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1. Introduction

The classical theory of Markov decision processes (MDPs) deals
with the maximization of the cumulative (possibly discounted) ex-
pected reward, to be denoted by W. However, a risk-averse deci-
sion maker may be interested in additional distributional
properties of W. In this paper, we focus on the case where the deci-
sion maker is interested in both the mean and the variance of the
cumulative reward (e.g., trying to optimize the mean subject to a
variance constraint or vice versa), and we explore the associated
computational issues.

Risk aversion in MDPs is of course an old subject. In one ap-
proach, the focus is on the maximization of E½UðWÞ�, where U is a
concave utility function. Problems of this type can be handled by
state augmentation (e.g., Bertsekas, 1995), namely, by introducing
an auxiliary state variable that keeps track of the cumulative past
reward. In a few special cases, e.g., with an exponential utility func-
tion, state augmentation is unnecessary, and optimal policies can
be found by solving a modified Bellman equation (Chung & Sobel,
1987). (The exponential utility function is often viewed as a surro-
gate for trading off mean and variance, on the basis of a single tun-
able parameter. The difficulty of solving mean–variance
optimization problems—which is the focus of this paper—does pro-
vide some support for using a surrogate criterion, more amenable
to exact optimization.) Another interesting case where optimal
policies can be found efficiently involves a ‘‘one-switch utility
functions’’ (the sum of a linear and an exponential) Liu and Koenig
(2005), or piecewise linear utility functions with a single break
point (Liu & Koenig, 2006).

In another approach, the objective is to optimize a so-called
coherent risk measure (Artzner, Delbaen, Eber, & Heath, 1999),
which turns out to be equivalent to a robust optimization problem:
one assumes a family of probabilistic models and optimizes the
worst-case performance over this family. In the multistage case
(Riedel, 2004), problems of this type can be difficult (Le Tallec,
2007), except for some special cases (Iyengar, 2005; Nilim & El
Ghaoui, 2005) that can be reduced to Markov games (Shapley,
1953).

Mean–variance optimization lacks some of the desirable prop-
erties of approaches involving coherent risk measures or risk-sen-
sitive utility functions (e.g., exponential utility functions) and
sometimes leads to counterintuitive policies. Bellman’s principle
of optimality does not hold, and as a consequence, a decision ma-
ker who has received unexpectedly large rewards in the first
stages, may actively seek to incur losses in subsequent stages in
order to keep the variance small. Counterintuitive and seemingly
‘‘irrational’’ behavior (i.e., incompatible with expected utility
maximization) can even arise in static problems under a mean–
variance formulation: for example, under a variance constraint,
one may prefer to forgo a profit which is guaranteed to be positive
but has a positive variance. Nevertheless, mean–variance optimi-
zation is a common approach in financial decision making e.g.,
(Luenberger, 1997), especially for static (one-stage) problems. Con-
sider, for example, a fund manager who is interested in the 1-year
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1 Negative complexity results are straightforward to extend to the more general
case of infinite horizon problems. Also, some of the positive results, such as the
approximation algorithms of Section 6, can be extended to the infinite horizon
discounted case; this is beyond the scope of this paper.
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performance of the fund whose investment strategies will be
judged according to the mean and variance of the return. Assuming
that the manager is allowed to undertake periodic re-balancing ac-
tions in the course of the year, one obtains a Markov decision pro-
cess with mean–variance criteria, and it is important to know the
least possible variance achievable under a set target for the mean
return. While the applicability of the financial strategies arising
from mean–variance optimization in multi-period fund manage-
ment can be debated (due to the ‘‘irrational’’ aspects mentioned
above), mean–variance optimization is definitely a meaningful
objective in various engineering contexts. Consider, for example,
an engineering process whereby a certain material is deposited
on a surface. Suppose that the primary objective is to maximize
the amount deposited, but that there is also an interest in having
all manufactured components be similar to each other; this sec-
ondary objective can be addressed by keeping the variance of the
amount deposited small. In general, the applicability of the formu-
lations studied in this paper will depend on the specifics of a par-
ticular application.

Mean–variance optimization problems resembling ours have
been studied in the literature. For example, (Guo, Ye, & Yin,
2012) consider a mean–variance optimization problem, but subject
to a constraint on the vector of expected rewards starting from
each state, which results in a simpler problem, amenable to a pol-
icy iteration approach. Collins (1997) provides an apparently expo-
nential-time algorithm for a variant of our problem, and Tamar,
Di-Castro, and Mannor (2012) propose a policy gradient approach
that aims at a locally optimal solution. Expressions for the variance
of the discounted reward for stationary policies were developed in
Sobel (1982). However, these expressions are quadratic in the
underlying transition probabilities, and do not lead to convex opti-
mization problems. Similarly, much of the earlier literature (see
Kawai (1987), Huang & Kallenberg (1994) for a unified approach)
on the problem provides various mathematical programming for-
mulations. In general, these formulations either deal with prob-
lems that differ qualitatively focusing on the variation of reward
from its average (Filar, Kallenberg, & Lee, 1989; White, 1992) from
ours or are nonconvex, and therefore do not address the issue of
polynomial-time solvability which is our focus. Indeed, we are
not aware on any complexity results on mean–variance optimiza-
tion problems. We finally note some interesting variance bounds
obtained by Arlotto, Gans, and Steel (2013).

Motivated by considerations such as the above, this paper
deals with the computational complexity aspects of mean–
variance optimization. The problem is not straightforward for
various reasons. One is the absence of a principle of optimality
that could lead to simple recursive algorithms. Another reason
is that, as is evident from the formula varðWÞ ¼ E½W2� � ðE½W�Þ2,
the variance is not a linear function of the probability measure
of the underlying process. Nevertheless, E½W2� and E½W� are linear
functions, and as such can be addressed simultaneously using
methods from multicriteria or constrained Markov decision pro-
cesses (Altman, 1999). Indeed, we will use such an approach in
order to develop pseudopolynomial exact or approximation
algorithms. On the other hand, we will also obtain various
NP-hardness results, which show that there is little hope for
significant improvement of our algorithms.

The rest of the paper is organized as follows. In Section 2, we de-
scribe the model and our notation. **We also define various classes
of policies and performance objectives of interest. In Section 3, we
compare different policy classes and show that performance typi-
cally improves strictly as more general policies are allowed. In Sec-
tion 4, we establish NP-hardness results for the policy classes we
have introduced. Then, in Sections 5 and 6, we develop exact and
approximate pseudopolynomial time algorithms. Unfortunately,
such algorithms do not seem possible for some of the more
restricted classes of policies, due to strong NP-completeness re-
sults established in Section 4. Finally, Section 7 contains some brief
concluding remarks.

2. The model

In this section, we define the model, notation, and performance
objectives that we will be studying. Throughout, we focus on finite
horizon problems.1

2.1. Markov decision processes

We consider a Markov decision process (MDP) with finite state,
action, and reward spaces. An MDP is formally defined by a sextu-
ple M¼ ðT;S;A;R; p; gÞ where:

(a) T, a positive integer, is the time horizon;
(b) S is a finite collection of states, one of which is designated as

the initial state;
(c) A is a collection of finite sets of possible actions, one set for

each state;
(d) R is a finite subset of Q (the set of rational numbers), and is

the set of possible values of the immediate rewards. We let
K ¼ maxr2Rjrj.

