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Abstract

We consider a Cournot oligopoly model where multiple suppliers (oligopolists)
compete by choosing quantities. We compare the aggregate profit achieved
at a Cournot equilibrium to the maximum possible, which would be obtained
if the suppliers were to collude. We establish a lower bound on the profit of
Cournot equilibria in terms of a scalar parameter derived from the inverse
demand function and the number of suppliers. We also provide another lower
bound that depends on the maximum of the suppliers’ market shares. The
lower bounds are tight when the inverse demand function is affine. Our re-
sults provide nontrivial quantitative bounds on the loss of aggregate profit
for several inverse demand functions that appear in the economics literature.
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1. Introduction

We consider a Cournot oligopoly model where multiple suppliers (oligopo-
lists) compete by choosing quantities. Our objective is to compare the total
profit earned at a Cournot equilibrium to the maximum possible total profit,
which would be obtained if the suppliers were to collude.

1.1. Background

It is well known that oligopolists can collude by jointly restricting their
output and thereby increase their total profit (Chamberlin (1929); Friedman
(1971)). There is a large literature on collusive behavior in oligopolistic
markets. For example, Green and Porter (1984) show that in the presence of
demand uncertainty, it may be possible for suppliers to form a self-policing
cartel to maximize their joint profits. Also, some recent works show that
forward trading may raise the prices (Mahenca and Salanie (2004)) and may
allow suppliers to sustain collusive profits (Liskia and Montero (2006)).
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In this paper, we focus on the classical static Cournot oligopoly model,
and explore the profit loss due to competition. We compare the aggregate
profit earned at a Cournot equilibrium to the maximum possible profit, that
is, the aggregate profit that would have been achieved if the suppliers were to
collude. Oligopolist profit loss due to competition has received some recent
attention. Anderson and Renault (2003) quantify the profit loss in Cournot
oligopoly models with concave demand functions. However, most of their
results focus on the relation between consumer surplus, producer surplus,
and the aggregate social welfare achieved at a Cournot equilibrium, rather
than on the relation between the aggregate profit achieved at a Cournot
equilibrium and the maximum aggregate profit. Perakis and Sun (2011)
study supply chains with partial positive externalities and show that the
profit loss at an equilibrium is at least 25% of the maximum profit.

Other recent works have reported various bounds on the profit loss at an
equilibrium for oligopoly models with affine demand functions. For a dif-
ferentiated oligopoly model, Farahat and Perakis (2009) establish lower and
upper bounds on the profit loss at an equilibrium of price (Bertrand) com-
petition. Closer to the present paper, Kluberg and Perakis (2008) compare
the aggregate profit earned by the suppliers under Cournot competition to
the corresponding maximum possible, for the case where suppliers produce
multiple differentiated products and the demand is an affine function of the
price. However, one of their key assumptions does not hold in the Cournot
model studied in this paper1. We finally note that this work is related to the
complementary literature that studies the social welfare loss at Cournot equi-
libria (Johari and Tsitsiklis, 2005; Corchon, 2008; Tsitsiklis and Xu, 2011).

1.2. Our contribution

In this paper, we study the profit loss in a classical Cournot oligopoly
model, for a broad class of nonincreasing inverse demand functions that
yield concave revenue functions. We establish a lower bound of the form
fP (c/d,N) on the profit ratio of a Cournot equilibrium (the ratio of the ag-
gregate profit earned at the equilibrium to the maximum possible). Here,
fP is a function given in closed form, c is the absolute value of the slope of

1In our model, the matrix B in the inverse demand function (a notation used in Kluberg
and Perakis (2008); Kluberg (2011)) is an N ×N matrix (N is the number of suppliers)
with all its elements equal to 1 and is therefore not invertible (cf. Chapter 2.2 of Kluberg
(2011)).
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the line that agrees with the inverse demand function at a profit-maximizing
output and at the Cournot equilibrium, d is the absolute value of the slope of
the inverse demand function at the Cournot equilibrium, and N is the num-
ber of suppliers. We also derive another form of profit ratio lower bounds,
gP (c/d, r), which does not depend on the number of suppliers, but on the
market share of the largest supplier at the equilibrium, r.

For Cournot oligopolies with affine inverse demand functions, we have
c/d = 1, and our lower bounds are tight. More generally, the ratio c/d can
be viewed as a measure of nonlinearity of the inverse demand function. As
the parameter c/d goes to infinity, the lower bounds converge to zero and
arbitrarily high profit losses are possible. Our results allow us to lower bound
the profit ratio of Cournot equilibria for a large class of Cournot oligopoly
models in terms of qualitative properties of the inverse demand function,
without having to restrict to the special case of affine demand functions,
and without having to calculate the equilibrium and the profit-maximizing
output. Furthermore, our results could be useful for monitoring, detecting,
or penalizing collusion (cf. page 130 of Phlips (1995)). For instance, if
our bounds indicate that the Cournot equilibrium profit is already close to
the maximum possible, collusion is not a concern. On the contrary, in the
opposite case there would be good reason for close monitoring and stronger
penalties for collusion.

The general methodology used in this paper is similar in spirit to that used
in a companion paper (Tsitsiklis and Xu, 2011) to derive lower bounds on the
efficiency (upper bounds on the welfare loss) of Cournot equilibria. Further-
more, the development runs along similar lines. However, the assumptions,
the details, and the expressions in the various results are different. For in-
stance, the assumption in Tsitsiklis and Xu (2011) that the inverse demand
function is convex is replaced here by an assumption that a monopolist’s
revenue is a concave function of the price (Assumption 4).

1.3. Outline of the paper

The rest of the paper is organized as follows. In the next section, we
formulate the model. In Appendix A, we provide some mathematical pre-
liminaries on Cournot equilibria that will be useful later, including the fact
that profit ratio lower bounds can be obtained by restricting to linear cost
functions. We also show that for the purpose of studying the worst case
profit loss, it suffices to restrict to a special class of piecewise linear inverse
demand functions. This leads to our main results, lower bounds on the profit
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ratio of Cournot equilibria (Theorems 1 and 2 in Section 3). Based on these
theorems, in Section 4 we derive a number of corollaries that provide profit
ratio lower bounds that can be calculated without detailed information on
these equilibria. We apply these results to various commonly encountered in-
verse demand functions. Finally, in Section 5, we make some brief concluding
remarks.

2. Formulation

In this section, we first define the Cournot oligopoly model that we study
in this paper, and then introduce several main assumptions that we will be
working with, and some definitions.

We consider a market for a single homogeneous good with inverse demand
function p : [0,∞)→ [0,∞) and N suppliers. Supplier n ∈ {1, 2, . . . , N} has
a cost function Cn : [0,∞)→ [0,∞). Each supplier n chooses a nonnegative
real number xn, which is the amount of the good to be supplied by her. The
strategy profile x = (x1, x2, . . . , xN) results in a total supply denoted by
X =

∑N
n=1 xn, and a corresponding market price p(X). Supplier n’s payoff

is
πn(xn,x−n) = xnp(X)− Cn(xn),

where we have used the standard notation x−n to indicate the vector x with
the component xn omitted. A strategy profile (x1, x2, . . . , xN) is a Cournot
(or Nash) equilibrium if

πn(xn,x−n) ≥ πn(x,x−n), ∀ x ≥ 0, ∀ n ∈ {1, 2, . . . , N}.

In the sequel, we denote by f ′ and f ′′ the first and second, respectively,
derivatives of a scalar function f , if they exist. For a function defined on a
domain [0, Q], the derivatives at the endpoints 0 and Q are defined as left
and right derivatives, respectively. For points in the interior of the domain,
and if the derivative is not guaranteed to exist, we use the notation ∂+f
and ∂−f to denote the right and left, respectively, derivatives of f ; these are
guaranteed to exist for convex or concave functions f .

