality of a product, the applica-
bility of a therapy, etc. If the individual signals are indepen-
dent and the number of agents is large, collecting these sig-
nals at a central processing unit would be sufficient for inferring
(“learning”) the underlying state . However, because of com-
munication or memory constraints, such centralized processing
may be impossible or impractical. It then becomes of interest to
inquire whether can be learned under a decentralized mecha-
nism where each agent communicates a finite-valued summary
of its information (e.g., a purchase or voting decision, a com-
ment on the success or failure of a therapy, etc.) to a subset of
the other agents, who then refine their own information about
the unknown state.
Whether learning will be achieved under the model that we

study depends on various factors, such as the ones discussed
next:
1) As demonstrated in [5], the situation is qualitatively dif-
ferent depending on certain assumptions on the informa-
tion content of individual signals. We will focus exclu-
sively on the case where each signal has bounded informa-
tion content, in the sense that the likelihood ratio associated
with a signal is bounded away from zero and infinity—the
so-called bounded likelihood ratio (BLR) assumption. The
reason for our focus is that in the opposite case (of un-
bounded likelihood ratios), the learning problem is much
easier; indeed, [5] shows that almost sure learning is pos-
sible, even if .

2) An aspect that has been little explored in the prior liter-
ature is the distinction between different learning modes,
learning almost surely or in probability. We will see that
the results can be different for these two modes.

3) The results of [5] suggest that there may be a qualitative
difference depending on the value of . Our work will
shed light on this dependence.

4) Whether learning will be achieved or not, depends on the
way that agents make their decisions . In an engineering
setting, one can assume that the agents’ decision rules are
chosen (through an offline centralized process) by a system

0018-9448 © 2013 IEEE



6860 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

designer. In contrast, in game-theoretic models, each agent
is assumed to be a Bayesian maximizer of an individual ob-
jective, based on the available information. Our work will
shed light on this dichotomy by considering a special class
of individual objectives that incorporate a certain degree of
altruism.

A. Summary of the Paper and Its Contributions

We provide here a summary of our main results, together
with comments on their relation to prior works. In what follows,
we use the term decision rule to refer to the mapping from an
agent’s information to its decision and the term decision profile
to refer to the collection of the agents’ decision rules. Unless
there is a statement to the contrary, all results mentioned below
are derived under the BLR assumption.
1) Almost sure learning is impossible (see Theorem 1). For
any , we prove that there exists no decision profile
that guarantees almost sure convergence of the sequence

of decisions to the state of the world . This pro-
vides an interesting contrast with the case where the BLR
assumption does not hold; in the latter case, almost sure
learning is actually possible [5].

2) Learning in probability is impossible if (see The-
orem 2). This strengthens a result of Koplowitz [12] who
showed the impossibility of learning in probability for the
case where and the private signals are i.i.d.
Bernoulli random variables.

3) Learning in probability is possible if (see Theorem
3). For the case where , we provide a fairly elabo-
rate decision profile that yields learning in probability. This
result (as well as the decision profile that we construct) is
inspired by the positive results in [5] and [12], according to
which, learning in probability (in a slightly different sense
from ours) is possible if each agent can send 4-valued or
3-valued messages, respectively, to its successor. In more
detail, our construction (when ) exploits the sim-
ilarity between the case of a 4-valued message from the
immediate predecessor (as in [5]) and the case of binary
messages from the last two predecessors: indeed, the de-
cision rules of two predecessors can be designed so that
their two binary messages convey (in some sense) informa-
tion comparable to that in a 4-valued message by a single
predecessor. Still, our argument is somewhat more com-
plicated than the ones in [5] and [12], because in our case,
the actions of the two predecessors cannot be treated as ar-
bitrary codewords: they must obey the additional require-
ment that they equal the correct state of the world with high
probability.

4) No learning by forward looking, altruistic agents (see The-
orem 4). As already discussed, when , learning is
possible, using a suitably designed decision profile. On the
other hand, if each agent acts myopically (i.e., maximizes
the probability that its own decision is correct), it is known
that learning will not take place ([1], [3], [5]). To further
understand the impact of selfish behavior, we consider a
variation where each agent is forward looking, in an altru-
istic manner: rather than being myopic, each agent takes

into account the impact of its decisions on the error proba-
bilities of future agents. This case can be thought of as an
intermediate one, where each agent makes a decision that
optimizes its own utility function (similar to the myopic
case), but the utility function incentivizes the agent to act
in a way that corresponds to good systemwide performance
(similar to the case of centralized design). In this formula-
tion, the optimal decision rule of each agent depends on
the decision rules of all other agents (both predecessors
and successors), which leads to a game-theoretic formu-
lation and a study of the associated equilibria. Our main
result shows that under any (suitably defined) equilibrium,
learning in probability fails to obtain. In this sense, the for-
ward looking, altruistic setting falls closer to the myopic
rather than the engineering design version of the problem.
Another interpretation of the result is that the carefully de-
signed decision profile that can achieve learning will not
emerge through the incentives provided by the altruistic
model; this is not surprising because the designed decision
profile is quite complicated.