(e) p : f0; . . . ; T � 1g � S � S �A ! Q describes the transition
probabilities. In particular, pt(s0js,a) is the probability that
the state at time t + 1 is s0, given that the state at time t is
s, and that action a is chosen at time t.

(d) g : f0; . . . ; T � 1g �R� S �A ! Q is a set of reward distri-
butions. In particular, gt(rjs,a) is the probability that the
immediate reward at time t is r, given that the state and
action at time t is s and a, respectively.

With few exceptions (e.g., for the time horizon T), we use capital
letters to denote random variables, and lower case letters to denote
ordinary variables. The process starts at the designated initial state.
At every stage t = 0,1, . . . , T � 1, the decision maker observes the
current state St and chooses an action At. Then, an immediate re-
ward Rt is obtained, distributed according to gt(�jSt,At), and the next
state St+1 is chosen, according to pt(�jSt,At). Note that we have as-
sumed that the possible values of the immediate reward and the
various probabilities are all rational numbers. This is in order to ad-
dress the computational complexity of various problems within
the standard framework of digital computation. Finally, we will
use the notation x0:t to indicate the tuple (x0, . . . , xt).

2.2. Policies

We will use the symbol p to denote policies. Under a determin-
istic policy p = (l0, . . . , lT�1), the action at each time t is determined
according to a mapping lt whose argument is the history Ht =
(S0:t,A0:t�1,R0:t�1) of the process, by letting At = lt(Ht). We let Ph

be the set of all such history-based policies. (The subscripts are
used as a mnemonic for the variables on which the action is al-
lowed to depend.) We will also consider randomized policies. Intu-
itively, at each point in time, the policy can pick an action at
random, with the probability of each action determined by the cur-
rent information (which is Ht as well as the outcomes of earlier
randomizations). Randomness can always be simulated by using
an independent uniform random variable as the seed, which leads
to the following formal definition. We assume that there is
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available a sequence of i.i.d. uniform random variables U0, U1, . . . ,
UT�1, which are independent from everything else. In a randomized
policy, the action at time t is determined by letting At = lt(Ht,U0:t).
Let Ph,u be the set of all randomized policies.

In classical MDPs, it is well known that restricting to Markovian
policies (policies that take into account only the current state St)
results in no loss of performance. In our setting, there are two dif-
ferent possible ‘‘states’’ of interest: the original state St, or the aug-
mented state (St,Wt), where

Wt ¼
Xt�1

k¼0

Rk;

(with the convention that W0 = 0). Accordingly, we define the fol-
lowing classes of policies: Pt,s (under which At = lt(St)), and Pt,s,w

(under which At = lt(St,Wt)), and their randomized counterparts
Pt,s,u (under which At = lt(St,Ut)), and Pt,s,w,u (under which At =
lt(St,Wt,Ut). Notice that

Pt;s � Pt;s;w � Ph;

and similarly for their randomized counterparts.

2.3. Performance criteria

Once a policy p and an initial state s is fixed, the cumulative re-
ward WT becomes a well-defined random variable. The perfor-
mance measures of interest are its mean and variance, defined by
Jp ¼ Ep½WT � and Vp = varp(WT), respectively. Under our assump-
tions (finite horizon, and bounded rewards), it follows that there
are finite upper bounds of KT and K2T2, for jJpj and Vp, respectively,
independent of the policy.

Given our interest in complexity results, we will focus on ‘‘deci-
sion’’ problems that admit a yes/no answer, except for Section 6.
We define the following problem.

Problem MV-MDP(P):
Given an MDP M and rational numbers k, v, does there exist a

policy in the set P such that Jp P k and Vp 6 v?
Clearly, an algorithm for the problem MV-MDP(P) can be com-

bined with binary search to solve (up to any desired precision)
the problem of maximizing the expected value of WT subject to
an upper bound on its variance, or the problem of minimizing
the variance of WT subject to a lower bound on its mean.

3. Comparison of policy classes

Our first step is to compare the performance obtained from dif-
ferent policy classes. We introduce some terminology. Let P and P0

be two policy classes. We say that P is inferior to P0 if, loosely
speaking, the policy class P0 can always match or exceed the ‘‘per-
formance’’ of policy class P, and for some instances it can exceed it
strictly. Formally, P is inferior to P0 if the following hold: (i) if
ðM; c; dÞ is a ‘‘yes’’ instance of MV-MDP(P), then it is also a ‘‘yes’’ in-
stance of MV-MDP (P0); (ii) there exists some ðM; c; dÞ which is a
‘‘no’’ instance of MV-MDP(P) but a ‘‘yes’’ instance of MV-MDP(P0). Sim-
ilarly, we say that two policy classes P and P0 are equivalent if
every ‘‘yes’’ (respectively, ‘‘no’’) instance of MV-MDP(P) is a ‘‘yes’’
(respectively, ‘‘no’’) instance of MV-MDP(P0).

We define one more convenient term. A state s is said to be
terminal if it is absorbing (i.e., pt(sjs,a) = 1, for every t and a) and
provides zero rewards (i.e., gt(0js,a) = 1, for every t and a).

3.1. Randomization Improves Performance

Our first observation is that randomization can strictly improve
performance. This is not surprising given that we are dealing
simultaneously with two criteria, and that randomization is
helpful in constrained MDPs e.g., (Altman, 1999). (Clearly, it is
not the case that there will always be improvement—consider a
case where rewards are identically zero, so that all policy classes
offer the same performance. The content of our result is that
certain policies are not ‘‘equivalent,’’ meaning that there exist
instances for which the resulting performance is different).

Theorem 1.

(a) Pt,s is inferior to Pt,s,u;
(b) Pt,s,w is inferior to Pt,s,w,u;
(c) Ph is inferior to Ph,u.
Proof. It is clear that performance cannot deteriorate when ran-
domization is allowed. It therefore suffices to display an instance
in which randomization improves performance.

Consider a one-stage MDP (T = 1). At time 0, we are at the initial
state and there are two available actions, a and b. The mean and
variance of the resulting reward are both zero under action a, and
both equal to 1 under action b. After the decision is made, the
rewards are obtained and the process terminates. Thus WT = R0, the
reward obtained at time 0.

Consider the problem of maximizing E½R0� subject to the
constraint that var(R0) 6 1/2. There is only one feasible determin-
istic policy (choose action a), and it has zero expected reward. On
the other hand, a randomized policy that chooses action b with
probability p has an expected reward of p and the corresponding
variance satisfies

varðR0Þ 6 E½R2
0� ¼ pE½R2

0jA0 ¼ b� ¼ 2p:

When 0 < p 6 1/4, such a randomized policy is feasible and im-
proves upon the deterministic one.

Note that for the above instance we have Pt,s = Pt,s,w = Ph, and
Pt,s,u = Pt,s,w,u = Ph,u. Hence the above example establishes all three
of the claimed statements. h
3.2. Information improves performance

We now show that in most cases, performance can improve
strictly when we allow a policy to have access to more information.
The only exception arises for the pair of classes Pt,s,w,u and Ph,u,
which we show in Section 5 to be equivalent (cf. Theorem 6).