Assumption 1. For any n, the cost function Cn : [0,∞)→ [0,∞) is convex,
continuous, and nondecreasing on [0,∞), and continuously differentiable on
(0,∞). Furthermore, Cn(0) = 0.
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While in many world contexts, cost functions are not convex (because,
for example, of fixed costs), the convexity assumption results in a tractable
analytical setting that can be used to provide some insights and qualitative
results that would be otherwise impossible. This is also presumably the
reason why much of the theoretical literature on oligopolistic markets makes
this assumption (Novshek, 1985; Kamien et al., 1989; Kamien and Zang,
1991; Varian, 1994; Zhou, 2008; Farahat and Perakis, 2009).

Assumption 2. The inverse demand function p : [0,∞)→ [0,∞) is contin-
uous, nonnegative, and nonincreasing, with p(0) > 0. Its right derivative at
0 exists and at every q > 0, its left and right derivatives also exist.

Note that some parts of our assumptions are redundant, but are included
for easy reference. For example, if Cn(·) is convex and nonnegative, with
Cn(0) = 0, then it is automatically continuous and nondecreasing.

In a Cournot oligopoly, the maximum possible profit earned by all sup-
pliers is an optimal solution to the following optimization problem,

maximize p (X) ·X −
N∑
n=1

Cn(xn)

subject to xn ≥ 0, n = 1, . . . , N,

(1)

where X =
∑N

n=1 xn. We use xP = (xP1 , . . . , x
P
N) to denote an optimal

solution to (1), and let XP =
∑N

n=1 x
P
n . We will refer to an optimal solution

to (1) as a monopoly output. For a model with a nonincreasing continuous
inverse demand function and continuous convex cost functions, the following
assumption guarantees the existence of an optimal solution to (1), because it
essentially restricts the optimization to a compact set of vectors x for which
xn ≤ R, for all n.

Assumption 3. There exists some R > 0 such that p(R) ≤ minn{C ′n(0)}.

Under Assumptions 1-3, there must exist an optimal solution to (1). Note
however that there may exist multiple optimal solutions to (1), associated
with different prices. For example, consider a case where N = 1 and the
cost function of the single supplier is identically zero. The inverse demand
function is

p(q) =

{
−q + 1, if 0 ≤ q ≤ 2/3,

max{0,−1

4
(q − 2/3) + 1/3}, if 2/3 < q.
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Assumptions 1-3 are satisfied, and it is not hard to see that x1 = 1/2 and x1 =
1 are two monopoly outputs (optimal solutions to the optimization problem
(1)), which yield different prices. We define P as the set of prices resulting
from monopoly outputs; that is, a nonnegative real number v belongs to P ,
if and only if there exists a monopoly output, xP , with v = p(XP ).

The following assumption guarantees that the objective function in (1) is
concave on the interval where it is positive.

Assumption 4. On the interval where p(·) is positive, the function p(q)q is
concave in q.

Because p(·) is nonincreasing, all concave inverse demand functions satisfy
Assumption 4. We observe that many convex inverse demand functions2

that have been used in oligopoly analysis and marketing research also satisfy
Assumption 4. For example, inverse demand functions of the form (Bulow
and Pfleiderer, 1983; Corchon, 2008)

p(q) = max{α− βqδ, 0}, α, β, δ > 0, (2)

and the following class of convex inverse demand functions (Bulow and Pflei-
derer, 1983; Tyagi, 1999)

p(q) = max{0, α− β log q}, α, β > 0, (3)

satisfy Assumption 4.
We observe that under Assumptions 1, 2, and 4, the objective function

in (1) is concave on the interval where it is positive. Hence, we have the
following necessary and sufficient conditions for a vector xP with p(XP ) >
0 to maximize the aggregate profit:{

C ′n(xPn ) ≤ p
(
XP
)

+ ∂−p
(
XP
)
·XP , if xn > 0,

C ′n(xPn ) ≥ p
(
XP
)

+ ∂+p
(
XP
)
·XP .

(4)

2In general, a Cournot equilibrium need not exist when the inverse demand function
is convex. However, it is well known that a Cournot equilibrium will exist if the quan-
tities supplied by different suppliers are strategic substitutes (Bulow et al., 1985; Berry
and Pakes, 2003). Existence results for Cournot oligopolies for the case of strategic sub-
stitutes can be found in Novshek (1985); Gaudet and Salant (1991). Note however, that
the strategic substitutes condition is not necessary for the existence of Cournot equilib-
ria. For example, using the theory of ordinally supermodular games, Amir (1996) shows
that the log-concavity of inverse demand functions guarantees the existence of a Cournot
equilibrium.
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There are similar equilibrium conditions for a strategy profile x. In par-
ticular, under Assumptions 1 and 2, if x is a Cournot equilibrium, then

C ′n(xn) ≤ p (X) + xn · ∂−p (X) , if xn > 0, (5)

C ′n(xn) ≥ p (X) + xn · ∂+p (X) , (6)

where again X =
∑N

n=1 xn. Note, however, that in the absence of further
assumptions, the payoff of supplier n need not be a concave function of xn
and these conditions are, in general, not sufficient.

We say that a nonnegative vector x is a Cournot candidate if it satisfies
the necessary conditions (5)-(6). Note that for a given model, the set of
Cournot equilibria is a subset of the set of Cournot candidates. Most of the
results obtained in this section apply to all Cournot candidates.

As shown in Friedman (1977), if p(0) > minn{C ′n(0)}, then the aggregate
supply at a Cournot equilibrium is positive; see Lemma 1 in Appendix A
(Proposition 4 in Tsitsiklis and Xu (2011)) for a slight generalization. If on
the other hand p(0) ≤ minn{C ′n(0)}, then the model is uninteresting, because
no supplier has an incentive to produce and the optimal social welfare is zero.
This motivates the assumption that follows.

Assumption 5. The price at zero supply is larger than the minimum marginal
cost of the suppliers, i.e.,

p(0) > min
n
{C ′n(0)}.

Note that if N = 1, a Cournot equilibrium must maximize the aggregate
profit. We will therefore study the more interesting case where N ≥ 2. Given
a nonnegative vector x, we define its profit ratio η(x), by

η(x) =
Xp(X)−

∑N
n=1Cn(xn)

XPp(XP )−
∑N

n=1Cn(xPn )
, (7)

where (xP1 , . . . , x
P
N) is an optimal solution to the optimization problem (1).

Under Assumptions 1-5, the ratio is well defined, because the denominator
is positive. According to Lemma 2 in Appendix A, a Cournot candidate
yields a nonnegative profit, and therefore its profit ratio is nonnegative. For
a Cournot candidate x with p(X) = 0, we must have η(x) = 0. In Section
3, we will establish lower bounds on the profit ratio of Cournot candidates
that yield positive prices.
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Figure 1: A lower bound on the profit ratio of a Cournot equilibrium as a function of the
parameter c/d, for different values of N .

3. Profit ratio lower bounds

We fist establish a lower bound on the profit ratio of a Cournot candi-
date as a function of the scalar parameter c/d and the number of suppliers
(Theorem 1). Through a similar approach, we also provide a lower bound in
terms of the scalar parameter c/d, and the maximum of the suppliers’ market
shares at an equilibrium (Theorem 2).

Theorem 1. Let x and xP be a Cournot candidate and a monopoly out-
put, respectively. Suppose that Assumptions 1-5 hold, p′(X) exists, and that
p(X) > 0. Let c = |(p(XP )− p(X))/(XP −X)| and d = |p′(X)|.