B. Outline of the Paper

The rest of the paper is organized as follows. In Section II,
we review some of the related literature. In Section III, we pro-
vide a description of our model, notation, and terminology. In
Section IV, we show that almost sure learning is impossible.
In Section V (respectively, Section VI), we show that learning
in probability is impossible when (respectively, possible
when ). In Section VII, we describe the model of forward
looking agents and prove the impossibility of learning. We con-
clude with some brief comments in Section VIII.

II. RELATED LITERATURE

The literature on information aggregation in decentralized
systems is vast; we will restrict ourselves to the discussion
of models that involve a Bayesian formulation and are some-
what related to our work. The literature consists of two main
branches, in statistics/engineering and in economics.

A. Statistics/Engineering Literature

A basic version of the model that we consider was studied
in the two seminal papers [5] and [12], and which have already
been discussed in Section I. A related model, with an additional
restriction that the agent decisions are formed by either the same
decision rule or a deterministic finite state automaton, has been
studied in [10] and [11], respectively. This additional homo-
geneity restriction facilitates the use of standard homogeneous
Markov chain tools, thus simplifying the analysis. In contrast,
in our paper we consider arbitrary nonhomogeneous decision
rules, leading to a model with major qualitative differences. For
example, and in contrast to our model, under the homogeneity
assumptions, learning cannot be achieved when signals have
bounded information content even when .
The case of myopic agents and was briefly discussed

in [5] who argued that learning (in probability) fails to obtain.
A proof of this negative result was also given in [15], together
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with the additional result that myopic decision rules will lead to
learning if the BLR assumption is relaxed. Finally, [13] studies
myopic decisions based on private signals and observation of
ternary messages from a predecessor in a tandem configuration.
Another class of decentralized information fusion problems

was introduced in [21]. In that work, there are again two hy-
potheses on the state of the world and each one of a set of agents
receives a noisy signal regarding the true state. Each agent sum-
marizes its information in a finitely valued message which it
sends to a fusion center. The fusion center solves a classical hy-
pothesis testing problem (based on the messages it has received)
and decides on one of the two hypotheses. The problem is the
design of decision rules for each agent so as to minimize the
probability of error at the fusion center. A more general net-
work structure, in which each agent observes messages from a
specific set of agents before making a decision was introduced
in [7] and [8], under the assumption that the topology that de-
scribes the message flow is a directed tree. In all of this litera-
ture (and under the assumption that the private signals are con-
ditionally independent, given the true hypothesis) each agent’s
decision rule should be a likelihood ratio test, parameterized by
a scalar threshold. However, in general, the problem of opti-
mizing the agent thresholds is a difficult nonconvex optimiza-
tion problem—see [22] for a survey.
In the line of work initiated in [21], the focus is often on tree

architectures with large branching factors, so that the probability
of error decreases exponentially in the number of sensors. In
contrast, for tandem architectures, as in [5], [12], [13], and [15],
and for the related ones considered in this paper, learning often
fails to hold or takes place at a slow, subexponential rate [16].
The focus of our paper is on this latter class of architectures and
the conditions under which learning takes place.

B. Economics Literature

A number of papers, starting with [3] and [4], study learning
in a setting where each agent, prior to making a decision, ob-
serves the history of decisions by all of its predecessors. Each
agent is a Bayesian maximizer of the probability that its deci-
sion is correct. The main finding is the emergence of “herds” or
“informational cascades,” where agents copy possibly incorrect
decisions of their predecessors and ignore their own informa-
tion, a phenomenon consistent with that discussed by Cover [5]
for the tandem model with . The most complete analysis
of this framework (i.e., with complete sharing of past decisions)
is provided in [18], which also draws a distinction between the
cases where the BLR assumption holds or fails to hold, and es-
tablishes results of the same flavor as those in [15].
A broader class of observation structures is studied in [19]

and [2], with each agent observing an unordered sample of
decisions drawn from the past, namely, the number of sampled
predecessors who have taken each of the two actions. The
most comprehensive analysis of this setting, where agents are
Bayesian but do not observe the full history of past decisions,
is provided in [1]. This paper considers agents who observe
the decisions of a stochastically generated set of predecessors
and provides conditions on the private signals and the network

Fig. 1. Observation model. If the unknown state of the world is ,
, the agents receive independent private signals drawn from a distri-

bution , and also observe the decisions of the immediate predecessors. In
this figure, . If agent observes the decision of agent , we draw an
arrow pointing from to .

structure under which asymptotic learning (in probability) to
the true state of the world is achieved.
To the best of our knowledge, the first paper that studies

forward looking agents is [20]: each agent minimizes the dis-
counted sum of error probabilities of all subsequent agents, in-
cluding their own. This reference considers the case where the
full past history is observed and shows that herding on an in-
correct decision is possible, with positive probability. (On the
other hand, learning is possible if the BLR assumption is re-
laxed.) Finally, [14] considers a similar model and explicitly
characterizes a simple and tractable equilibrium that generates a
herd, showing again that even with payoff interdependence and
forward looking incentives, payoff-maximizing agents who ob-
serve past decisions can fail to properly aggregate the available
information.