Theorem 2.

(a) Pt,s is inferior to Pt,s,w, and Pt,s,u is inferior to Pt,s,w,u.
(b) Pt,s,w is inferior to Ph.
Proof.

(a) Consider the following MDP, with time horizon T = 2. The
process starts at the initial state s0, at which there are
two actions. Under action a1, the immediate reward is zero
and the process moves to a terminal state. Under action a2,
the immediate reward R0 is either 0 or 1, with equal prob-
ability, and the process moves to state s1. At state s1, there
are two actions, a3 and a4: under action a3, the immediate
reward R1 is equal to 0, and under action a4, it is equal to 1.
We are interested in the optimal value of the expected
reward E½W2� ¼ E½R0 þ R1�, subject to the constraint that
the variance is less than or equal to zero (and therefore
equal to zero). Let p be the probability that action a2 is
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chosen at state s0. If p > 0, and under any policy in Pt,s,u, the
reward R0 at state s0 has positive variance, and the reward
R1 at the next stage is uncorrelated with R0. Hence, the var-
iance of R0 + R1 is positive, and such a policy is not feasible;
in particular, the constraint on the variance requires that
p = 0. We conclude that the largest possible expected
reward under any policy in Pt,s,u (and, a fortiori, under
any policy in Pt,s) is equal to zero. Consider now the fol-
lowing policy, which belongs to Pt,s,w and, a fortiori, to
Pt,s,w,u: at state s0, choose action a2; then, at state s1, choose
a3 if W1 = R0 = 1, and choose a4 if W1 = R0 = 0. In either case,
the total reward is R0 + R1 = 1, while the variance of R0 + R1

is zero, thus ensuring feasibility. This establishes the first
part of the theorem.

(b) Consider the following MDP, with time horizon T = 3. At
state s0 there is only one available action; the next state
S1 is either s1 or s01, with probability p and 1 � p, respec-
tively, and the immediate reward R0 is zero. At either state
s1 or s01, there is again only one available action; the next
state, S2, is s2, and the reward R1 is zero. At state s2, there
are two actions, a and b. Under action a, the mean and var-
iance of the resulting reward R2 are both zero, and under
action b, they are both equal to 1. Let us examine the larg-
est possible value of E½W3� ¼ E½R2�, subject to the constraint
var(W2) 6 1/2. The class Pt,s,w contains two policies, corre-
sponding to the two deterministic choices of an action at
state s2; only one of them is feasible (the one that chooses
action a), resulting in zero expected reward. However, the
following policy in Ph has positive expected reward:
choose action b at state s2 if and only if the state at time
1 was equal to s1 (which happens with probability p). As
long as p is sufficiently small, the constraint var(W) 6 1/2
is met, and this policy is feasible. It follows that Pt,s,w is
inferior to Ph. h

4. Complexity results

In this section, we establish that mean–variance optimization in
finite horizon MDPs is unlikely to admit polynomial time algo-
rithms, in contrast to classical MDPs.

Theorem 3. The problem MV-MDP(P) is NP-hard, when P is Pt,s,w,
Pt,s,w,u, Ph, or Ph,u.
Proof. We will actually show NP-hardness for the special case of
MV-MDP(P), in which we wish to determine whether there exists a
policy whose reward variance is equal to zero. (In terms of the
problem definition, this corresponds to letting k = �KT and v = 0.)
The proof uses a reduction from the PARTITION problem: Given n posi-
tive integers, does there exist a subset B of {1, . . . , n} such thatP

i2Bri ¼
P

iRBri?
Given an instance (r1, . . . , rn) of PARTITION, and for any of the

policy classes of interest, we construct an instance of MV-MDP(P),
with time horizon T = n + 1, as follows. At the initial state s0,
there is only one available action, resulting in zero immediate
reward (R0 = 0). With probability 1/2, the process moves to a
terminal state; with probability 1/2, the process moves (deter-
ministically) along a sequence of states s1, . . . , sn. At each state
si (i = 1, . . . , n), there are two actions: ai, which results in an
immediate reward of ri, and bi, which results in an immediate
reward of �ri.

Suppose that there exists a set B � {1, . . . , n} such thatP
i2Bri ¼

P
iRBri. Consider the policy that chooses action ai at state

si if and only if i 2 B. This policy achieves zero total reward, with
probability 1, and therefore meets the zero variance constraint.
Conversely, if a policy results in zero variance, then the total
reward must be equal to zero, with probability 1, which implies
that such a set B exists. This completes the reduction.

Note that this argument applies no matter which particular
class of policies is being considered. h

The above proof also applies to the policy classes Pt,s and Pt,s,u.
However, for these two classes, a stronger result is possible. Recall
that a problem is strongly NP-hard, if it remains NP-hard when re-
stricted to instances in which the numerical part of the instance
description involves ‘‘small’’ numbers; see Garey & Johnson
(1979) for a precise definition.

Theorem 4. If P is either Pt,s or Pt,s,u, the problem MV-MDP(P) is
strongly NP-hard.
Proof. As in the proof of Theorem 3, we will prove the result for
the special case of MV-MDP, in which we wish to determine whether
there exists a policy under which the variance of the reward is
equal to zero. The proof involves a reduction from the 3-Satisfiabil-
ity problem (3SAT). An instance of 3SAT consists of n Boolean vari-
ables x1, . . . , xn, and m clauses C1, . . . , Cm, with three literals per
clause. Each clause is the disjunction of three literals, where a lit-
eral is either a variable or its negation. (For example, x2 _ �x4 _ x5

is such a clause, where a bar stands for negation.) The question is
whether there exists an assignment of truth values (‘‘true’’ or
‘‘false’’) to the variables such that all clauses are satisfied.

Suppose that we are given an instance of 3SAT, with n variables
and m clauses, C1, . . . , Cm. We construct an instance of MV-MDP(P) as
follows. There is an initial state s0, a state d0, a state cj associated
with each clause Cj, and a state yi associated with each literal xi. The
actions, dynamics, and rewards are as follows:

(a) Out of state s0, there is equal probability, 1/(m + 1), of reach-
ing any one of the states d0,c1, . . . , cm, independent of the
action; the immediate reward is zero.

(b) State d0 is a terminal state. At each state cj, there are three
actions available: each action selects one of the three literals
in the clause, and the process moves to the state yi associ-
ated with that literal; the immediate reward is 1 if the literal
appears in the clause unnegated, and �1 if the literal
appears in the clause negated. For an example, suppose that
the clause is of the form x2 _ �x4 _ x5. Under the first action,
the next state is y2, and the reward is 1; under the second
action, the next state is y4 and the reward is �1; under the
third action, the next state is y5, and the reward is 1.

(c) At each state yi, there are two possible actions ai and bi,
resulting in immediate rewards of 1 and �1, respectively.
The process then moves to the terminal state d0.