(a) If p(X) ∈ P, then η(x) = 1;

(b) If 3 p(X) /∈ P, then p′(X) < 0. We have η(x) ≥ fP (c,N), where

3Note that we must have N ≥ 2; otherwise, a Cournot candidate x in a model with
N = 1 satisfies the conditions (5)-(6), which imply the conditions (4). Since p(X) > 0, a
Cournot candidate for the case N = 1 maximizes the aggregate profit and x ∈ P.
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c = c/d and

fP (c,N) =


N − 1 + (

√
N − 1)2√

N(N − 1)
, if 0 < c ≤

√
1/N,

4c3(N − 1) + 4c(c+ 1)2

(c2N + 2c+ 1)2
, if c >

√
1/N.

(8)

(c) If c = 1 (in particular, if p(·) is affine), then η(x) ≥ fP (1, N) =
4/(N + 3). Furthermore, the bound is tight, i.e., for any given N ≥ 2,
there exists a model with c = 1 and a Cournot equilibrium whose profit
ratio is 4/(N + 3).

The theorem is proved in Appendix B. It can be verified that the function
fP (c,N) is strictly decreasing in N , as shown in Fig. 1. For any given c > 0,
the lower bound, fP (c,N), decreases to zero as the number of suppliers
increases to infinity. Also, for any given N , the profit ratio lower bound is
strictly decreasing in c, over the interval [

√
1/N,∞).

Theorem 2. Let x and xP be a Cournot candidate and a monopoly out-
put, respectively. Suppose that Assumptions 1-5 hold, p′(X) exists, and that
p(X) > 0. Let c = |(p(XP )−p(X))/(XP−X)| and d = |p′(X)|. If p(X) /∈ P,
then d = |p′(X)| > 0, and we have:

(a) η(x) ≥ gP (c, r), where c = c/d, r is the maximum of the suppliers’
market shares4, i.e., r = maxn{xn/X}, and

gP (c, r) =


r, if 0 < c ≤ r < 1,

4cr2

(c+ r)2
, if 0 < r < c.

(9)

(b) If c = 1 (in particular, if p(·) is affine), then η(x) ≥ gP (1, N) =
4r2/(1 + r)2. Furthermore, the bound is tight. That is, for every r ∈
(0, 1) and for every ε > 0, there exists a model with c = 1 and a Cournot
equilibrium whose profit ratio is no more than 4r2/(1 + r)2 + ε.

4Lemma 1 shows that X > 0, and therefore r is well defined. If r = 1, then the Cournot
candidate satisfies conditions (4), and therefore maximizes the aggregate profit. Hence,
we have r ∈ (0, 1).
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Figure 2: A lower bound on the profit ratio of a Cournot equilibrium as a function of the
parameter c/d, for different values of the largest market share r.
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Figure 3: A lower bound on the profit ratio of a Cournot equilibrium as a function of the
largest market share r, for different values of the parameter c/d.
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The theorem is proved in Appendix C. The derived lower bounds are
illustrated in Fig. 2 and Fig. 3. For a given r, the lower bound is nonincreasing
in c = c/d, and for a given c, the lower bound increases with r. For affine
inverse demand functions, we have c = 1 and the bound is tight (the red
curve in Fig. 3).

4. Corollaries and Applications

Given the number of suppliers (or the largest market share at an equi-
librium), and the inverse demand function p(·), the lower bounds derived in
Theorem 1 (Theorem 2, respectively) require additional knowledge on the ag-
gregate supply at the Cournot equilibrium and on the monopoly output, i.e.,
X and XP . For concave inverse demand functions, we first apply Theorems 1
and 2 to establish a lower bound on the profit ratio of a Cournot equilibrium
that depends only on the number of suppliers (or on the largest market share
at the equilibrium) in Corollary 1. For convex inverse demand functions, in
Corollary 2 we establish a profit ratio lower bound that depends only on the
inverse demand function, and N (or r). With a small amount information
on the supplier cost functions, we further refine the lower bound in Corollary
3. At the end of this section, we apply our results to calculate nontrivial
quantitative profit ratio bounds for various inverse demand functions that
have been considered in the economics literature.

Corollary 1. Suppose that Assumptions 1-5 hold, and that p(·) is concave
and differentiable on the interval where it is positive. For every Cournot
candidate x with p(X) > 0, we have η(x) ≥ max{fP (1, N), gP (1, r)}.

Proof. If p(X) ∈ P , then η(x) = 1 and the desired result trivially holds.
Otherwise, we have that XP < X and c ≤ 1. The desired result then follows
from Theorems 1 and 2, and the fact that both fP (·, N) and gP (·, r) are
nonincreasing.

Corollary 2. Suppose that Assumptions 1-5 hold, and that the inverse de-
mand function p(·) is convex. If p(Q) = 0 for some Q > 0, and the ra-
tio, µ = ∂+p(0)/∂−p(Q), is finite, then for every Cournot candidate x with
p(X) > 0, its profit ratio satisfies η(x) ≥ max{fP (µ,N), gP (µ, r)}.

Proof. Since p(·) is nonincreasing and nonnegative, we have p(q) = 0 for any
p ≥ Q. Since p(X) > 0, we have X < Q.
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We now argue that p′(X) exists. Lemma 1 shows that X > 0. The
conditions (5)-(6) applied to some n with xn > 0, imply that

p (X) + xn · ∂−p (X) ≥ p (X) + xn · ∂+p (X) .

On the other hand, since p(·) is convex, we have ∂−p (X) ≤ ∂+p (X). Hence,
∂−p (X) = ∂+p (X), as claimed.

If p(X) ∈ P , then Proposition 3 implies that η(x) = 1 ≥ fP (µ,N). Oth-
erwise, since p(·) is convex and X < Q, for any aggregate profit maximizing
vector, xP , we have that c ≤ µ. The desired result follows from Theorems 1
and 2, and the fact that both fP (·, N) and gP (·, r) are nonincreasing.

Corollary 3. Suppose that Assumptions 1-5 hold, and that p(·) is convex.
Let5

s = inf
{
q | p(q) = min

n
C ′n(0)

}
, t = inf

{
q | min

n
C ′n(q) ≥ p(q) + q∂+p(q)

}
.

(10)
If ∂−p(s) < 0, then the profit ratio of a Cournot candidate x with p(X) > 0
is at least

max{fP (∂+p(t)/∂−p(s), N) , gP (∂+p(t)/∂−p(s), r)}.

The proof of Corollary 3 is given in Appendix D. If there exists a “best”
supplier n such that C ′n(x) ≤ C ′m(x), for any other supplier m and any x > 0,
then the parameters s and t depend only on p(·) and C ′n(·). In the following
three examples, we apply Corollary 3 to three forms of convex inverse demand
functions that appear in the economics literature.

Example 1. Suppose that Assumptions 1, 3, and 5 hold. Among the N ≥ 2
suppliers, there is a best supplier that has a linear cost function with a slope
χ ≥ 0. Consider an inverse demand function of the form in (3):

p(q) = max{0, α− β log q}, α, β > 0.

Note that Corollary 2 does not apply, because the left derivative of p(·) at 0

5Under Assumption 3, the existence of the real numbers defined in (10) is guaranteed,
and t ≤ s.
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is infinite6. Since

d2(qp(q))

dq2
= 2p′(q) + qp′′(q) =

−2β

q
+
qβ

q2
< 0, ∀q ∈ (0, exp(α/β)),

we know that Assumption 4 holds. Through a simple calculation we have

s = exp

(
α− χ
β

)
, t = exp ((α− β − χ)/β) .