III. MODEL AND PRELIMINARIES

In this section, we present the observation model (shown in
Fig. 1) and introduce our basic terminology and notation.

A. Observation Model

We consider an infinite sequence of agents, indexed by
, where is the set of natural numbers. There is an underlying

state of the world , which is modeled as a random
variable whose value is unknown by the agents. To simplify no-
tation, we assume that both of the underlying states are a priori
equally likely, that is, .
Each agent forms posterior beliefs about this state based

on a private signal that takes values in a set , and also by ob-
serving the decisions of its immediate predecessors. We de-
note by the random variable representing agent ’s private
signal, while we use to denote specific values in . Condi-
tional on the state of the world being equal to zero (respec-
tively, one), the private signals are independent random vari-
ables distributed according to a probability measure (respec-
tively, ) on the set . Throughout the paper, the following two
assumptions will always remain in effect. First, and are
absolutely continuous with respect to each other, implying that
no signal value can be fully revealing about the correct state.
Second, and are not identical, so that the private signals
can be informative.
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Each agent is to make a decision, denoted by , which
takes values in . The information available to agent con-
sists of its private signal and the random vector

of decisions of its immediate predecessors. (For notational
convenience, an agent with index is identified with
agent 1.) The decision is made according to a decision rule

:

A decision profile is a sequence of decision rules.
Given a decision profile , the sequence of agent
decisions is a well-defined stochastic process, described by a
probability measure to be denoted by , or simply by if
has been fixed. Furthermore, the sequence is a nonhomoge-
neous Markov chain whose transition probabilities depend on
the for notational convenience, we also use to denote the
conditional measure under the state of the world , that is,

It is also useful to consider randomized decision rules,
whereby the decision is determined according to

, where is an exogenous random
variable which is independent for different and also indepen-
dent of and . (The construction in Section VI will
involve a randomized decision rule.)

B. Assumption and the Definition of Learning

As mentioned in the Section I, we focus on the case where
every possible private signal value has bounded information
content. The assumption that follows will remain in effect
throughout the paper and will not be stated explicitly in our
results.
Assumption 1: (Bounded Likelihood Ratios—BLR). There

exist some and , such that the Radon–Nikodym
derivative satisfies

for almost all under the measure .
We study two different types of learning. As will be seen

in the sequel, the results for these two types are, in general,
different.
Definition 1: We say that a decision profile achieves almost

sure learning if

and that it achieves learning in probability if

IV. IMPOSSIBILITY OF ALMOST SURE LEARNING

In this section, we show that almost sure learning is impos-
sible, for any value of .

Theorem 1: For any given number of observed immediate
predecessors, there exists no decision profile that achieves al-
most sure learning.
The rest of this section is devoted to the proof of Theorem

1. We note that the proof does not use anywhere the fact that
each agent only observes the last immediate predecessors.
The exact same proof establishes the impossibility of almost
sure learning even for a more general model where each agent
observes the decisions of an arbitrary subset of its predecessors.
Furthermore, while the proof is given for the case of determin-
istic decision rules, the reader can verify that it also applies to
the case where randomized decision rules are allowed.
The following lemma is a simple consequence of the BLR

assumption and its proof is omitted.
Lemma 1: For any , any and ,

we have

(1)

where and are as in Definition 1.
Lemma 1 states that (under the BLR assumption) if under

one state of the world some agent , after observing , decides
0 with positive probability, then the same must be true with pro-
portional probability under the other state of the world. This
proportional dependence of decision probabilities for the two
possible underlying states is central to the proof of Theorem 1.
Before proceeding with the main part of the proof, we need

two more lemmas. Consider a probability space and
a sequence of events , . The upper limiting set
of the sequence, , is defined by

(This is the event that infinitely many of the occur.) We will
use a variation of the Borel–Cantelli lemma ([6, Corollary 6.1])
that does not require independence of events.
Lemma 2: If

then,

where denotes the complement of .
Finally, we will use the following algebraic fact.
Lemma 3: Consider a sequence of real numbers,

with , for all . Then,

for any .
Proof: The second inequality is standard. For the first one,

interpret the numbers as probabilities of independent
events . Then, clearly,
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Observe that

and by the union bound,

Combining the above yields the desired result.
We are now ready to prove the main result of this section.
Proof of Theorem 1: Let denote the set of all binary

sequences with a finite number of zeros (equivalently, the set
of binary sequences that converge to one). Suppose, to derive a
contradiction, that we have almost sure learning. Then,

. The set is easily seen to be countable, which implies
that there exists an infinite binary sequence such
that . In particular,

Since is determined by and
since the distributions of under the two hy-
potheses are absolutely continuous with respect to each other,
it follows that

(2)

We define

Lemma 1 implies that

(3)

because for , , for all
, for .

