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We consider a model where a finite number of producers compete to meet an infinitely divisible but inelastic demand for
a product. Each firm is characterized by a production cost that is convex in the output produced, and firms act as profit
maximizers. We consider a uniform price market design that uses supply function bidding: firms declare the amount they
would supply at any positive price, and a single price is chosen to clear the market. We are interested in evaluating the
impact of price-anticipating behavior both on the allocative efficiency of the market and on the prices seen at equilibrium.
We show that by restricting the strategy space of the firms to parameterized supply functions, we can provide upper bounds
on both the inflation of aggregate cost at the Nash equilibrium relative to the socially optimal level, as well as the markup
of the Nash equilibrium price above the competitive level: as long as N > 2 firms are competing, these quantities are both
upper bounded by 1+1/4N −25. This result holds even in the presence of asymmetric cost structure across firms. We also
discuss several extensions, generalizations, and related issues.
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1. Introduction
We consider a model where a finite number of producers
compete to meet an infinitely divisible, inelastic demand
for a product. Each firm is characterized by a production
cost that is convex in the output produced, and firms act as
profit maximizers. We study a simple market design ques-
tion: given a fixed, inelastic demand, how should a market
mechanism be designed to yield an efficient allocation of
production across suppliers—that is, an allocation that min-
imizes production cost?

In this paper, we focus our attention on uniform price
market-clearing mechanisms for the allocation problem.
These are mechanisms that set a single per-unit price for
the resource; firms compete by submitting supply func-
tions that describe their desired production level as a func-
tion of price. A central clearinghouse then chooses a price
that clears the market. Such mechanisms have been used
to model competition in a range of industries, including
energy markets, airline pricing, and contracts for man-
agement consulting services (Vives 2009). Uniform price
mechanisms are interesting objects of study due to their
simplicity. In particular, they are transparent and fair from
the point of view of market participants: all agents are
charged the same per-unit price and asked to supply exactly
what they bid via their supply functions.

We have two related goals in this market design problem.
First, we desire that such a mechanism does not exhibit a
large “welfare loss”; i.e., we hope that that the efficiency
loss remains bounded when firms are price anticipating,
regardless of the firms’ cost functions. Second, we wish to
ensure that the price markup when firms are price antic-
ipating is bounded relative to the competitive price level;
such a bound ensures that the exercise of market power by
the firms is mitigated.

Our task is complicated by a fundamental trade-off in
mechanism design. On one hand, sufficient flexibility must
be granted to the firms in declaring their supply functions to
ensure that they can approximately declare their costs. On
the other hand, as the strategic flexibility granted to firms
increases, their temptation to misdeclare their cost increases
as well. Indeed, although in principle arbitrary supply func-
tions allow firms to declare all marginal cost information,
in theory and practice we find that such strategic flexibility
only encourages the exercise of market power.

Our paper sheds light on this trade-off by studying a
parameterized class of supply functions that allow firms
enough flexibility to communicate information about their
production cost, yet not enough flexibility to enable them
to exercise market power and cripple the performance of
the overall market. In other words, we partially restrict
the range of possible supply functions firms can declare
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and demonstrate that the resulting market-clearing mech-
anism is nearly efficient. Our analysis lends credence to
the hypothesis that restricting the strategy space granted
to firms can improve allocative efficiency, as observed by
several pieces of related work (see §2).

Before proceeding, we fix some terminology. We will
assume that N firms compete to satisfy a fixed demand
D> 0, where firm n has a convex, strictly increasing, and
nonnegative production cost function Cn4sn5. We assume
that each firm n submits a supply function Sn4p5 to a cen-
tral clearinghouse. The clearinghouse then clears the market
by choosing a price p∗ such that

∑

n Sn4p
∗5=D, and firm n

is asked to supply Sn4p
∗5. For each firm, we also let Pn4S5

denote the inverse supply function, i.e., Pn4Sn4p55= p.
(These definitions are made informally, without regard to
ensuring that market-clearing prices or inverse supply func-
tions exist; we will consider these technical issues more
carefully in the remainder of the paper.) We may reframe
our objective as follows: are there any restrictions that can
be placed on supply functions firms are allowed to sub-
mit that ensure both efficient market performance and a
bounded markup above the competitive price level?