We also have
p′(t)

p′(s)
=

exp ((α− χ)/β)

exp ((α− β − χ)/β)
= exp (1) ,

and Corollary 3 implies that for every Cournot equilibrium x with p(X) > 0,

η(x) ≥ max{fP (exp (1) , N) , gP (exp (1) , r)}. (11)

Now we argue that the lower bound (11) holds even without the assump-
tion that there is a best supplier associated with a linear cost function. From
Proposition 1, the profit ratio of any Cournot equilibrium x will not increase
if the cost function of each supplier n is replaced by

Cn(x) = C ′n(xn)x, ∀x ≥ 0.

Let c = minn{C ′n(xn)}. Since the profit ratio lower bound in (11) holds for
the modified model with linear cost functions, it applies whenever the inverse
demand function is of the form (3). �

Example 2. Suppose that Assumption 1, 3, and 5 hold. There are N ≥ 2
suppliers. There exists a best supplier, the cost function of which is linear
with a slope χ ≥ 0. Consider inverse demand functions of the form in Eq.
(2):

p(q) = max{α− βqδ, 0}, α, β, δ > 0.

6In fact, p(0) is undefined. This turns out to not be an issue: for a small enough ε > 0,
at a monopoly output and at a Cournot equilibrium, we can guarantee that no supplier
chooses a quantity below ε. For this reason, the details of the inverse demand function in
the vicinity of zero are immaterial as far as the chosen quantities or the resulting aggregate
profit are concerned. A similar argument also applies to Example 3.
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It is not hard to see that Assumption 2 holds. Assumption 5 implies that
α > χ. Since

d2(qp(q))

dq2
≤ p′(q) + qp′′(q) = −βδqδ−1 − βδ(δ − 1)qδ−1 = −βδ2qδ−1 ≤ 0,

we know that Assumption 4 holds. Through a simple calculation we have

s =

(
α− χ
β

)1/δ

, t =

(
α− χ
β(δ + 1)

)1/δ

.

We also have
p′(t)

p′(s)
=
−βδtδ−1

−βδsδ−1
= (δ + 1)

1−δ
δ .

From Corollary 3 we know that for every Cournot equilibrium x with p(X) >
0,

η(x) ≥ max
{
fP ((δ + 1)

1−δ
δ , N), gP ((δ + 1)

1−δ
δ , r)

}
.

By the same argument in Example 1, we know that the derived profit
ratio lower bound holds for general cost functions, as long as the inverse
demand function is of the form in Eq. (2). �

Example 3. Suppose that Assumptions 1, 3, and 5 hold. Among the N ≥ 2
suppliers, there is a best supplier that has a linear cost function with a slope
χ ≥ 0. Consider constant elasticity inverse demand functions, of the form
(cf. Eq. (4) in Bulow and Pfleiderer (1983))

p(q) = αq−β, 0 ≤ α, 0 ≤ β < 1. (12)

Assumption 5 implies that α > χ. Since

d2(qp(q))

dq2
= 2p′(q) + qp′′(q) = −αβ(1− β)q−β−1 ≤ 0,

we know that Assumption 4 holds. Through a simple calculation we have,

s =
(χ
α

)−1/β
, t =

(
χ

α(1− β)

)−1/β
.

We have
p′(t)

p′(s)
=
−αβt−β−1

−αβs−β−1
= (1− β)

−β−1
β .
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From Corollary 3 we conclude that a Cournot equilibrium x with p(X) > 0
must satisfy

η(x) ≥ max
{
fP ((1− β)

−β−1
β , N), gP ((1− β)

−β−1
β , r)

}
.

Following the argument in the end of Example 1, we conclude that the lower
bound on the profit ratio holds for general cost functions, as long as the
inverse demand function is of the form in Eq. (12). �

5. Conclusion

For Cournot oligopoly models with concave revenue functions, results
such as those provided in Theorem 2 (or Theorem 1) show that the profit
ratio at a Cournot equilibrium can be lower bounded by a function of the
largest market share at the equilibrium (or the number of suppliers), and a
scalar parameter that captures quantitative properties of the inverse demand
function. Our results allow us to lower bound the profit ratio of Cournot equi-
libria for a large class of Cournot oligopoly models that have been considered
in the economics literature, without having to restrict to the special case of
affine demand functions, and without having to calculate the equilibrium and
the profit-maximizing output.

Our results suggest that the degree of nonlinearity of the inverse demand
function and the largest market share at an equilibrium (or the number of
suppliers) may have a significant impact on the profit loss at an equilibrium.
As the number of suppliers increases to infinity (or the largest market share
shrinks to zero), the profit ratio lower bound converges to zero and arbitrarily
high profit loss is possible. For an oligopolistic market with a small number
of suppliers, N (or with a large supplier that holds a considerable fraction
of market share, r), the established profit ratio lower bounds depend on the
scalar parameter derived from the inverse demand function. For the impor-
tant special class of Cournot models with affine inverse demand functions,
our profit ratio lower bounds, 4/(N + 3) and 4r2/(1 + r)2, are tight.
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Appendix A. Preliminaries on Cournot Equilibria

Lemma 1. Suppose that Assumptions 1, 2, and 5 hold. If x is a Cournot
candidate, then X > 0.

Proof. Suppose that p(0) > minn{C ′n(0)}. Then, the vector x = (0, . . . , 0)
violates condition (6), and cannot be a Cournot candidate.

Lemma 2. Suppose that Assumptions 1-5 hold. Then, the aggregate profit
achieved at a Cournot candidate is nonnegative, and the optimal objective
value of the optimization problem (1) is positive.

Proof. Let x be a Cournot candidate. Lemma 1 shows that X > 0. For
every supplier n such that xn > 0, according to the necessary condition (5),
we have C ′n(xn) ≤ p (X). Hence,

N∑
n=1

C ′n(xn)xn ≤ p (X) ·
N∑
n=1

xn.

Since each Cn(·) is convex and nondecreasing, we have

N∑
n=1

Cn(xn) ≤
N∑
n=1

C ′n(xn)xn ≤ p (X) ·X. (A.1)

Hence, the aggregate profit achieved at the Cournot candidate, Xp(X) −∑N
n=1Cn(xn), is nonnegative. Let

k ∈ arg min
n
{C ′n(0)}.

Due to Assumption 5 and the continuity of the inverse demand and cost
functions, there exists some ε > 0 such that

εp(ε)− Ck(ε) > 0,

which implies that the optimal objective value in the optimization problem
(1) is positive.

In the following proposition, we show that in order to study the worst-case
profit ratio of Cournot equilibria, it suffices to consider linear cost functions.
This is a counterpart of (but different from) Proposition 6 in Tsitsiklis and
Xu (2011).
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Proposition 1. Suppose that Assumptions 1-5 hold. Let x be a Cournot
candidate that is not an optimal solution to (1), and let αn = C ′n(xn). Con-
sider a modified model in which we replace the cost function of each supplier
n by a new function Cn(·), defined by

Cn(x) = αnx, ∀x ≥ 0.

Then, for the modified model, Assumptions 1-5 still hold, the vector x is a
Cournot candidate and its profit ratio, denoted by η(x), satisfies 0 ≤ η(x) ≤
η(x).

Proof. We first observe that the vector x satisfies the necessary conditions
(5)-(6) for the modified model. Hence, the vector x is a Cournot candidate
in the modified model. It is not hard to see that Assumptions 1, 2 and 4 hold
in the modified model. Finally, since αn ≥ C ′n(0) for every n, Assumption 3
holds in the modified model.