Suppose that

Then, Lemma 2, with the identification ,
implies that the event has probability
1, under . Therefore, , which contradicts the
definition of .
Suppose now that Then,

and

Choose some such that

Then,

The first term on the right-hand side is positive by (2), while

Combining the above, we obtain and

which contradicts almost sure learning and completes the proof.

Given Theorem 1, in the rest of the paper we concentrate
exclusively on the weaker notion of learning in probability, as
defined in Section III-B.

V. NO LEARNING IN PROBABILITY WHEN

In this section, we consider the case where , so that
each agent only observes the decision of its immediate prede-
cessor. Our main result, stated next, shows that learning in prob-
ability is not possible.
Theorem 2: If , there exists no decision profile that

achieves learning in probability.
We fix a decision profile and use a Markov chain to represent

the evolution of the decision process under a particular state of
the world. In particular, we consider a two-state Markov chain
whose state is the observed decision . A transition from
state to state for the Markov chain associated with ,
where corresponds to agent taking the decision
given that its immediate predecessor decided , under

the state . The Markov property is satisfied because the de-
cision , conditional on the immediate predecessor’s decision,
is determined by and hence is (conditionally) independent
from the history of previous decisions. Since a decision profile
is fixed, we can again suppress from our notation and define
the transition probabilities of the two chains by

(4)

(5)



6864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 10, OCTOBER 2013

Fig. 2. Markov chains that model the decision process for . States rep-
resent observed decisions. The transition probabilities under or
are given by and , respectively. If learning in probability is to occur, the
probability mass needs to become concentrated on the highlighted state.

where . The two chains are illustrated in Fig. 2.
Note that in the current context, and similar to Lemma 1, the
BLR assumption yields the inequalities

(6)

where , and , , are as in Definition
1.
We now establish a further relation between the transition

probabilities under the two states of the world.
Lemma 4: If we have learning in probability, then

(7)

and

(8)

Proof: For the sake of contradiction, assume that
. By (6), we also have .

Then, the expected number of transitions from state 0 to state
1 is finite under either state of the world. In particular the
(random) number of such transitions is finite, almost surely.
This can only happen if converges almost surely.
However, almost sure convergence together with learning in
probability would imply almost sure learning, which would
contradict Theorem 1. The proof of the second statement in the
lemma is similar.
The next lemma states that if we have learning in probability,

then the transition probabilities between different states should
converge to zero.
Lemma 5: If we have learning in probability, then

(9)

Proof: Assume, to arrive at a contradiction that there exists
some such that

for infinitely many values of . Since we have learning in prob-
ability, we also have when is large
enough. This implies that for infinitely many values of ,

But this contradicts learning in probability.
We are now ready to complete the proof of Theorem 2, by

arguing as follows. Since the transition probabilities from state
0 to state 1 converge to zero, while their sum is infinite, under
either state of the world, we can divide the agents (time) into
blocks so that the corresponding sums of the transition proba-
bilities from state 0 to state 1 over each block are approximately
constant. If during such a block the sum of the transition proba-
bilities from state 1 to state 0 is large, then under the state of the
world , there is high probability of starting the block at
state 1, moving to state 0, and staying at state 0 until the end of
the block. If on the other hand, the sum of the transition prob-
abilities from state 1 to state 0 is small, then under state of the
world , there is high probability of starting the block at
state 0, moving to state 1, and staying at state 1 until the end of
the block. Both cases prevent convergence in probability to the
correct decision.

Proof of Theorem 2: We assume that we have learning
in probability and will derive a contradiction. From Lemma 5,

and therefore there exists a such that
for all

(10)

Moreover, by the learning in probability assumption, there ex-
ists some such that for all ,

(11)

and

(12)

Let so that (10)–(12) all hold for ,
We divide the agents (time) into blocks so that in each block

the sum of the transition probabilities from state 0 to state 1 can
be simultaneously bounded from above and below. We define
the last agents of each block recursively, as follows:

From Lemma 4, we have that . This fact, to-
gether with (10), guarantees that the sequence is well defined
and strictly increasing.
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Let be the block that ends with agent , i.e.,
. The construction of the sequence

yields

On the other hand, is the first agent for which the sum is
at least and since, by (10), , we obtain that

Thus,

(13)

and combining with (6), we also have

(14)

for all .
We consider two cases for the sum of transition probabilities

from state 1 to state 0 during block . We first assume that

Using (6), we obtain

(15)