One can start by considering simple Bertrand and
Cournot structures for the supply functions. Bertrand com-
petition has the deficiency that equilibria may fail to exist
when the marginal production cost of each firm is not linear
(Shapiro 1989). On the other hand, Cournot competition is
not well defined when the elasticity of demand is zero; and
furthermore, if the price elasticity of demand is low, then
it is straightforward to check that Cournot equilibria may
have arbitrarily high welfare loss and price markup above
competitive levels (Day et al. 2002).

Thus, neither perfectly vertical nor perfectly horizontal
supply functions yield reasonable solutions in this setting.
One is then led to consider supply function equilibrium. In
such a model, the strategy of each firm is not limited to
one scalar (either price or quantity), but rather consists of
an entire function Sn4p5 describing the amount of the good
a firm is willing to produce at any price p. The seminal
work in the study of supply function equilibria is the paper
of Klemperer and Meyer (1989); for further details, see §2.
Unfortunately, one lesson of that line of literature is that
the SFE framework is problematic from a market design
standpoint; in general, there may exist highly inefficient
equilibria.

In the remainder of the paper, for the resource allocation
environment described above, we demonstrate that we can
achieve a successful mechanism design by properly restrict-
ing the class of supply functions that firms are allowed to
submit. We start by discussing related work in §2. In §3,
we precisely define the market mechanism we consider;
in particular, we assume that each firm submits a supply
function of the form S4p1w5 = D −w/p, where D is the
demand and w is a nonnegative scalar chosen by the firm.
The parameter w can be interpreted as the amount of rev-
enue the supplier is willing to forgo from the total payout

pD that will be created when the market clears. The market
manager then chooses a price so that aggregate supply is
equal to demand. This is, of course, a somewhat unintu-
itive market design; however, our goal is to use this design
as a vehicle to demonstrate the strong efficiency properties
attainable when strategic flexibility is properly constrained.

We begin with a preliminary investigation of equilibria
of the mechanism. For our mechanism we recover the fun-
damental theorem of welfare economics: when firms are
price taking, there exists a competitive equilibrium, and the
resulting allocation minimizes aggregate production cost.
We next assume instead that firms are price anticipating,
and establish existence and uniqueness of a Nash equilib-
rium as long as more than two firms compete.

Sections 4 and 5 present the key results of this paper: the
former provides a theoretical bound on the welfare loss at
the Nash equilibrium relative to the competitive outcome,
and the latter provides a similar bound on the price markup
at the Nash equilibrium relative to the competitive price. In
§4 we show that as long as at least two firms are competing,
the ratio of Nash equilibrium production cost to the mini-
mal production cost is no worse than 1 + 1/4N − 25, where
N is the number of firms in the market. We emphasize that
this result holds regardless of the cost functions of the firms
(as long as they are convex)—thus, it provides a very strong
competitive limit theorem without any assumptions of sym-
metry between firms. In §5, we show that the same bound
applies to the Nash equilibrium price relative to the com-
petitive price; we also provide a bound on the Lerner index.
All bounds discussed in these two sections are tight.

In §6 we ask a design question: to what extent are the
parameterized supply functions we have chosen “optimal?”
We study a class of reasonable parameterized supply func-
tion mechanisms, using the metric of worst-case welfare
loss at the Nash equilibrium. We note that the mechanism
we have chosen is “optimal” in this sense. This result is
closely related to a theorem derived by the authors in Johari
and Tsitsiklis (2009) and first presented in (Johari 2004,
Chapter 4).

We conclude by considering two extensions of the
model, first to mitigate the possibility of negative supply
by the firms (discussed in §7), and second to cover settings
with stochastic demand (in §EC.2). Section 7 addresses the
fact that the supply functions we have chosen allow for
nonequilibrium outcomes in which a firm may be forced
to buy the good rather than supply it. We show that this
problem is generic to the design of parameterized supply
function mechanisms, but we also provide a simple reso-
lution using a “maximum liability” guarantee to each firm.
Section 8 concludes. Note: Due to space constraints, all
proofs can be found in the e-companion, which is available
as part of the online version that can be found at http://or
.journal.informs.org/.