We now show that Assumption 5 holds in the modified model, i.e., that
p(0) > minn{αn}. Since the vector x is a Cournot candidate in the original
model, Lemma 1 implies that X > 0. Consider a supplier n such that
xn > 0. From the necessary conditions (5), we have that αn ≤ p(X). If
αn = p(X) = 0, then p(0) > 0 = minn{αn}. If αn = p(X) > 0, then
∂−p(X) = 0. Since ∂+p(X) ≤ 0 and xn ≤ X, the necessary conditions (5)-
(6) imply the conditions in (4), which are sufficient for x to maximize the
aggregate profit. Since x is not an optimal solution to the profit maximization
problem (1), it follows that αn < p(X), which implies that Assumption 5
holds in the modified model.

Let xP be an optimal solution to (1) in the original model. Lemma 2
implies that p(XP ) > 0. Since xP satisfies the conditions in (4) for the
modified model, it remains a monopoly output in the modified model. In the
modified model, since Assumptions 1-5 hold, the profit ratio of the vector x
is well defined and given by

η(x) =
Xp(X)−

∑N
n=1 αnxn

XPp(XP )−
∑N

n=1 αnx
P
n

. (A.2)

Note that the denominator on the right-hand side of (A.2) is the maximum
aggregate profit in the modified model, and the numerator is the aggregate
profit achieved at the Cournot candidate x in the modified model. Lemma 2
shows that the denominator is positive, while the numerator is nonnegative.
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Since Cn(·) is convex, we have

Cn(xPn ) ≥ Cn(xn) + αn(xPn − xn), n = 1, . . . , N.

Adding a nonnegative quantity to the denominator cannot increase the ratio
and, therefore,

η(x) =

Xp(X)−
N∑
n=1

Cn(xn)

XPp(XP )−
N∑
n=1

Cn(xPn )

≥
Xp(X)−

N∑
n=1

Cn(xn)

XPp(XP )−
N∑
n=1

(αn(xPn − xn) + Cn(xn))

.

(A.3)
Note that the right-hand side of (A.3) is nonnegative because x is a Cournot
candidate in the original model (cf. Lemma 2). Since Cn(·) is convex and
nondecreasing, with Cn(0) = 0, we have

N∑
n=1

Cn(xn)−
N∑
n=1

αnxn ≤ 0. (A.4)

Since the right-hand side of (A.3) is in the interval [0, 1], adding a nonpos-
itive quantity to both the numerator and the denominator cannot increase
the ratio. Therefore, using (A.4) in the first inequality below we have

η(x)

≥ Xp(X)−
∑N

n=1Cn(xn)

XPp(XP )−
∑N

n=1 (αn(xPn − xn) + Cn(xn))

≥
Xp(X)−

∑N
n=1Cn(xn) +

(∑N
n=1Cn(xn)−

∑N
n=1 αnxn

)
XPp(XP )−

∑N
n=1 (αn(xPn − xn) + Cn(xn)) +

(∑N
n=1Cn(xn)−

∑N
n=1 αnxn

)
=

Xp(X)−
∑N

n=1 αnxn

XPp(XP )−
∑N

n=1 αnx
P
n

=η(x).

The desired result follows.

If x is a Cournot equilibrium, then it satisfies Eqs. (5)-(6), and therefore
is a Cournot candidate. Hence, Proposition 1 applies to all Cournot equilib-
ria that do not maximize the aggregate profit. We note that if a Cournot
equilibrium x maximizes the aggregate profit for the original model, then
the maximum aggregate profit in the modified model could be zero, in which
case η(x) = 1, but η(x) is undefined; see the example that follows.
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Example 4. Consider a model involving a single supplier (N = 1). The
cost function of supplier 1 is C1(x) = x2. The inverse demand function is
constant, with p(q) = 1 for any q ≥ 0. It is not hard to see that the vector
x1 = 1/2 is a Cournot equilibrium, which also maximizes the aggregate profit.
In the modified model, we have C1(x) = x. The aggregate profit achieved
in the modified model is always zero, regardless of the action taken by the
supplier. �

Proposition 1 shows that a Cournot candidate in the original model re-
mains a Cournot candidate in the modified model. Hence, to lower bound
the profit ratio of a Cournot equilibrium in the original model, it suffices
to lower bound the profit ratio of a worst Cournot candidate for a modified
model. Accordingly, and for the purpose of deriving lower bounds, we can
(and will) restrict to the case of linear cost functions, and study the worst
case profit ratio over all Cournot candidates.

In the following two propositions, we show that at a Cournot candidate
there are two possibilities: either p(XP ) > p(X) and XP < X, or p(X) ∈ P
(Proposition 2); in the latter case, under the additional assumption that
p′(X) exists, a Cournot candidate maximizes the aggregate profit (Proposi-
tion 3). We then show in Proposition 4 that to lower bound the worst case
profit ratio, it suffices to restrict to a special class of piecewise linear inverse
demand functions.

Proposition 2. Suppose that Assumptions 1-5 hold. Let x a Cournot can-
didate. If p(X) /∈ P, then for any optimal solution xP to (1), we have
X > XP .

Proof. Suppose that p(X) ∈ P . Lemma 2 implies that p(XP ) > 0 for every
monopoly output xP . If p(X) = 0, then we know that X > XP , because p(·)
is nonincreasing.

Now consider the case where p(X) > 0. Lemma 1 shows that X > 0. If
there is only one supplier that provides a positive quantity at the Cournot
candidate, then the necessary conditions (5)-(6) imply the conditions in (4),
and we conclude that the Cournot candidate maximizes the aggregate profit,
i.e., p(X) ∈ P , a contradiction. Hence, there are at least two suppliers who
produce positive quantities at the Cournot candidate. We therefore have
that X > xn, for any n = 1, . . . , N .

Suppose that there exists an optimal solution to (1), xP , such that 0 <
X ≤ XP . Since p(X) 6= p(XP ) and p(·) is nonincreasing, we have XP > X
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and p(XP ) < p(X). For every supplier n for which xPn > 0, we have

C ′n(xPn ) ≤ ∂−p(X
P )XP + p(XP ) ≤ ∂+p(X)X + p(X) ≤ ∂+p(X)xn + p(X),

(A.5)
where the first inequality follows from (4), the second inequality follows from
the fact X < XP and Assumption 4, and the last inequality holds because
∂+p(X) ≤ 0 and xn < X. We now argue that equality cannot hold through-
out (A.5). If ∂+p(X) < 0, then the last inequality is strict; if ∂+p(X) = 0,
the second inequality is strict because p(XP ) < p(X) and ∂−p(X) ≤ 0. Using
also the necessary condition (6), we have

C ′n(xPn ) < ∂+p(X)xn + p(X) ≤ C ′n(xn).

Due to the convexity of the cost functions, it follows that xn > xPn for every
n such that xPn > 0, which contradicts our hypothesis that X ≤ XP .

If the inverse demand function does not satisfy Assumption 4, it is possible
that the aggregate supply at a Cournot candidate is less than that at a
monopoly output, as shown in the following example.

Example 5. Consider a model involving only one supplier (N = 1). The
cost function of the supplier is linear with a slope of 2. The inverse demand
function is given by

p(q) =

{
−q + 4, if 0 ≤ q ≤ 4/3,

max{0,−1

5
(q − 4/3) + 8/3}, if 4/3 < q,

which satisfies Assumption 2. It can be verified that the supplier can maxi-
mize its profit at x1 = 7/3. It is also easy to check that x1 = 1 is a Cournot
candidate. We have X = 1 < 7/3 = XP . �

Proposition 3. Suppose that Assumptions 1-5 hold. Let x be a Cournot
candidate. If p(X) ∈ P and p′(X) exists, then η(x) = 1.