The probability of a transition from state 1 to state 0 during the
block , under , is

Using (15) and Lemma 3, the product on the right-hand side
can be bounded from above

which yields

After a transition to state 0 occurs, the probability of staying at
that state until the end of the block is bounded below as follows:

The right-hand side can be further bounded using (14) and
Lemma 3, as follows:

Combining the above and using (12), we conclude that

We now consider the second case and assume that

The probability of a transition from state 0 to state 1 during the
block is

The product on the right-hand side can be bounded above using
Lemma 3,

which yields

After a transition to state 1 occurs, the probability of staying at
that state until the end of the block is bounded from below as
follows:

The right-hand side can be bounded using (14) and Lemma 3,
as follows:

Using also (11), we conclude that

Combining the two cases we conclude that

(16)

which contradicts learning in probability and concludes the
proof.
Once more, we note that the proof and the result remain valid

for the case where randomized decision rules are allowed.
The coupling between the Markov chains associated with the

two states of the world is central to the proof of Theorem 2.
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The importance of the BLR assumption is highlighted by the
observation that if either or , then the lower
bound obtained in (16) is zero, and the proof fails. The next
section shows that a similar argument cannot be made to work
when . In particular, we construct a decision profile that
achieves learning in probability when agents observe the last
two immediate predecessors.

VI. LEARNING IN PROBABILITY WHEN

In this section, we show that learning in probability is possible
when , i.e., when each agent observes the decisions of
two or more of its immediate predecessors.

A. Reduction to the Case of Binary Observations

We will construct a decision profile that leads to learning in
probability, for the special case where the signals are bi-
nary (Bernoulli) random variables with a different parameter
under each state of the world. This readily leads to a decision
profile that learns, for the case of general signals. Indeed, if
the are general random variables, each agent can quantize
its signal, to obtain a quantized signal that takes
values in . Then, the agents can apply the decision profile
for the binary case. The only requirement is that the distribu-
tion of be different under the two states of the world. This
is straightforward to enforce by proper choice of the quantiza-
tion rule : for example, we may let if and only if

. It is not hard to verify that
with this construction and under our assumption that the distri-
butions and are not identical, the distributions of under
the two states of the world will be different.
We also note that it suffices to construct a decision profile for

the case where . Indeed, if , we can have the agents
ignore the actions of all but their two immediate predecessors
and employ the decision profile designed for the case where

.

B. Decision Profile

As just discussed, we assume that the signal is binary. For
, we let and . We also use

to denote a random variable that is equal to if and only if
. Finally, we let and .
We assume, without loss of generality, that , in which
case we have and .
Let and be two sequences of positive

integers that we will define later in this section. We divide the
agents into segments that consist of S-blocks, R-blocks, and
transient agents, as follows.We do not assign the first two agents
to any segment (and the first segment starts with agent ).
For segment :
(i) the first agents belong to the block ;
(ii) the next agent is an SR transient agent;
(iii) the next agents belong to the block ;
(iv) the next agent is an RS transient agent.
An agent’s information consists of the last two decisions, de-

noted by , and its own signal . The deci-
sion profile is constructed so as to enforce that if is the first
agent of either an S or R block, then or .

(i) Agents 1 and 2 choose 0, irrespective of their private
signal.

(ii) During block , for :
a) If the first agent of the block, denoted by , observes

, it chooses 1, irrespective of its private signal.
If it observes and its private signal is 1, then

where is an independent Bernoulli random vari-
able with parameter . If , we say that a
searching phase is initiated. (The cases of observing

or will not be allowed to occur.)
b) For the remaining agents in the block.

1) Agents who observe decide 0 for all pri-
vate signals.

2) Agents who observe decide 1 if and only
if their private signal is 1.

3) Agents who observe decide 0 for all pri-
vate signals.

4) Agents who observe decide 1 for all pri-
vate signals.

(iii) During block :
a) If the first agent of the block, denoted by , observes

, it chooses 0, irrespective of its private signal.
If it observes and its private signal is then

where is a Bernoulli random variable with param-
eter . If , we say that a searching phase
is initiated. (The cases of observing or
will not be allowed to occur.)

b) For the remaining agents in the block:
1) Agents who observe decide 1 for all pri-
vate signals.

2) Agents who observe decide 0 if and only
if their private signal is 0.

3) Agents who observe decide 0 for all pri-
vate signals.

4) Agents who observe decide 1 for all pri-
vate signals.

(iv) An SR or RS transient agent sets , irrespec-
tive of its private signal.