Suppose that we have a ‘‘yes’’ instance of 3SAT, and consider a truth
assignment that satisfies all clauses. We can then construct a policy
in Pt,s (and a fortiori in Pt,s,u), whose total reward is zero (and
therefore has zero variance) as follows. If xi is set to be true (respec-
tively, false), we choose action bi (respectively, ai) at state yi. At
state cj we choose an action associated with a literal that makes
the clause to be true. Suppose that state cj is visited after the first
transition, i.e., S1 = cj. If the literal associated with the selected
action at cj is unnegated, e.g., the literal xi, then the immediate
reward is 1. Since this literal makes the clause to be true, it follows
that the action chosen at the subsequent state, yi, is bi, resulting in
a reward of �1, and a total reward of zero. The argument for the
case where the literal associated with the selected action at state
cj is negated is similar. It follows that the total reward is zero, with
probability 1.
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For the converse direction, suppose that there exists a policy in
Pt,s, or more generally, in Pt,s,u under which the variance of the
total reward is zero. Since the total reward is equal to 0 whenever
the first transition leads to state d0 (which happens with proba-
bility 1/(m + 1), it follows that the total reward must be always
zero. Consider now the following truth assignment: xi is set to be
true if and only if the policy chooses action bi at state yi, with
positive probability. Suppose that the state visited after the first
transition is cj. Suppose that the action chosen at state cj leads next
to state yi and that the literal xi appears unnegated in clause Cj.
Then, the reward at state cj is 1, which implies that the reward at
state yi is �1. It follows that the action chosen at yi is bi, and
therefore xi has been set to be true. It follows that clause Cj is
satisfied. A similar argument shows that clause Cj is satisfied when
the literal xi associated with the chosen action at cj appears
negated. In either case, we conclude that clause Cj is satisfied. Since
every state cj is possible at time 1, it follows that every clause is
satisfied, and we have a ‘‘yes’’ instance of 3SAT. h
Because the immediate rewards are bounded, it is easily seen
that an instance with general rewards is equivalent to one with
all positive (or all negative) rewards. It follows that our negative
complexity results remain valid even if we restrict to instances in
which all rewards are positive (respectively, negative).

5. Exact algorithms

The comparison and complexity results of the preceding two
sections indicate that the policy classes Pt,s, Pt,s,w, Pt,s,u, and Ph

are inferior to the class Ph,u, and furthermore some of them
(Pt,s, Pt,s,w) appear to have higher complexity. Thus, there is
no reason to consider them further. While the problem
MV-MDP(Ph,u) is NP-hard, there is still a possibility for approximate
or pseudopolynomial time algorithms. In this section, we focus on
exact pseudopolynomial time algorithms.

Our approach involves an augmented state, defined by Xt =
(St,Wt). Let X be the set of all possible values of the augmented
state. Let jSj be the cardinality of the set S. Let jRj be the cardinal-
ity of the set R. Recall also that K ¼ maxr2Rjrj. If we assume that
the immediate rewards are integers, then Wt is an integer between
�KT and KT. In this case, the cardinality jXj of the augmented state
space X is bounded by jSj � ð2KT þ 1Þ, which is polynomial. With-
out the integrality assumption, the cardinality of the set X remains
finite, but it can increase exponentially with T. For this reason, we
study the integer case separately in Section 5.2.

5.1. State-action frequencies

In this section, we provide some results on the representation of
MDPs in terms of a state-action frequency polytope, thus setting
the stage for our subsequent algorithms.

For any policy p 2Ph,u, and any x 2 X , a 2 A, we define the
state-action frequencies at time t by

zp
t ðx; aÞ ¼ PpðXt ¼ x;At ¼ aÞ; t ¼ 0;1; . . . ; T � 1;

and

zp
t ðxÞ ¼ PpðXt ¼ xÞ; t ¼ 0;1; . . . ; T:

Let zp be a vector that lists all of the above defined state-action
frequencies.

For any family P of policies, let Z(P) = {zpj p 2P}. The following
result is well known e.g., (Altman, 1999). It asserts that any feasible
state-action frequency vector can be attained by policies that de-
pend only on time, the (augmented) state, and a randomization
variable. Furthermore, the set of feasible state-action frequency
vectors is a polyhedron, hence amenable to linear programming
methods.

Theorem 5.
(a) We have Z(Ph,u) = Z(Pt,s,w,u).
(b) The set Z(Ph,u) is a polyhedron, specified by OðT � jXj � jAjÞ lin-

ear constraints.

Note that a certain mean–variance pair (k,v) is attainable by a
policy in Ph,u if and only if there exists some z 2 Z(Ph,u) that
satisfiesX
ðs;wÞ2X

wzTðs;wÞ ¼ k; ð1Þ
X
ðs;wÞ2X

w2zTðs;wÞ ¼ v þ k2: ð2Þ

Furthermore, since Z(Ph,u) = Z(Pt,s,w,u), it follows that if a pair (k,v) is
attainable by a policy in Ph,u, it is also attainable by a policy in
Pt,s,w,u. This establishes the following result.

Theorem 6. The policy classes Ph,u and Pt,s,w,u are equivalent.

Note that checking the feasibility of the conditions z 2 Z(Ph,u),
(1), and (2) amounts to solving a linear programming problem,
with a number of constraints proportional to the cardinality of
the augmented state space X and, therefore, in general, exponen-
tial in T.

5.2. Integer rewards

In this section, we assume that the immediate rewards are inte-
gers, with absolute value bounded by K, and we show that pseudo-
polynomial time algorithms are possible. Recall that an algorithm
is a pseudopolynomial time algorithm if its running time is polyno-
mial in K and the instance size. (This is in contrast to polynomial
time algorithms in which the running time can only grow as a
polynomial of logK.)

Theorem 7. Suppose that the immediate rewards are integers, with
absolute value bounded by K. Consider the following two problems:
(i) determine whether there exists a policy in Ph,u for which
(Jp,Vp) = (k, v), where k and v are given rational numbers; and,

(ii) determine whether there exists a policy in Ph,u for which Jp = k
and Vp 6 v, where k and v are given rational numbers.

Then,

(a) these two problems admit a pseudopolynomial time algorithm;
and,

(b) unless P = NP, these problems cannot be solved in polynomial
time.
Proof.

(a) As already discussed, these problems amount to solving a
linear program. In the integer case, the number of variables
and constraints is bounded by a polynomial in K and the
instance size. The result follows because linear program-
ming can be solved in polynomial time.

(b) This is proved by considering the special case where k = v = 0
and the exact same argument as in the proof of
Theorem 3. h
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Similar to constrained MDPs, mean–variance optimization in-
volves two different performance criteria. Unfortunately, however,
the linear programming approach to constrained MDPs does not
translate into an algorithm for the problem MV-MDP(Ph,u). The rea-
son is that the set

PMV ¼ fðJp;VpÞjp 2 Ph;ug

of achievable mean–variance pairs need not be convex. To bring the
constrained MDP methodology to bear on our problem, instead of
focusing on the pair (Jp,Vp), we define Qp ¼ Ep½W2

T �, and focus on
the pair (Jp,Qp). This is now a pair of objectives that depend linearly
on the state frequencies associated with the final augmented state
XT. Accordingly, we define

PMQ ¼ fðJp;QpÞjp 2 Ph;ug:

Note that PMQ is a polyhedron, because it is the image of the poly-
hedron Z(Ph,u) under the linear mapping specified by the left-hand
sides of Eqs. (1) and (2). In contrast, PMV is the image of PMQ under a
nonlinear mapping:

PMV ¼ fðk; q� k2Þjðk; qÞ 2 PMQg;

and is not, in general, a polyhedron.
As a corollary of the above discussion, and for the case of integer

rewards, we can exploit convexity to devise pseudopolynomial
algorithms for problems that can be formulated in terms of the
convex set PMQ. On the other hand, because of the non-convexity
of PMV, we have not been able to devise pseudopolynomial time
algorithms for the problem MV-MDP(Ph,u), or even the simpler prob-
lem of deciding whether there exists a policy p 2Ph,u that satisfies
Vp 6 v, for some given number v, except for the very special case
where v = 0, which is the subject of our next result. For a general
v, an approximation algorithm will be presented in the next
section.