Proof. From Lemma 2 we have that p(XP ) > 0 for every monopoly output
xP . Since p(X) ∈ P , it follows that p(X) > 0. Lemma 1 implies that
X > 0. If there is only one supplier n who provides a positive quantity of
good at the Cournot candidate, then the necessary conditions (5)-(6) imply
the conditions in (4), and we conclude that η(x) = 1.

Now consider the case where x has at least two positive components.
Then, X > xn, for any n = 1, . . . , N . Since p(X) ∈ P , there exists an optimal

22



solution to (1), xP , such that p(X) = p(XP ). We now prove that p′(X) = 0.
Suppose not, in which case we have p′(X) < 0. Since p(X) = p(XP ), we
have that X = XP . For every n such that xPn > 0, from the convexity of
Cn(·) and the conditions in (4), we have

C ′n(0) ≤ C ′n(xPn ) = p′
(
XP
)
·XP + p(XP ).

Since X = XP , p′(X) < 0, and xn < X, we have

C ′n(0) ≤ p′
(
XP
)
·XP + p(XP ) = p′(X) ·X + p(X) < p′(X) · xn + p(X),

which implies that xn > 0, from the necessary condition (6). Hence, we have

C ′n(xPn ) = p′
(
XP
)
·XP + p(XP ) < p′(X) · xn + p(X) = C ′n(xn),

which implies that xn > xPn , from the convexity of Cn(·). Since xn > xPn for
every n such that xPn > 0, we conclude that X > XP , which contradicts our
earlier conclusion that X = XP . The contradiction shows that p′(X) = 0.

Since p′(X) = 0 and the Cournot candidate x satisfies the necessary
conditions (5)-(6), it also satisfies the conditions in (4). Furthermore, since
p(X) > 0, the conditions in (4) are sufficient for the Cournot candidate x to
maximize the aggregate profit, i.e., η(x) = 1.

It can be shown that if the inverse demand function is convex, then p′(X)
exists for any Cournot candidate x (cf. Proposition 3 in Tsitsiklis and Xu
(2011)). On the other hand, for a model satisfying Assumptions 1-5, if the
inverse demand function is not differentiable at X, then a Cournot equilib-
rium x may yield arbitrarily large profit loss, even if X = XP , and N is held
fixed.

Example 6. Consider a model involving two suppliers (N = 2), with C1(x) =
0 and C2(x) = x. The inverse demand function is concave on the interval
where it is positive, of the form

p(q) =

{
1, if 0 ≤ q ≤ 1,
max{0,−M(q − 1) + 1}, if 1 < q,

where M > 2. At the vector (1, 0), the maximum aggregate profit, 1, is
achieved. The aggregate profit realized at the Cournot equilibrium x =
(1/M, 1 − 1/M) is 1/M . Note that X = XP = 1. However, the profit ratio
of x can be made arbitrarily small, as M grows large. �
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Based on the preceding propositions, we are now ready to prove the fol-
lowing proposition, which will serve as a basis for the main theorems to be
given in the next section.

Proposition 4. Let x and xP be a Cournot candidate and a monopoly out-
put, respectively. Suppose that Assumptions 1-5 hold, p′(X) exists, and that
p(X) /∈ P. Let c = |(p(XP ) − p(X))/(XP − X)|, d = |p′(X)|. Now con-
sider a modified model in which the inverse demand function is replaced by
a piecewise linear function7 p0(·),

p0(q) =

{
−c(q −X) + p(X), 0 ≤ q ≤ X,

max {0,−d(q −X) + p(X)} , X < q.
(A.6)

Let η0(x) be the profit ratio of the vector x in the modified model. We have

η0(x) ≤ η(x).

Proof. Since p0(X) = p(X), the aggregate profit earned at x is

Xp(X)−
∑N

n=1
Cn(xn),

in both the original and the modified model. Hence, we have

η0(x) ≤ Xp(X)−
∑N

n=1Cn(xn)

XPp0(XP )−
∑N

n=1Cn(xPn )
=

Xp(X)−
∑N

n=1Cn(xn)

XPp(XP )−
∑N

n=1Cn(xPn )
= η(x),

where the inequality holds because the maximum total profit in the modified
model is at least XPp0(XP ) −

∑N
n=1Cn(xPn ), and the next equality holds

because p0(XP ) = p(XP ).

Proposition 4 shows that a lower bound on the profit ratio of a Cournot
equilibrium can be established by calculating its profit ratio in a modified
model with a piecewise linear inverse demand function. This result enables
us to derive our main results, given in the next section.

7According to Proposition 2, we have XP < X. The first segment of the piecewise linear
function p0(·) agrees with the inverse demand function p(·) at the two points: (XP , p(XP ))
and (X, p(X)); the second segment is tangent to the inverse demand curve p(·) at the point
(X, p(X)).
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Appendix B. Proof of Theorem 1

According to Proposition 3, if p(X) ∈ P , then the Cournot candidate’s
profit ratio must equal one.

To prove part (b), we assume that p(X) /∈ P . If p′(X) = 0, the necessary
conditions (5)-(6) imply the conditions in (4). Since p(X) > 0, the conditions
in (4) are sufficient for x to maximize the aggregate profit. But since p(X) /∈
P , this cannot be the case and we must have p′(X) < 0 and d > 0.

We have shown in Proposition 1 that the vector x remains a Cournot
candidate in the modified model with linear cost functions, and Assumptions
1-5 still hold. Further, to lower bound the worst case profit ratio for Cournot
candidates, we only need to derive a lower bound for the profit ratio of
Cournot candidates for the case of linear cost functions. We therefore assume
that Cn(xn) = αnxn for each n. Without loss of generality, we further assume
that α1 = minn{αn}.

Since p′(X) exists, we have the following necessary (and, by definition,
sufficient) conditions for a nonzero vector x to be a Cournot candidate:{

C ′n(xn) = p (X) + xnp
′(X), if xn > 0,

C ′n(0) ≥ p (X) + xnp
′(X), if xn = 0.

(B.1)

Since p(X) 6= p(XP ), we have that c > 0. For conciseness, we let
y = p(X) throughout the proof. We will prove the theorem by consider-
ing separately the cases where α1 = 0 and α1 > 0. According to Proposition
4, the profit ratio of the Cournot candidate x is lower bounded by the profit
ratio η0(x) for the case of a piecewise linear function of the form in (A.6).

The case α1 = 0

Let x be a Cournot candidate in the original model, with linear cost
functions and the inverse demand function p(·). Suppose first that x1 = 0.
The second inequality in (B.1), with n = 1, and C ′n(0) = α1 = 0, implies
that p(X) = 0. Since p(X) > 0, we must have x1 > 0. The first equality in
(B.1) yields y > 0 and x1 = y/d. We have

0 ≤
N∑
n=2

xn = X − y

d
, (B.2)
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from which we conclude that X ≥ y/d.
From Proposition 4, the profit ratio of the vector x in the modified model,

η0(x), cannot be more than its profit ratio in the original model, η(x). Hence,
to prove part (b), it suffices to show that η0(x) ≥ fP (c,N). For the modified
model, the maximum aggregate profit is the optimal value of the following
optimization problem,

maximize qp0(q)

subject to q ≥ 0.

Since dX ≥ y, the derivative of the aggregate profit is nonpositive at q = X,
and so the aggregate profit is nonincreasing with q on the interval [X,∞).
Hence, in the modified model, the aggregate profit is maximized in the in-
terval [0, X]. Through a simple calculation we have:

(i) If cX ≥ y, then the maximum aggregate profit is (cX+y)2/(4c), achieved
at q = (cX + y)/(2c).

(ii) If cX ≤ y, then the maximum aggregate profit is Xy, achieved at q = X.