We now discuss the evolution of the decisions (see also Fig. 3
for an illustration of the different transitions). We first note that
because and because of the rules for
transient agents, our requirement that be either or

when lies at the beginning of a block, is automatically
satisfied. Next, we discuss the possible evolution of in the
course of a block . (The case of a block is entirely sym-
metrical.) Let be the first agent of the block, and note that the
last agent of the block is .
1) If , then for all agents in the
block, as well as for the subsequent SR transient agent,
which is agent . The latter agent also decides
1, so that the first agent of the next block, , observes

.
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Fig. 3. Illustration of the decision profile during block . Here, is a
Bernoulli random variable, independent from or , which takes the value

with a small probability . In this figure, the state represents the
decisions of the last two agents and the decision rule dictates the probabilities
of transition between states. (a) The decision rule for the first agent of block
. (b) The decision rule for all agents of block but the first.

2) If and , then for all agents
in the block, as well as for the subsequent SR transient
agent, which is agent . The latter agent also
decides 0, so that the first agent of the next block, ,
observes .

3) The interesting case occurs when , ,
and , so that a search phase is initiated and ,

, , . Here there are
two possibilities:
a) Suppose that for every in the block , for
which is even (and with not the last agent in
the block), we have . Then, for even,
we will have , , ,

, , etc. When is the last agent
of the block, then , so that is even,

, and . The subsequent SR transient
agent, agent , sets , so
that the first agent of the next block, , observes

.
b) Suppose that for some in the block , for
which is even, we have . Let be the
first agent in the block with this property. We have

(as in the previous case), but , so
that . Then, all subsequent decisions in
the block, as well as by the next SR transient agent are
0, and the first agent of the next block, , observes

.
To understand the overall effect of our construction, we con-

sider a (nonhomogeneous) Markov chain representation of the
evolution of decisions. We focus on the subsequence of agents
consisting of the first agent of each S- and R-block. By the con-
struction of the decision profile, the state , restricted to this
subsequence, can only take values or , and its evo-
lution can be represented by a 2-state Markov chain. The tran-
sition probabilities between the states in this Markov chain are

given by a product of terms, the number of which is related to
the size of the S- and R-blocks. For learning to occur, there has
to be an infinite number of switches between the two states in
the Markov chain (otherwise getting trapped in an incorrect de-
cision would have positive probability). Moreover, the proba-
bility of these switches should go to zero (otherwise there would
be a probability of switching to the incorrect decision that is
bounded away from zero). We obtain these features by allowing
switches from state to state during S-blocks and
switches from state to state during R-blocks. By
suitably defining blocks of increasing size, we can ensure that
the probabilities of such switches remain positive but decay at a
desired rate. This will be accomplished by the parameter choices
described next.
Let stand for the natural logarithm. For large enough

so that is larger than both and , we let

(17)

and

(18)

both of which are positive numbers. Otherwise, for small , we
let . These choices guarantee learning.
Theorem 3: Under the decision profile and the parameter

choices described in this section,

C. Proof of Theorem 3

The proof relies on the following fact.
Lemma 6: Fix an integer . If , then the series

converges; if then the series diverges.
Proof: See [17, Th. 3.29].

The next lemma characterizes the transition probabilities of
the nonhomogeneous Markov chain associated with the state of
the first agent of each block. For any , let be
the decision of the last agent before block , and let be
the decision of the last agent before block . Note that for

, is the decision , since the first
agent of block is agent 3. More generally, when is odd
(respectively, even), describes the state at the beginning of an
S-block (respectively, R-block), and in particular, the decision
of the transient agent preceding the block.
Lemma 7: We have

if is odd,

otherwise,

and

if is even,

otherwise,
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where

if is odd,
if is even.

(The above conditional probabilities are taken under either state
of the world , with the parameters and on the right-hand side
being the corresponding probabilities that and .)

Proof: Note that is defined so that is associated
with the beginning of either block or , depending
on whether is odd or even, respectively.
Suppose that is odd, so that we are dealing with the be-

ginning of an S-block. If , then, as discussed in the
previous section, we will have , which proves that

.
Suppose now that is odd and . In this case, there

exists only one particular sequence of events under which the
state will change to . Specifically, the searching phase
should be initiated (which happens with probability ),
and the private signals of of the agents in the block
should be equal to 1. The probability of this sequence of events
is precisely the one given in the statement of the lemma.
The transition probabilities for the case where is even are

obtained by a symmetrical argument.
The reason behind our definition of and is that we

wanted to enforce (19)–(20) in the lemma that follows.
Lemma 8: We have

(19)

and

(20)