Theorem 8.

(a) If there exists some p 2Ph,u for which Vp = 0, then there exists
some p0 2Pt,s,w for which Vp0 ¼ 0.

(b) Suppose that the immediate rewards are integers, with absolute
value bounded by K. Then the problem of determining whether
there exists a policy p 2Ph,u for which Vp = 0 admits a pseudo-
polynomial time algorithm.
Proof.

(a) Suppose that there exists some p 2Ph,u for which Vp = 0. By
Theorem 6, p can be assumed, without loss of generality, to
lie in Pt,s,w,u. Let varp(WTjU0:T), be the conditional variance of
WT, conditioned on the realization of the randomization
variables U0:T. We have varpðWTÞP Ep½varpðWT jU0:TÞ�,
which implies that there exists some u0:T such that
varp(WTjU0:T = u0:T) = 0. By fixing the randomization variables
to this particular u0:T, we obtain a deterministic policy, in Pt,s,w

under which the reward variance is zero.
(b) If there exists a policy under which Vp = 0, then there exists an

integer k, with jkj 6 KT such that, under this policy, WT is guar-
anteed to be equal to k. Thus, we only need to check, for each k
in the relevant range, whether there exists a policy such that
(Jp,Vp) = (k,0). By Theorem 7, this can be done in pseudopoly-
nomial time. h

The approach in the proof of part (b) above leads to a short
argument, but yields a rather inefficient (albeit pseudopolynomial)
algorithm. A much more efficient and simple algorithm is obtained
by realizing that the question of whether WT can be forced to be k,
with probability 1, is just a reachability game: the decision maker
picks the actions and an adversary picks the ensuing transitions
and rewards (among those that have positive probability of occur-
ring). The decision maker wins the game if it can guarantee that
WT = k. Such sequential games are easy to solve in time polynomial
in the number of (augmented) states, decisions, and the time hori-
zon, by a straightforward backward recursion. On the other hand a
genuinely polynomial time algorithm does not appear to be possi-
ble; indeed, the proof of Theorem 3 shows that the problem is NP-
complete.

6. Approximation algorithms

In this section, we deal with the optimization counterparts of
the problem MV-MDP(Ph,u). We are interested in computing approx-
imately the following two functions:

v�ðkÞ ¼ inf
fp2Ph;u :JpPkg

Vp; ð3Þ

and

k�ðvÞ ¼ sup
fp2Ph;u :Vp6vg

Jp: ð4Þ

If the constraint Jp P k (respectively, Vp 6 v) is infeasible, we use
the standard convention v⁄(k) =1 (respectively, k⁄(v) = �1). Note
that the infimum and supremum in the above definitions are both
attained, because the set PMV of achievable mean–variance pairs is
the image of the polyhedron PMQ under a continuous map, and is
therefore compact.

We do not know how to efficiently compute or even generate a
uniform approximation of either v⁄(k) or k⁄(v) (i.e., find a value v0

between v⁄(k) � � and v⁄(k) + �, and similarly for k⁄(v)). In the fol-
lowing two results we consider a weaker notion of approximation
that is computable in pseudopolynomial time. We discuss v⁄(k) as
the issues for k⁄(v) are similar.

For any positive � and m, we will say that v̂ð�Þ is an (�,m)-approx-
imation of v⁄(�) if, for every k,

v�ðk� mÞ � � 6 v̂ðkÞ 6 v�ðkþ mÞ þ �: ð5Þ

This is an approximation of the same kind as those considered in
Papadimitriou & Yannakakis (2000): it returns a value v̂ such that
ðk; v̂Þ is an element of the ‘‘(� + m)-approximate Pareto boundary’’
of the set PMV. For a different view, the graph of the function v̂ð�Þ
is within Hausdorf distance � + m from the graph of the function
v⁄(�).

We will show how to compute an (�,m)-approximation in time
which is pseudopolynomial, and polynomial in the parameters
1/�, and 1/m.

We start in Section 6.1 with the case of integer rewards, and
build on the pseudopolynomial time algorithms of the preceding
section. We then consider the case of general rewards in Sec-
tion 6.2. We finally sketch an alternative algorithm in Section 6.3
based on set-valued dynamic programming.

6.1. Integer rewards

In this section, we prove the following result.

Theorem 9. Suppose that the immediate rewards are integers. There
exists an algorithm that, given �, m, and k, outputs a value v̂ðkÞ that
satisfies (5), and which runs in time polynomial in jSj; jAj; T; K; 1=�,
and 1/m.
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Proof. Without loss of generality, and only for the purposes of this
proof, we can and will assume that the immediate rewards are
nonnegative. Indeed, if the immediate rewards range in [�K,K]
we can redefine them, by adding K to the reward at each stage.
Then, v̂ðkÞ for the original problem will be equal to v̂ðkþ KÞ for
the new problem. Since the rewards are bounded by K, we have
v⁄(k) =1 for k > KT and v⁄(k) = v⁄(0) for k < 0. For this reason, we
only need to consider k 2 [0,KT]. To simplify the presentation, we
assume that � = m. We let d be such that � = 3d KT.

The algorithm is as follows. We consider grid points ki defined
by ki = (i � 1)d, i = 1, . . . , n, where n is chosen so that kn�1 6 KT,
kn > KT. Note that n = O(KT/d). For i = 1, . . . , n � 1, we calculate q̂ðkiÞ,
the smallest possible value of E½W2

T �, when E½WT � is restricted to lie
in [ki,ki+1]. Formally,

q̂ðkiÞ ¼min qj9k0 2 ½ki; kiþ1� s:t:ðk0; qÞ 2 PMQf g:

We let ûðkiÞ ¼ q̂ðkiÞ � k2
iþ1, which can be interpreted as an estimate

of the least possible variance when E½WT � is restricted to the interval
[ki,ki+1]. Finally, we set

v̂ðkÞ ¼min
iPk

ûðkiÞ; if k 2 ½kk; kkþ1�:

The main computational effort is in computing q̂ðkiÞ for every i.
Since PMQ is a polyhedron, this amounts to solving O(KT/d) linear
programming problems. Thus, the running time of the algorithm
has the claimed properties.

We now prove correctness. Let q⁄(k) = min{qj (k,q) 2 PMQ}, and
u⁄(k) = q⁄(k) � k2, which is the least possible variance for a given
value of k. Note that v⁄(k) = min{u⁄(k0)j k0 P k}.