2. Related Work
Our work is inspired by a recent line of literature that studies
the efficiency guarantees possible in market design when the
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strategy spaces of market participants are restricted (Chen
and Zhang 2010; Johari et al. 2005; Johari and Tsitsiklis
2006; Maheswaran 2003; Maheswaran and Basar 2004;
Moulin 2008; Sanghavi and Hajek 2004; Yang and Hajek
2006, 2007; Dimakis et al. 2006; Stoenescu and Ledyard
2006; Moulin 2010). The results of Johari and Tsitsiklis
(2009) are most closely related to our paper: in that work,
the efficiency of scalar-parameterized mechanisms is stud-
ied for a setting where buyers bid for a capacitated resource.
As we discuss in §3, the mechanism we consider is related
to the mechanisms studied in this literature; however, the
efficiency loss bounds we derive are novel. In large part this
distinction is due to the fact that in our paper we consider
a setting where suppliers compete to meet demand. This is
part of a growing literature that quantifies efficiency losses
in a variety of game-theoretic environments; see Nisan et al.
(2007) for a comprehensive survey.

One well-known approach to the market design prob-
lem is to use the Vickrey-Clarke-Groves (VCG) class of
mechanisms (Clarke 1971, Groves 1973, Vickrey 1961).
Because each firm’s profit is quasilinear (i.e., the produc-
tion costs are measured in monetary units), a VCG mech-
anism ensures that truthful reporting for each firm is a
dominant strategy. However, there are several reasons why
a VCG mechanism may not be desirable in practical set-
tings. For example, there is no bound on the payment the
market manager may have to make to the market par-
ticipants; further, VCG mechanisms exhibit the implicit
“unfairness” of providing a different price to different pur-
veyors of the same good. See, e.g., Hobbs et al. (2000),
Ausubel and Milgrom (2006), and Rothkopf et al. (1990)
for extensive discussion of some of the shortcomings of
the VCG mechanism. In part due to these shortcomings,
VCG mechanisms are rarely observed in complex multiu-
nit resource allocation settings such as power and electric-
ity markets. It is worth noting that several recent papers
have studied approaches to pricing divisible resources using
VCG-like mechanisms with scalar strategy spaces; see,
e.g., Maheswaran and Basar (2004), Yang and Hajek (2006,
2007), Johari and Tsitsiklis (2009). Similar approaches
could be applied in our context to yield efficient or nearly
efficient market mechanisms, although with attendant short-
comings analogous to standard VCG mechanisms.

Instead, as discussed in the introduction, we focus on
uniform price market-clearing mechanisms; this model is
closely related to the analysis of supply function equilibria
(SFE). Grossman (1981) and Hart (1985) provide concrete
examples of SFE models. In particular, Grossman’s anal-
ysis shows that in the presence of fixed startup costs to
the firms, it is possible for a supply function equilibrium
to achieve full efficiency; however, in general it is difficult
to guarantee that the number of supply function equilib-
ria is small, and other inefficient supply function equilibria
may exist. The seminal work in the study of supply func-
tion equilibria is the paper of Klemperer and Meyer (1989).

The authors begin by showing that in the absence of uncer-
tainty, nearly any production allocation can be supported
as a supply function equilibrium. They then show that if
demand is uncertain, then the range of equilibria is dramat-
ically reduced; and that in equilibrium, possible prices and
allocations range between those achieved at Bertrand and
Cournot equilibria.

The SFE framework is somewhat problematic from a
market design standpoint. The original model of Klemperer
and Meyer (1989) required that the different firms have
identical cost functions; recent work has made progress in
studying models with asymmetric firms with both affine
(Baldick and Hogan 2001, 2006; Baldick et al. 2004) and
nonlinear (Anderson and Hu 2008) supply functions. This
literature primarily focuses on computational approaches
to finding SFE (when they exist); as a result, general
bounds on efficiency and price markups are not typically
available—such properties are evaluated on a case-by-case
basis. In summary, therefore, the complexity of the SFE
model places restrictions on the types of environments that
can be successfully analyzed, and does not yield a satisfac-
tory answer to the market design questions raised above.

SFE models can be used to model a range of industries,
including airline pricing and contracts for management con-
sulting (Vives 2009), but the most prominent application
of the SFE concept is to electricity markets. Many power
markets actually operate in practice by having generators
submit complete supply functions (see Green 1996 and
Green and Newbery 1992 for the first applications of this
approach). We do not aim to provide a comprehensive sur-
vey of the electricity market literature here; the reader is
referred to Day et al. (2002) for a more complete list of
references, and Wilson (2002) for an elegant discussion of
some of the issues involved in power market design. We
conclude by noting that electricity markets also typically
exhibit inelastic demand, as assumed in our paper; see, e.g.,
Stoft (2002, §§1–7.3). In light of the short-run price inelas-
ticity of demand, many short-term markets for generation
today operate by setting a price for electricity so that the
aggregate supply offered by generators meets the demand
requirements of a given region.