Note that for n = 1 we have αnxn = 0. For n ≥ 2, whenever xn > 0, from
the first equality in (B.1) we have αn = y − xnd and αnxn = (y − xnd)xn.
Since αn ≥ 0, we have y ≥ xnd, for n = 2, . . . , N . Therefore,

(N − 1)y ≥ d
N∑
n=2

xn = dX − y,

i.e.,
Ny ≥ dX. (B.3)

In the modified model, the aggregate profit achieved at x is

Xp(X)−
N∑
n=1

αnxn = Xy −
N∑
n=2

(y − xnd)xn

≥ Xy − y
N∑
n=2

xn +
(Xd− y)2

(N − 1)d

= Xy − y(X − y/d) +
(Xd− y)2

(N − 1)d

=
y2

d
+

(Xd− y)2

(N − 1)d
,

(B.4)
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where the inequality is true because
∑N

n=2 x
2
n is minimized when x2 = x3 =

· · · = xN , subject to the constraint in (B.2). For the case cX ≥ y, since the
maximum aggregate profit is (cX + y)2/4c, we have

η0(x) ≥ y2/d+ (Xd− y)2/((N − 1)d)

(cX + y)2/4c
. (B.5)

Note that c, d, and y are positive. Substituting y = cX/y and c = c/d to
(B.5), we have

η0(x) ≥ 4c2 + 4(y − c)2/(N − 1)

c(y + 1)2
, 1 ≤ y ≤ Nc, 0 < c ≤ y, (B.6)

where the constraints y ≥ c and y ≤ Nc follow from (B.2) and (B.3), respec-
tively. For any given c ≥ 1/N , through a simple calculation we obtain that
the right-hand side of the first inequality in (B.6) is minimized at

y = max

{
c2N + c

c+ 1
, 1

}
.

We conclude that if cX ≥ y, then

η0(x) ≥


c2 + (1− c)2/(N − 1)

c
, if 1/N ≤ c ≤

√
1/N,

4c3(N − 1) + 4c(c+ 1)2

(c2N + 2c+ 1)2
, if c >

√
1/N.

(B.7)

Note that the case c < 1/N cannot happen, by (B.6).
For the case cX ≤ y, the maximum aggregate profit is Xy. From (B.4),

we have

η0(x) ≥

y2

d
+

(Xd− y)2

(N − 1)d

Xy
=
c2(N − 1) + (y − c)2

c · y(N − 1)
, 0 < c ≤ y ≤ 1, y ≤ Nc,

(B.8)
where the constraints y ≥ c and y ≤ Nc follow from (B.2) and (B.3), respec-
tively. Through a simple calculation, for any given c ∈ (0, 1], we find that
the right-hand side of (B.8) is minimized at

y = min{c
√
N, 1}.
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We conclude that if cX ≤ y, then

η0(x) ≥


N − 1 + (

√
N − 1)2√

N(N − 1)
, if 0 < c ≤

√
1/N,

c2 + (1− c)2/(N − 1)

c
, if

√
1/N ≤ c ≤ 1.

(B.9)

Through another simple calculation, we conclude that

c2 + (1− c)2/(N − 1)

c
≥ (N − 1) + (

√
N − 1)2√

N(N − 1)
, if 0 < c ≤

√
1/N,

(B.10)
because the left-hand side is nonincreasing in c, and the left-hand side equals
the right-hand side if c =

√
1/N . Similarly,

c2 + (1− c)2/(N − 1)

c
≥ 4c3(N − 1) + 4c(c+ 1)2

(c2N + 2c+ 1)2
, if c ≥

√
1/N,

(B.11)
because the left-hand side equals the right-hand side at c =

√
1/N , and the

derivative of the left-hand side, with respect to c, is more than that of the
right-hand side, for every c ≥

√
1/N . Combining the results in (B.7) and

(B.9)-(B.11), we have

η0(x) ≥


N − 1 + (

√
N − 1)2√

N(N − 1)
, if 0 < c ≤

√
1/N,

4c3(N − 1) + 4c(c+ 1)2

(c2N + 2c+ 1)2
, if c >

√
1/N.

(B.12)

Tightness

Given an integer N ≥ 2, consider a model with an affine inverse demand
function p0(·) of the form (A.6), with c/d = 1 and cX ≥ y > 0. Let the cost
of supplier 1 be identically zero and let

Cn(x) =

(
y − d

N − 1

(
X − y

d

))
x, n = 2, . . . , N. (B.13)
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It is not hard to see that the vector with components

x1 =
y

d
, xn =

1

N − 1

(
X − y

d

)
, n = 2, . . . , N, (B.14)

satisfies the conditions (5)-(6). It can be verified that x is a Cournot equi-
librium.

For the case where cX ≥ y and minn{C ′n(·)} = 0, we have shown that
the maximum total profit is (cX + y)2/4c, and the aggregate profit achieved
at x is given by the right-hand side of (B.4). When y = cX/y = (N + 1)/2,
the profit ratio of the Cournot equilibrium x is given by

η(x) =
y2/d+ (Xd− y)2/(N − 1)d

(cX + y)2/4c
=

4 + 4(y − 1)2/(N − 1)

(y + 1)2
=

4

N + 3
,

which is the profit ratio lower bound in (B.12), for the case c = 1.

The case α1 > 0

We now consider the case where αn > 0 for every n. By rescaling the
cost coefficients and permuting the supplier indices, we can assume that
minn{αn} = α1 = 1.

Let x be a Cournot candidate in the original model with linear cost func-
tions and an inverse demand function p(·). Suppose first that x1 = 0. The
second inequality in (B.1) implies that p(X) ≤ 1. Lemma 1 implies that
X > 0, so that there exists some n with xn > 0. The first equality in (B.1)
yields,

αn = p(X) + xnp
′(X) ≤ 1.

Since αn ≥ 1, we have that p(X) = 1 and p′(X) = 0. We observe that x
satisfies the conditions in (4), and since p(X) > 0, we know that x maxi-
mizes the aggregate profit. However, since the cost functions are convex and
p(X) = minn{αn} = 1, it is easy to see that the aggregate profit earned
at x cannot be positive, a contradiction with Lemma 2. We therefore have
p(X) > 1 and x1 > 0.

As argued earlier, since p(X) /∈ P , we have p′(X) < 0. The first equality
in (B.1), for n = 1, yields y > 0 and x1 = (y − 1)/d. We have

0 ≤
N∑
n=2

xn = X − (y − 1)/d, (B.15)
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from which we conclude that X ≥ (y − 1)/d.
From Proposition 4, the profit ratio of the vector x in the modified model,

η0(x), cannot be more than its profit ratio in the original model, η(x). Hence,
to prove part (b), it suffices to show that η0(x) ≥ fP (c,N). For the modified
model, the maximum aggregate profit is the optimal value of the following
optimization problem,

maximize qp0(q)− q

subject to q ≥ 0.

Since dX ≥ y − 1, the derivative of the aggregate profit at q = X is non-
positive, and so the aggregate profit is nonincreasing with q on the inter-
val [X,∞). Again, the aggregate profit is maximized in the interval [0, X].
Through a simple calculation we have:

(i) If cX ≥ y− 1, then the maximum aggregate profit is (cX + y− 1)2/(4c),
achieved at Q1 = (cX + y − 1)/(2c).

(ii) If cX ≤ y− 1, then the maximum aggregate profit is X(y− 1), achieved
at Q2 = X.