We have q̂ðkiÞ 6 q�ðk0Þ, for all k0 2 [ki,ki+1]. Also, �k2
iþ1 6 �ðk

0Þ2,
for all k0 2 [ki,ki+1]. By adding these two inequalities, we obtain
ûðkiÞ 6 u�ðk0Þ, for all k0 2 [ki,ki+1]. Given some k, let k be such that
k 2 [kk,kk+1]. Then,

v̂ðkÞ ¼min
iPk

ûðkiÞ 6 min
k0Pkk

u�ðk0Þ 6min
k0Pk

u�ðk0Þ ¼ v�ðk0Þ;

so that v̂ðkÞ is always an underestimate of v⁄(k).
We now prove a reverse inequality. Fix some k and let k be such

that k 2 [kk,kk+1]. Let i P k be such that v̂ðkÞ ¼ ûðkiÞ. Let also
�k 2 ½ki; kiþ1� be such that q�ð�kÞ ¼ q̂ðkiÞ. Note that

k2
iþ1 � �k2

6 k2
iþ1 � k2

i ¼ dðki þ kiþ1Þ 6 2dðKT þ dÞ 6 3dKT: ð6Þ

Then,

v̂ðkÞ ¼ðaÞ ûðkiÞ ¼
ðaÞ

q̂ðkiÞ � k2
iþ1 ¼
ðcÞ

q�ð�kÞ � k2
iþ1 P

ðdÞ
q�ð�kÞ � �k2 � 3dKT ¼ðeÞu�ð�kÞ

� 3dKT P
ðf Þ

v�ð�kÞ � 3dKT P
ðgÞ

v�ðk� dÞ � 3dKT P
ðhÞ

v�ðk� �Þ � �:

In the above, (a) holds by the definition of i; (b) by the definition of
ûðkiÞ; (c) by the definition of �k; and (d) follows from Eq. (6). Equality
(e) follows from the definition of u⁄(�). Inequality (f) follows from
the definition of v⁄(�); and (g) is obtained because v⁄(�) is nonde-
creasing and because �k P k� d. (The latter fact is seen as follows:
(i) if i > k, then k 6 kkþ1 6 ki 6

�k; (ii) if i = k, then both k and �k belong
to [kk,kk+1], and their difference is at most d.) Inequality (h) is ob-
tained because of the definition � = 3dKT, the observation d < �,
and the monotonicity of v⁄(�). h

Theorem 9 allows us to construct an approximate Pareto
boundary. In addition, one may be interested in obtaining corre-
sponding policies. As is common in Markov decision theory, the
construction of suitable policies is implicit in value function calcu-
lations, and is immediate from the proof Theorem 9, as we now de-
scribe. Suppose that are given some k that happens to lie in some
[kk,kk+1]. As in the proof of the theorem, we find some i such that
v̂ðkÞ ¼ ûðkiÞ ¼ q̂ðkiÞ � k2

iþ1. From the definition of q̂ðkiÞ, there exists
some ð�k; qÞ 2 PMQ with �k 2 ½ki; kiþ1� and q ¼ q�ð�kÞ ¼ q̂ðkiÞ. The key
observation is that we can easily find a policy for which E½WT �
and E½W2

T � are equal to �k and q, respectively. This is done by finding
a corresponding state-action frequency vector in the polyhedron
Z(Ph,u) (which is a linear programming feasibility problem), and
expressing that vector as a convex combination of extreme points
of Z(Ph,u). As is well known, extreme points of Z(Ph,u) are associ-
ated with deterministic policies. The desired policy is a random-
ized policy obtained by combining these deterministic policies
according to the coefficients involved in the convex combination.
The policy constructed in this manner has a variance equal to

q� ð�kÞ2 ¼ q̂ðkiÞ � ð�kÞ
2
6 q̂ðkiÞ � k2

iþ1 þ 3dKT ¼ v̂ðkÞ þ 3dKT

6 v̂ðkÞ þ �;

where the first inequality is obtained as in Eq. (6). We have thus
found a policy whose performance is within � of the computed
approximately optimal performance v̂ðkÞ.

Similar policy constructions are possible in the other cases con-
sidered in this paper (as, for example, in the next section). Given
that these constructions do not involve any new ideas, we will
not repeat them.

6.2. General rewards

When rewards are arbitrary, we can discretize the rewards and
obtain a new MDP. The new MDP is equivalent to one with integer
rewards to which the algorithm of the preceding subsection can be
applied. This is a legitimate approximation algorithm for the origi-
nal problem because, as we will show shortly, the function v⁄(�)
changes very little when we discretize using a fine enough
discretization.

We are given an original MDPM¼ ðT;S;A;R; p; gÞ in which the
rewards are rational numbers in the interval [�K,K], and an
approximation parameter �. We fix a positive number d, a discret-
ization parameter whose value will be specified later. We then
construct a new MDPM0 ¼ ðT;S;A;R0; p; g0Þ, in which the rewards
are rounded down to an integer multiple of d. More precisely, all
elements of the reward range R0 are integer multiples of d, and
for every t; s; a 2 f0;1; . . . ; T � 1g � S �A, and any integer n, we
have

g0tðdnjs; aÞ ¼
X

r: dn6r<dðnþ1Þ
gtðrjs; aÞ:

We denote by J, Q and by J0, Q0 the first and second moments of the
total reward in the original and new MDPs, respectively. Let Ph,u

and P0h;u be the sets of (randomized, history-based) policies in M
andM0, respectively. Let PMQ and P0MQ be the associated polyhedra.

We want to to argue that the mean–variance tradeoff curves for
the two MDPs are close to each other. This is not entirely straight-
forward because the augmented state spaces (which include the
possible values of the cumulative rewards Wt) are different for
the two problems and, therefore, the sets of policies are also differ-
ent. A conceptually simple but somewhat tedious approach in-
volves an argument along the lines of Whitt (1978), Whitt
(1979), generalized to the case of constrained MDPs; we outline
such an argument in Section 6.3. Here, we follow an alternative ap-
proach, based on a coupling argument.

Proposition 1. There exists a polynomial function c(K,T) such that
the Hausdorf distance between PMQ and P0MQ is bounded above by
2KT2d. More precisely,

(a) For every policy p 2Ph,u, there exists a policy p0 2 P0h;u such
that
max jJ0p0 � Jpj; jQ
0
p0 � Qpj