As noted above, the SFE model of Klemperer and Meyer,
and subsequent results on that model, treat a general model
of supply function bidding where demand as stochastic. As
a result, such models apply well to markets where accurate
demand forecasts are not available when bids are submit-
ted, or where demand may vary over the period where the
bid is binding. For example, in some day-ahead electricity
markets, generators are required to submit a single bid for
the entire day, over which demand varies due to time-of-
day effects. By contrast, our results on efficiency are devel-
oped in a setting with deterministic demand, and thus are
applicable mainly to markets where demand forecasts are
accurate at the time that bids are submitted. Such a model is
reasonable, for example, in electricity markets where gen-
erators are allowed to rebid a different supply function for
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each hour of the day, if we presume that fairly accurate
hourly forecasts of demand are available in advance.

3. Preliminaries
We consider a model where N ¾ 2 firms compete to satisfy
an inelastic demand D > 0. Note that our model assumes
that the demand D is deterministically known; we believe
this is a reliable assumption in short-term markets (e.g.,
day-ahead), where prediction of demand based on histor-
ical models is likely to have very low variance. We con-
sider a model where demand is stochastic in §EC.2 in the
e-companion.

Let sn denote the amount produced and supplied by
firm n. We assume that firm n incurs a cost Cn4sn5 when
it produces sn units; we assume that cost is measured in
monetary units, and firms are profit maximizers. We make
the following assumption on the cost functions Cn.

Assumption 1. For each n, the cost function Cn4sn5 is con-
tinuous, with Cn4sn5= 0 if sn ¶ 0. Over the domain sn ¾ 0,
the cost function Cn4sn5 is convex and strictly increasing.

Because demand is inelastic, it is clear that aggregate
welfare maximization is equivalent to aggregate cost mini-
mization, i.e., the following optimization problem:

minimize
∑

n

Cn4sn5 (1)

subject to
∑

n

sn =D3 (2)

sn ¾ 01 n= 11 0 0 0 1N 0 (3)

Any solution s to (1)–(3) is referred to as efficient.
We consider the following market mechanism for pro-

duction allocation. Each firm n submits a supply function
to the market manager, which gives (as a function of price)
the amount the firm is willing to produce. In contrast to
much of the literature on supply function equilibria (e.g.,
Klemperer and Meyer 1989), we consider the implications
of restricting the space of supply functions that firms are
allowed to choose from; in particular, we will assume that
the supply functions are chosen from a parameterized fam-
ily of supply functions.

Formally, the details of our market mechanism are as fol-
lows. We assume that firm n submits a parameter wn ¾ 0 to
the market manager. The parameter indicates that at a price
p > 0, firm n is willing to supply S4p1wn5 units given by:

S4p1wn5=D−
wn

p
0 (4)

We then assume that the market manager chooses the
price p4w5 > 0 to clear the market, i.e., so that
∑

s S4p4w51wn5 = D. Such a choice is only possible if
∑

nwn > 0, in which case:

p4w5=

∑

nwn

4N − 15D
0 (5)

On the other hand, if
∑

nwn = 0, then S4p1wn5 = D for
all n regardless of the value of p; therefore, we fix the

following conventions:

S40105=D1 and p405= 00 (6)

(This makes the function p continuous in w.)
The parameter wn may be interpreted as the revenue that

firm n is willing to forgo; this follows because pD is the
total pool of revenue when the price is p, and pS4p1wn5=

pD − wn is the revenue to firm n when the price is p. It
is straightforward to observe various peculiarities of this
mechanism. First, it does not make any provision for firms
to submit capacity constraints; we will find that this does
not affect equilibrium behavior, but of course out of equi-
librium the inability to declare capacity could force a firm
to deliver supply beyond its means. On the other hand,
any static supply function bidding model (with determin-
istic demand) where firms are allowed to declare capac-
ities will have a range of highly undesirable equilibria,
where firms choose capacities that exactly total the desired
demand. In such equilibria, firms choose supply functions
that approach capacity as the price approaches infinity. As
a result, these equilibria always have astronomical prices,
and every measure of market performance can be shown
to degrade in such a context.1 We believe that extract-
ing capacity information from firms in such settings will
require a more complete dynamic model of market struc-
ture, and this remains an important research direction.