Note that for n = 1 we have αnxn = xn. For n ≥ 2, whenever xn > 0,
from the first equality in (B.1) we have αn = y−xnd and αnxn = (y−xnd)xn.
Since αn ≥ 1, we have y − 1 ≥ xnd, for n = 2, . . . , N . Therefore

(N − 1)(y − 1) ≥ d
N∑
n=2

xn = dX − (y − 1),

which implies that
N(y − 1) ≥ dX. (B.16)

Hence, in the modified model, the aggregate profit achieved at x is

X(y − 1)−
N∑
n=1

αnxn = X(y − 1)− (y − 1)/d−
∑N

n=2
(y − xnd)xn

≥ X(y − 1)− y
∑N

n=2
xn +

(Xd− y − 1)2

(N − 1)d

= X(y − 1)− (y − 1)(X − (y − 1)/d) +
(Xd− y − 1)2

(N − 1)d

=
(y − 1)2

d
+

(Xd− y − 1)2

(N − 1)d
,

(B.17)
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where the inequality is true because
∑N

n=2 x
2
n is minimized when x2 = x3 =

. . . = xN , subject to the constraint in (B.15). Note that c, d and y − 1 are
positive. If y − 1 is replaced by y, then:

1. The aggregate profit achieved at x, which is given in (B.17), is the same
as that in (B.4).

2. The maximum aggregate profit is the same as that in the case where
α1 = 0.

3. The constraints in (B.15) and (B.16) are equivalent to those in (B.2)
and (B.3), respectively.

Let y = cX/(y − 1) and c = c/d. The desired results in (B.12) can be
obtained by repeating the proof for the case α1 = 0.

Appendix C. Proof of Theorem 2

Without loss of generality, let supplier 1 have the largest market share,
i.e., x1 = maxn{xn} and r = x1/X. According to Proposition 1, the vector x
remains a Cournot candidate in the modified model with linear cost functions,
and Assumptions 1-5 still hold. Therefore, to lower bound the worst case
profit ratio for Cournot candidates, we only need to derive a lower bound for
the profit ratio of Cournot candidates for the case of linear cost functions.
We therefore assume that Cn(xn) = αnxn for each n. From the conditions
(B.1), it is not hard to see that α1 = minn{αn}.

Since p(X) 6= p(XP ), we have that c > 0. For conciseness, we let
y = p(X) throughout the proof. Through an approach similar to that used in
the proof of Theorem 1, we will prove the theorem by considering separately
the cases where α1 = 0 and α1 > 0. According to Proposition 4, the profit
ratio of the Cournot candidate x is lower bounded by the profit ratio η0(x)
for the case of a piecewise linear inverse demand function of the form in (A.6).

The case α1 = 0

In part (b) of Theorem 1 we have shown that p′(X) < 0. The first equality
in (B.1) yields y > 0, x1 = y/d and r = y/dX. For the case cX ≥ y, in the
proof of Theorem 1 (cf. Eq. (B.5)) we have shown that

η0(x) ≥ y2/d+ (Xd− y)2/((N − 1)d)

(cX + y)2/4c
. (C.1)
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Note that c, d and y are positive. Substituting r = y/dX and c = c/d to
(C.1), we have

η0(x) ≥
4c2r2 +

4(c− cr)2

N − 1
c(c+ r)2

≥ 4c2r2

c(c+ r)2
=

4cr2

(c+ r)2
, 0 ≤ r ≤ min{c, 1},

(C.2)
where the constraint r ≤ c follows from cX ≥ y.

For the case cX ≤ y, we have r ≥ c. In the proof for Theorem 1 (cf. Eq.
(B.8)) we have shown that

η0(x) ≥

y2

d
+

(Xd− y)2

(N − 1)d

Xy
=
c2r2(N − 1) + (c− cr)2

c2r(N − 1)
≥ r, 0 < c ≤ r < 1.

(C.3)
Tightness

Given some r ∈ (0, 1), consider a model with N ≥ d1/re + 1, and an
affine inverse demand function p0(·) of the form in (A.6), where c/d = 1 and
rdX = y. The cost of supplier 1 is identically zero and8

Cn(x) =

(
y − d

N − 1
(X − rX)

)
x, n = 2, . . . , N.

It is not hard to see that the vector with components

x1 = rX, xn =
1

N − 1
(X − rX), n = 2, . . . , N,

satisfies the conditions (5)-(6). It can be verified that x is a Cournot equi-
librium. The maximum total profit is (cX + y)2/4c, and is achieved at the
monopoly output xP = ((cX + y)/2c, 0, . . . , 0). On the other hand, the ag-
gregate profit achieved at x is given on the right-hand side of (B.4). We
have

η0(x) =
y2/d+ (Xd− y)2/((N − 1)d)

(cX + y)2/4c
=

4r2 + 4(1− r)2/(N − 1)

(1 + r)2
,

8Since N > 1/r and rdX = y, we have that C ′
n(·) > 0.
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and as the number of suppliers increases to infinity, the profit ratio of the
Cournot equilibrium converges to 4r2/(1 + r)2.

The case α1 > 0

The proof is similar to the case that α1 = 0 and is omitted.

Appendix D. Proof of Corollary 3

Let x be a Cournot candidate. For convex inverse demand functions, we
have shown in the proof of Corollary 2 that p′(X) must exist. If p(X) ∈ P ,
Proposition 3 shows that η(x) = 1, and the desired results trivially hold.
Now consider the case p(X) /∈ P . Let xP maximize the aggregate profit. We
first show that the aggregate supply at a Cournot candidate is at most s,
and then argue that the aggregate supply at a monopoly output is at least t.
The desired results will follow from the fact that both the functions, fP (·, N)
and gP (·, r), are nonincreasing.

Step 1: The aggregate supply at the Cournot candidate, X, is no more
than s.

We first show that X ≤ s. Since p′(X) exists, we know that x satisfies the
necessary conditions in (B.1). Lemma 1 shows that X > 0. For a supplier n
with xn > 0, the first equality in (B.1) implies that

p(X) ≥ C ′n(xn) ≥ C ′n(0) ≥ min
n
{C ′n(0)},

where the first inequality is true because p(·) is nonincreasing and p′(X) ≤ 0,
and the second inequality follows from the convexity of Cn(·).

For any Cournot candidate x with p(X) > 0, we now argue that p(X) >
minn{C ′n(0)}. Suppose not. We have p(X) = minn{C ′n(0)}, p(X) = C ′n(xn),
and p′(X) = 0. We observe that x satisfies the conditions in (4); since
p(X) > 0, we know that x maximizes the aggregate profit. However, since
cost functions are convex and p(X) = minn{C ′n(0)}, it is easy to see that the
aggregate profit earned at x cannot be positive, a contradiction with Lemma
2. Since p(X) > minn{C ′n(0)} and p(·) is nonincreasing, we conclude that
X ≤ s.

Step 2: The aggregate supply at the monopoly output, XP , is at least t.
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Lemma 2 implies that XP > 0. Applying conditions (4) to some n with
xPn > 0, we know that p′(XP ) exists, because ∂−p

(
XP
)
≤ ∂+p

(
XP
)
. The

conditions (4) imply that

C ′n(xPn ) ≥ p(XP ) +XPp′(XP ), ∀n. (D.1)

Since XP ≥ xPn and the cost functions are convex, we have

C ′n(XP ) ≥ p(XP ) +XPp′(XP ), ∀n,

which implies that XP ≥ t. Proposition 2 shows that XP < X, and therefore
we have t ≤ XP < X ≤ s. Since ∂−p(s) < 0, and p(·) is convex and
nonincreasing, we have

c = c/d ≤ ∂+p(t)/∂−p(s).

The desired result follows from Theorems 1 and 2, as well as the fact that
both the functions, fP (·, N) and gP (·, r), are nonincreasing.
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