� �
6 2KT2d:
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(b) Conversely, for every policy P0h;u, there exists a policy Ph,u such
that the above inequality again holds.
Proof. We denote by d(r) the discretized value of a reward r, that
is, dðrÞ ¼maxfnd : nd 6 r; n 2 Zg. Let us consider a third MDPM00

which is identical toM0, except that its rewards R00t are generated as
follows. (We follow the convention of using a single or double
prime to indicate variables associated with M0 or M00, respec-
tively.) A random variable Rt is generated according to the distribu-
tion prescribed by gt(rjst,at), and its value is observed by the
decision maker, who then incurs the reward R00t ¼ dðRtÞ. Let P00MQ

be the polyhedron associated with M00. We claim that P00MQ ¼ P0MQ .
The only difference betweenM0 andM00 is that the decision maker
inM00 has access to the additional information Rt � d(Rt). However,
this information is incosequential: it does not affect the future
transition probabilities or reward distributions. Thus, Rt � d(Rt)
can only be useful as an additional randomization variable. Since
P0MQ is the set of achievable pairs using general (history-based ran-
domized) policies, having available an additional randomization
variable does not change the polyhedron, and P00MQ ¼ P0MQ . Thus, to
complete the proof it suffices to show that the polyhedra PMQ

and P00MQ are close.
Let us compare the MDPsM andM00. The information available

to the decision maker is the same for these two MDPs (since all the

history of reward truncations fRs � dðRsÞgt�1
s¼1 is available inM00 for

the decision at time t). Therefore, for every policy in one MDP,
there exists a policy for the other under which (if we define the two
MDPs on a common probability space, involving common random
generators) the exact same sequence of states ðSt ¼ S00t ), actions
ðAt ¼ A00t ), and random variables Rt is realized. The only difference is
that the rewards are Rt and d(Rt), inM andM00, respectively. Recall
that 0 6 Rt � d(Rt) 6 d. We obtain that for every policy p 2P,
there exists a policy p00 2P00 for which 0 6WT �W 00

T ¼PT�1
s¼0ðRt � dðRtÞÞ 6 dT, and therefore, W2

T � W 00
T

� �2
��� ��� 6 2KT2d.

Taking expectations, we obtain jJp � J0 0pj 6 Td, Qp � Q 00p
�� �� 6 2KT2d.

This completes the proof of part (a). The proof of part (b) is
identical. h
Theorem 10. There exists an algorithm that, given �, m, and k, outputs
a value v̂ðkÞ that satisfies (5), and which runs in time polynomial in
jSj, jAj; T; K; 1=�, and 1/m.
2 If X and Y are subsets of a vector space and a a scalar, we let a X = {axjx 2 X} and
X + Y = {x + yjx 2 X, y 2 Y}. Furthermore, if for every a 2 A, we have a set Xa, then
conva2AfXag is the convex hull of the union of these sets.
Proof. Assume for simplicity that m = �. Given the value of �, let d
be such that �/2 = 2KT2d, and construct the discretized MDP M0.
Run the algorithm from Theorem 9 to find an (�/2,�/2)-approxima-
tion v̂ forM0. Using Proposition 1, it is not hard to verify that this
yields an (�,�)-approximation of v⁄(k). h

6.3. An exact algorithm and its approximation

There are two general approaches for constructing approxima-
tion algorithms. (i) One can discretize the problem, to obtain an
easier one, and then apply an algorithm specially tailored to the
discretized problem; this was the approach in the preceding sub-
section. (ii) One can design an exact (but inefficient) algorithm
for the original problem and then implement the algorithm
approximately. This approach will work provided the approxima-
tions do not build up excessively in the course of the algorithm.
In this subsection, we elaborate on the latter approach.

We defined earlier the polyhedron PMQ as the set of achievable
first and second moments of the cumulative reward starting at
time zero at the initial state. We extend this definition by consid-
ering intermediate times and arbitrary (intermediate) augmented
states. We let

Ctðs;wÞ ¼ fðk; qÞ : 9p 2 Ph;u s:t: Ep½WT jSt ¼ s; Wt ¼ w� ¼ k andð7Þ
Ep½W2

T jSt ¼ s; Wt ¼ wÞ ¼ qg:

Clearly, C0(s,0) = PMQ. Using a straightforward backwards induction,
it can be shown that Ct(�, �) satisfies the set-valued dynamic pro-
gramming recursion2

Ctðs;wÞ ¼ conva2A
X
s02S

ptðs0js; aÞ
X
r2R

gtðrjs; aÞCtþ1ðs0;wþ rÞ
( )

; ð8Þ

for every s 2 S;w 2 R, and for t = 0,1, 2, . . ., T � 1, initialized with the
boundary conditions

CTðs;wÞ ¼ fðw;w2Þg: ð9Þ

A simple inductive proof shows that the sets Ct(s,w) are polyhedra;
this is because CT(s,w) is either empty or a singleton and because
the sum or convex hull of finitely many polyhedra is a polyhedron.
Thus, the recursion involves a finite amount of computation, e.g., by
representing each polyhedron in terms of its finitely many extreme
points. In the worst case, this translates into an exponential time
algorithm, because of the possibly large number of extreme points.
However, such an algorithm can also be implemented approxi-
mately. If we allow for the introduction of an O(�/T) error at each
stage (where error is measured in terms of the Hausdorf distance),
we can work with approximating polyhedra that involve only O(1/�)
extreme points, while ending up with a O(�) total error; this is be-
cause we are approximating polyhedra in the plane, as opposed to
higher dimensions where the dependence on � would have been
worse dependence. The details are straightforward but somewhat
tedious and are omitted. On the other hand, in practice, this ap-
proach is likely to be faster than the algorithm of the preceding
subsection.

7. Conclusions

We have shown that mean–variance optimization problems for
MDPs are typically NP-hard, but sometimes admit pseudopolyno-
mial approximation algorithms. We only considered finite horizon
problems, but it is clear that the negative results carry over to their
infinite horizon counterparts. Furthermore, given that the contri-
bution of the tail of the time horizon in infinite horizon discounted
problems (or in ‘‘proper’’ stochastic shortest path problems as in
Bertsekas (1995)) can be made arbitrarily small, our approximation
algorithms can also yield approximation algorithms for infinite
horizon problems.

Two more problems of some interest deal with finding a policy
that has the smallest possible, or the largest possible variance.
There is not much we can say here, except for the following:

(a) The smallest possible variance is attained by a deterministic
policy, that is,
min
p2Ph;u

Vp ¼ min
p2Ph

Vp:
This is proved using the inequality varpðWTÞP Ep½varpðWT jU0:TÞ�.
(b) Variance will be maximized, in general, by a randomized

policy. To see this, consider a single stage problem and
two actions with deterministic rewards, equal to 0 and 1,
respectively. Variance is maximized by assigning probability
1/2 to each of the actions. The variance maximization
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problem is equivalent to maximizing the concave function
q � k2 subject to (k,q) 2 PMQ. This is a quadratic program-
ming problem over the polyhedron PMQ and therefore admits
a pseudopolynomial time algorithm, when the rewards are
integer.

Our results suggest several interesting directions for future re-
search, which we briefly outline below.

First, our negative results apply to general MDPs. It would be
interesting to determine whether the hardness results remain valid
for specially structured MDPs. One possibly interesting special case
involves multi-armed bandit problems: there are n separate MDPs
(‘‘arms’’); at each time step, the decision maker has to decide
which MDP to activate, while the other MDPs remain inactive. Of
particular interest here are index policies that compute a value
(‘‘index’’) for each MDP and select an MDP with maximal index;
such policies are often optimal for the classical formulations (see
Gittins (1979) and Whittle (1988)). Obtaining a policy that uses
some sort of an index for the mean–variance problem or alterna-
tively proving that such a policy cannot exist would be interesting.

Second, a number of complexity questions have been left open.
We list a few of them:

(a) Is there a pseudopolynomial time algorithm for computing
v⁄(k) or k⁄(v) exactly?

(b) Is there a polynomial or pseudopolynomial time algorithm
that computes v⁄(k) or k⁄(v) within a uniform error bound �?