A second concern regarding the market mechanism
we have designed here is that prospective suppliers may
be forced to purchase the good at the outcome of the
market. This can happen when w is chosen so that
D−wn/p4w5 < 0 for some firm n; nothing rules this out
in the definition of the mechanism. Of course, such behav-
ior cannot happen in equilibrium, but firms will be rightly
nervous about agreeing to a market mechanism with such a
property. We will discuss in §6 two responses to this issue.
We will also provide a characterization of the mechanism
we have chosen as the best-possible mechanism available
in a certain class with reasonable properties.

We begin by considering a setting where firms act as
price takers: given a price �> 0, a price-taking firm n acts
to maximize the following profit function over wn ¾ 0:

Pn4wn3�5=�S4�1wn5−Cn4S4�1wn550 (7)

The first term represents the revenue to firm n when the
price is � and the firm supplies S4�1wn5 units; the second
term represents the cost to the firm of producing S4�1wn5
units. Observe that because cost is measured in monetary
units, the payoff is quasilinear in money.

It is straightforward to show that under our assumptions,
when firms are price takers, there exists a competitive equi-
librium, and the resulting allocation is efficient (i.e., an
optimal solution to (1)–(3)). In a competitive equilibrium,
firms maximize their payoff, and the price is chosen accord-
ing to (5) to clear the market. For details on this result, see
Theorem EC.1 in the e-companion.
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In contrast to the price-taking model, we now consider
an oligopoly model where the firms are price anticipat-
ing instead. Price-anticipating firms will realize that � is
set according to � = p4w5 from (5), and adjust their pay-
off accordingly. We use the notation w−n to denote the
vector of strategies of firms other than n; i.e., w−n =

4w11w21 0 0 0 1wn−11wn+11 0 0 0 1wN 5. Given w−n, each firm n
chooses wn to maximize:

Qn4wn3w−n5= p4w5S4p4w51wn5−Cn4S4p4w51wn55 (8)

over nonnegative wn. If we substitute for p4w5 from (5)
and for S4p1wn5 from (4), we have:

Qn4wn3w−n5

=



































∑

mwm

N − 1
−wn −Cn

·

(

D−

(

wn
∑

mwm

)

4N − 15D
)

1 if wn > 03

∑

m 6=nwm

N − 1
−Cn4D51 if wn = 00

(9)

The payoff function Qn is similar to the payoff function Pn,
except that the firm anticipates that the network will set
the price � according to �= p4w5 from (5). The following
theorem shows that there exists a unique Nash equilibrium
allocation when N > 2 firms compete, by showing that at
a Nash equilibrium it is as if the firms are solving another
optimization problem of the same form as the aggregate
cost minimization problem (1)–(3), but with “modified”
cost functions.

Theorem 1. Assume that N ¾ 2, and suppose that
Assumption 1 is satisfied. If N = 2, then no Nash equilib-
rium exists for the game defined by 4Q11 0 0 0 1QN 5. On the
other hand, if N > 2, then there exists a Nash equilibrium
w¾ 0 of the game defined by 4Q11 0 0 0 1QN 5, and it satisfies
∑

nwn > 0. For any Nash equilibrium w, the vector s
defined by sn = S4p4w51wn5 is the unique optimal solution
to the following optimization problem:

minimize
∑

n

Ĉn4sn5 (10)

subject to
∑

n

sn =D3 (11)

sn ¾ 01 n= 11 0 0 0 1N 1 (12)

where

Ĉn4sn5=

(

1 +
sn

4N − 25D

)

Cn4sn5

−
1

4N − 25D

∫ sn

0
Cn4z5dz0 (13)

We note the following corollary for later reference: at a
Nash equilibrium, one firm produces the entire supply only
if it was efficient to do so.

Corollary 1. Assume that N > 2, and suppose that
Assumption 1 is satisfied. Suppose that w is a Nash equilib-
rium w¾ 0 of the game defined by 4Q11 0 0 0 1QN 5 such that
S4p4w51wn5 = D, and S4p4w51wm5 = 0 for m 6= n. Then
the Nash equilibrium production vector is efficient.

We note that the use of “modified” cost functions in
the proof of Theorem 1 is similar to the use of poten-
tial functions to study Nash equilibria in some games
(Monderer and Shapley 1996). However, the objective func-
tion (10) is not a potential function for the game defined by
4Q11 0 0 0 1QN 5: whereas each payoff function is determined
by the vector w of strategic choices of other players, the
objective function (10) depends only on the resulting pro-
duction vector s. As a result, it is straightforward to check
that (10) is neither an ordinal nor exact potential function.