Proof: For large enough, the definition of implies
that

or equivalently,

where stands for either or . (Note that the direction of the
inequalities was reversed because the base of the logarithms
is less than 1.) Dividing by , using the identity ,
after some elementary manipulations, we obtain

where . By a similar argument,

where .
Suppose that , so that and . Note that is a

decreasing function of , because the base of the logarithm satis-
fies . Since , it follows that ,
and by a parallel argument, . Lemma 6 then implies that

conditions (19) hold. Similarly, if , so that and
, then and , and conditions (20) follow again

from Lemma 6.
We are now ready to complete the proof, using a standard

Borel–Cantelli argument.
Proof of Theorem 3: Suppose that . Then, by

Lemmas 7 and 8, we have that

while

Therefore, transitions from the state 0 of theMarkov chain
to state 1 are guaranteed to happen, while transitions from state
1 to state 0 will happen only finitely many times. It follows that
converges to 1, almost surely, when . By a symmetrical

argument, converges to 0, almost surely, when .
Having proved (almost sure) convergence of the sequence

, it remains to prove convergence (in probability) of the
sequence (of which is a subsequence). This
is straightforward, and we only outline the argument. If is the
decision at the beginning of a segment, then for all
during that segment, unless a searching phase is initiated. A

searching phase gets initiated with probability at most at
the beginning of the S-block and with probability at most
at the beginning of the R-block. Since these probabilities go to
zero as , it is not hard to show that converges in
probability to the same limit as .
The existence of a decision profile that guarantees learning

in probability naturally leads to the question of providing in-
centives to agents to behave accordingly. It is known [1], [5],
[15] that for Bayesian agents who minimize the probability of
an erroneous decision, learning in probability does not occur,
which brings up the question of designing a game whose equi-
libria have desirable learning properties. A natural choice for
such a game is explored in the next section, although our results
will turn out to be negative.

VII. FORWARD LOOKING AGENTS

In this section, we assign to each agent a payoff function that
depends on its own decision as well as on future decisions. We
consider the resulting game between the agents and study the
learning properties of the equilibria of this game. In particular,
we show that learning fails to obtain at any of these equilibria.

A. Preliminaries and Notation

In order to conform to game-theoretic terminology, we
will now talk about strategies (instead of decision
rules ). A (pure) strategy for agent is a mapping

from the agent’s information
set (the vector of decisions of its
immediate predecessors and its private signal ) to a

binary decision, so that . A strategy profile
is a sequence of strategies, . We use the stan-
dard notation to denote
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the collection of strategies of all agents other than , so that
. Given a strategy profile , the resulting

sequence of decisions is a well-defined stochastic
process.
The payoff function of agent is

(21)

where is a discount factor, and denotes the in-
dicator random variable of an event . Consider some agent
and suppose that the strategy profile of the remaining

agents has been fixed. Suppose that agent observes a partic-
ular vector of predecessor decisions (a realization of ) and
a realized value of the private signal . Note that
has a well-defined distribution once has been fixed, and
can be used by agent to construct a conditional distribution
(a posterior belief) on . Agent now considers the two alter-
native decisions, 0 or 1. For any particular decision that agent
can make, the decisions of subsequent agents will be fully

determined by the recursion , and will also be
well-defined random variables. This means that the conditional
expectation of agent ’s payoff, if agent makes a specific de-
cision ,

is unambiguously defined, modulo the usual technical caveats
associated with conditioning on zero probability events; in par-
ticular, the conditional expectation is uniquely defined for “al-
most all” , that is, modulo a set of values that have
zero probability measure under . Note that the expectation
is with respect to the distribution of conditioned
on , which results by initializing the recursion

with . We can now define our notion
of equilibrium, which requires that given the decision profile of
the other agents, each agent maximizes its conditional expected
payoff over , for almost all .
Definition 2: A strategy profile is an equilibrium if for each

, for each vector of observed actions that
can be realized under with positive probability (i.e.,

), and for almost all , maximizes the expected
payoff of agent given the strategies of the other agents, ,
i.e.,

Our main result follows.
Theorem 4: For any discount factor and for any

equilibrium strategy profile, learning fails to hold.
We note that the set of equilibria, as per Definition 2, con-

tains the perfect Bayesian equilibria, as defined in [9]. There-
fore, Theorem 4 implies that there is no learning at any perfect
Bayesian equilibrium.
From now on, we assume that we fixed a specific strategy

profile . Our analysis centers around the case where an agent

observes a sequence of ones from its immediate predecessors,
that is, , where . The posterior proba-
bility that the state of the world is equal to 1, based on having
observed a sequence of ones is defined by

Here, and in the sequel, we use to indicate probabilities of
various random variables under the distribution induced by ,
and similarly for the conditionalmeasures given that the state
of the world is . For any private signal value ,
we also define

Note that these conditional probabilities are well defined as long
as and for almost all . We also let

Finally, for every agent , we define the switching probability
under the state of the world , by

We will prove our result by contradiction, and so we assume
that is an equilibrium that achieves learning in probability.
In that case, under state of the world and since learning
in probability is achieved by the strategy profile , all agents
will eventually be choosing 1 with high probability, i.e.,