(c) Is the problem of computing v̂ðkÞ with the properties in Eq.
(5) NP-hard?

(d) Is there a pseudopolynomial time algorithm the smallest
possible variance in the absence of any constraints on the
mean cumulative reward?

Third, bias-variance tradeoffs may pay an important role in
speeding up certain control and learning heuristics, such as those
involving control variates (Meyn, 2008). Perhaps mean–variance
optimization can be used to address the exploration/exploitation
tradeoff in model-based reinforcement learning, with variance
reduction serving as a means to reduce the exploration time (see
Sutton & Barto (1998) for a general discussion of exploration–
exploitation in reinforcement learning). Of course, in light of the
computational complexity of bias-variance tradeoffs, incorporating
bias-variance tradeoffs in learning makes sense only if experimen-
tation is nearly prohibitive and computation time is cheap. Such an
approach could be particularly useful if a coarse, low-complexity,
approximate solution of a bias-variance tradeoff problem can re-
sult in significant exploration speedup.

Fourth, we only considered mean–variance tradeoffs in this pa-
per. However, there are other interesting and potentially useful cri-
teria that can be used to incorporate risk into multi-stage decision
making. For example, Liu and Koenig (2005) consider a utility func-
tion with a single switch. Many other risk aware criteria have been
considered in the single stage case. It would be interesting to de-
velop a comprehensive theory for the complexity of solving mul-
ti-stage decision problems under general (monotone convex or
concave) utility function and under risk constraints. This is espe-
cially interesting for the approximation algorithms presented in
Section 6.

Finally, it is reasonable to expect that our positive results (on
approximation algorithms) can be extended to problems involving
continuous states and actions and/or unbounded rewards, by first
discretizing the problem, truncating the rewards, and then apply-
ing our algorithms to a discrete problem. Of course, one would
have to deal with the generic issues that arise in discretizing MDPs
Whitt (1978), Whitt (1979); we expect this line of work to be te-
dious without offering any substantial new insights, and have re-
frained from pursuing it in this paper.
Acknowledgments

The authors are grateful to the reviewers for their constructive
comments. This research was partially supported by the Israel Sci-
ence Foundation (contract 890015), a Horev Fellowship, and the
National Science Foundation under grant CMMI-0856063. A preli-
minary version of this paper appeared at the 28th International
Conference on Machine Learning.
References

Altman, E. (1999). Constrained Markov decision processes. Chapman and Hall.
Arlotto, A., Gans, N., & Steel, M. J. (2013). Markov decision problems where means

bound variances (Tech. Rep). <https://faculty.fuqua.duke.edu/�aa249/
ArlottoGansSteele-MDPsWhereMeansBoundVariances.pdf>.

Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk.
Mathematical Finance, 9(3), 203–228.

Bertsekas, D. (1995). Dynamic programming and optimal control. Athena Scientific.
Chung, K., & Sobel, M. (1987). Discounted MDP’s: Distribution functions and

exponential utility maximization. SIAM Journal on Control and Optimization,
25(1), 49–62.

Collins, E. J. (1997). Finite-horizon variance penalised Markov decision processes.
Operations-Research-Spektrum, 19, 35–39.

Filar, J., Kallenberg, L. C. M., & Lee, H. M. (1989). Variance-penalised Markov decision
processes. Mathematics of Operations Research, 14, 147–161.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. New York: W.H. Freeman.

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society. Series B (Methodological), 41(2), 148–177.

Guo, X., Ye, L., & Yin, G. (2012). A mean-variance optimization problem for
discounted Markov decision processes. European Journal of Operational Research,
220, 423–429.

Huang, Y., & Kallenberg, L. C. M. (1994). On finding optimal policies for Markov
decision chains: A unifying framework for mean-variance tradeoffs.
Mathematics of Operations Research, 19, 434–448.

Iyengar, G. (2005). Robust dynamic programming. Mathematics of Operations
Research, 30, 257–280.

Kawai, H. (1987). A variance minimisation problem for a Markov decision process.
European Journal of Operations Research, 31, 140–145.

Le Tallec, Y. (2007). Robust, risk-sensitive, and data-driven control of Markov decision
processes. Unpublished doctoral dissertation, Operations Research Center, MIT,
Cambridge, MA.

Liu, Y., & Koenig, S. (2005). Risk-sensitive planning with one-switch utility
functions: Value iteration. In Proceedings of the twentieth AAAI conference on
artificial intelligence (p. 993–999).

Liu, Y., & Koenig, S. (2006). Functional value iteration for decision-theoretic
planning with general utility functions. In Proceedings of the twenty first AAAI
conference on artificial intelligence (p. 1186–1193).

Luenberger, D. (1997). Investment science. Oxford University Press.
Meyn, S. P. (2008). Control techniques for complex networks. New York NY:

Cambridge University Press.
Nilim, A., & El Ghaoui, L. (2005). Robust Markov decision processes with uncertain

transition matrices. Operations Research, 53(5), 780–798.
Papadimitriou, C.H., & Yannakakis, M. (2000). On the approximability of trade-offs

and optimal access of web sources. In Proceedings of the 41st symposium on
foundations of computer science (p. 86–92). Washington, DC, USA.

Riedel, F. (2004). Dynamic coherent risk measures. Stochastic Processes and their
Applications, 112, 185–200.

Shapley, L. (1953). Stochastic games. Proceedings of the National Academy of Sciences,
Mathematics, 1095–1100.

Sobel, M. (1982). The variance of discounted Markov decision processes. Journal of
Applied Probability, 19, 794–802.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT Press.
Tamar, A., Di-Castro, D., & Mannor, S. (2012). Policy gradients with variance related

risk criteria. In International conference on machine learning.
White, D. J. (1992). Computational approaches to variance-penalised Markov

decision processes. Operations-Research-Spektrum, 14, 79–83.
Whitt, W. (1978). Approximation of dynamic programs – I. Mathematics of

Operations Research, 3, 231–243.
Whitt, W. (1979). Approximation of dynamic programs – II. Mathematics of

Operations Research, 4, 179–185.
Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal

of Applied Probability, 25, 287–298.

http://refhub.elsevier.com/S0377-2217(13)00507-9/h0005
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0010
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0010
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0020
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0020
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0025
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0025
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0030
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0030
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0035
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0035
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0045
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0045
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0045
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0050
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0050
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0055
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0055
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0060
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0065
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0065
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0070
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0070
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0075
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0075
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0080
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0080
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0085
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0085
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0090
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0095
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0095
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0100
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0100
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0105
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0105
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0110
http://refhub.elsevier.com/S0377-2217(13)00507-9/h0110

	Algorithmic aspects of mean–variance optimization in Markov  decision processes
	1 Introduction
	2 The model
	2.1 Markov decision processes
	2.2 Policies
	2.3 Performance criteria

	3 Comparison of policy classes
	3.1 Randomization Improves Performance
	3.2 Information improves performance

	4 Complexity results
	5 Exact algorithms
	5.1 State-action frequencies
	5.2 Integer rewards

	6 Approximation algorithms
	6.1 Integer rewards
	6.2 General rewards
	6.3 An exact algorithm and its approximation

	7 Conclusions
	Acknowledgments
	References