. Therefore, when ,
blocks of size with all agents choosing 1 (i.e., with )
will also occur with high probability. The Bayes rule will then
imply that the posterior probability , given , will
eventually be arbitrarily close to one. The above are formalized
in the next Lemma.
Lemma 9: Suppose that the strategy profile leads to

learning in probability. Then,
i) and

.
ii) ,
iii) uniformly over all , except

possibly on a zero measure subset of .
iv) .
Proof:
i) Fix some . By the learning in probability assump-
tion,

Furthermore, there exists such that for all ,

Using the union bound, we obtain
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for all . Thus, .
Since is arbitrary, the result for follows.

ii) Using the Bayes rule and the fact that the two values of
are a priori equally likely, we have

The result follows from part (i).
iii) Since the two states of the world are a priori equally

likely, the ratio of posterior probabil-
ities, is equal to the likelihood ratio associated with the
information and , i.e.,

almost everywhere, where we have used the indepen-
dence of and under either state of the world. Using
the BLR assumption,

almost everywhere. Hence, using the result in part (i),

uniformly over all , except possibly over a count-
able union of zero measure sets (one zero measure set for
each ). It follows that , uniformly
over , except possibly on a zero measure set.

iv) We note that

Since , we have
. Furthermore, from

part (i), . It follows that
.

We now proceed to the main part of the proof. We will argue
that under the learning assumption, and in the limit of large ,
it is more profitable for agent to choose 1 when observing a
sequence of ones from its immediate predecessors, rather than
choose 0, irrespective of its private signal. This implies that after
some finite time , the agents will be copying their predeces-
sors’ action, which is inconsistent with learning.

Proof of Theorem 4: Fix some . We define

(Note that can be, in principle, infinite.) Since converges
to zero [Lemma 9(iv)], it follows that .
Consider an agent who observes and , and

who makes a decision . (To simplify the presentation, we
assume that does not belong to any of the exceptional, zero

measure sets involved in earlier statements.) The (conditional
on , , and ) probability that agents

all decide 1 is

where the equality follows from the standard formula for the
probability that a Markov chain ( ) follows a specific path
(the path where all states remain equal to until time ). With
agent choosing the decision , its payoff can be lower
bounded by considering only the payoff obtained when
[which, given the information available to agent , happens with
probability ] and all agents up to make the same
decision (no switching):

Since for all , and

we obtain

Combining with part (iii) of Lemma 9 and the fact that
, we obtain

(22)

On the other hand, the payoff from deciding can be
bounded from above as follows:

Therefore, using part (iii) of Lemma 9,

(23)

Our choice of implies that
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Then, (22) and (23) imply that there exists such that for
all ,

almost everywhere in . Hence, by the equilibrium property of
the strategy profile for all and for all ,
except possibly on a zero measure set.
Suppose that the state of the world is . Then, by part (i)

of Lemma 9, converges to , in probability, and therefore it
converges to almost surely along a subsequence. In particular,
the event happens infinitely often, almost surely. If
that event happens and , then every subsequent will
be equal to 1. Thus, converges almost surely to 1. By a sym-
metrical argument, if , then converges almost surely
to 0. Therefore, converges almost surely to . This is im-
possible, by Theorem 1. We have reached a contradiction, thus
establishing that learning in probability fails under the equilib-
rium strategy profile .

VIII. CONCLUSION

We have obtained sharp results on the fundamental limita-
tions of learning by a sequence of agents who only get to observe
the decisions of a fixed number of immediate predecessors,
under the assumption of bounded likelihood ratios. Specifically,
we have shown that almost sure learning is impossible whereas
learning in probability is possible if and only if . We then
studied the learning properties of the equilibria of a game where
agents are forward looking, with a discount factor applied to
future decisions. As ranges in the resulting strategy pro-
files vary from the myopic ( ) toward the case of fully
aligned objectives ( ). Interestingly, under a full align-
ment of objectives and a central designer, learning is possible
when , yet learning fails to obtain at any equilibrium of
the associated game, and for any .
The scheme in Section VI is only of theoretical interest, be-

cause the rate at which the probability of error decays to zero
is extremely slow. This is quite unavoidable, even for the much
more favorable case of unbounded likelihood ratios [16], and
we do not consider the problem of improving the convergence
rate a central one, although it might be technically interesting.
The existence of a decision profile that guarantees learning

in probability (when ) naturally leads to the question
of whether it is possible to provide incentives to the agents
to behave accordingly. It is known [1], [5], [15] that for my-
opic Bayesian agents, learning in probability does not occur,
which raises the question of designing a game whose equilibria
have desirable learning properties. Another interesting direc-
tion is the characterization of the structural properties of deci-
sion profiles that allow or prevent learning whenever the latter
is achievable.
Finally, one may consider extensions to the case of

hypotheses and -valued decisions by the agents. Our negative
results are expected to hold, and the construction of a decision
profile that learns when , is also expected to go through,
paralleling a similar extension in [12].
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