The most closely related results concern the proportional
allocation mechanism for allocation of a single divisible
good among strategic buyers, studied by Kelly (1997), La
and Anantharam (2000), Hajek and Gopalakrishnan (2002),
Maheswaran and Basar (2003), and Johari and Tsitsiklis
(2004). Observe that the quantity wn/p4w5 is the “relief”
provided to firm n relative to the total demand D, because
firm n is asked to supply D − wn/p4w5 when the mar-
ket clears. Suppose we define a virtual divisible good of
4N − 15D units that we interpret as the total relief that will
be granted to firms. At the market-clearing price, if wn > 0,
firm n’s relief is:

wn

p4w5
=

wn
∑

mwm

4N − 15D0

If wn = 0, then firm n receives no relief: it must supply the
entire demand D. Thus, total relief is allocated to the firms
in proportion to their bids. Further, we can define a utility
function Un4xn5 for firm n as a function of the relief, by
simply negating the cost at the supply D− xn:

Un4xn5= −Cn4D− xn50

(Recall that Cn4sn5 = 0 for sn ¶ 0.) The payoff to firms
when they are price anticipating may then be written:

Qn4wn3w−n5

=











































Un

(

wn
∑

mwm

4N − 15D
)

−

(

1 −
1

N − 1

)

wn −h

(

∑

m6=n

wm

)

1 if wn > 03

Un405−h

(

∑

m6=n

wm

)

1 if wn = 01

where hn4W5=W/4N − 15. Note that the last term in the
utility does not depend on firm n’s bid.
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Thus, the game firms play when they are price anticipat-
ing is strategically equivalent to one where firm n submits
a bid wn; receives a share wn/4

∑

mwm5 of the total relief
4N − 15D if wn > 0, and receives zero relief if wn = 0;
and pays 41 − 1/4N − 155wn. This is essentially a pro-
portional allocation mechanism, except that the payment
made is scaled by the constant 1 − 1/4N − 15. Our proof
technique for existence and uniqueness of competitive and
Nash equilibria is therefore essentially equivalent to similar
proofs for the proportional allocation mechanism (such as
those by Hajek and Gopalakrishnan 2002 and Maheswaran
and Basar 2003). Our presentation is most closely related
to Johari and Tsitsiklis (2004), where existence and unique-
ness of Nash equilibria is established via the use of modi-
fied utility functions.

Despite the close connection of our supply function
bidding game and the proportional allocation mecha-
nism, efficiency loss results for the proportional allocation
mechanism from Johari and Tsitsiklis (2004) cannot be
directly translated to efficiency loss analysis of our sup-
ply function bidding game. Note that the utility functions
defined above are negative, whereas positivity is essen-
tial to the efficiency loss analysis by Johari and Tsitsiklis
(2004). A strategically equivalent positive utility function
is Un4xn5 = Cn4D5 − Cn4D − xn5. However, the ratio of
Nash equilibrium aggregate utility to the maximum possi-
ble aggregate utility is not directly related to the ratio of
Nash equilibrium aggregate cost to the minimum possible
aggregate cost. This difference accounts for differing effi-
ciency loss ratios in our subsequent development. Further,
our efficiency loss analysis relies heavily on the specific
form of the modified cost function Ĉn; this function is not
equivalent to the modified utility function used in the proof
of existence and uniqueness of Nash equilibria for the pro-
portional allocation mechanism.

We conclude by discussing a brief example to illus-
trate computation of the equilibrium using Theorem 1. Our
emphasis is on both the level of inefficiency possible at
the equilibrium, as well as the worst-case markup above
the competitive price level that may be observed in equi-
librium; in subsequent sections we study these quantities
analytically.

Example 1. Assume that N firms compete to meet demand
D = 1. We assume that all firms have linear cost functions:
Cn4sn5= �nsn, where �n > 0. In this case, a straightforward
calculation reveals that:

Ĉn4sn5= �nsn

(

1 +
sn

24N − 25

)

0

A key fact we exploit is provided by Step 7 of the proof
of Theorem 1: if s is an optimal solution to (10)–(12),
with Lagrange multiplier � corresponding to the constraint
(11), and we define wn = 4D − sn5� for all n, then w
is a Nash equilibrium of the game with allocation s and
price p4w5= �. Indeed, as seen in Step 8 of the proof of

Theorem 1, if 0 ¶ sn <D for all n, then all Nash equilibria
are obtained in this way.

We first consider a scenario where �n = � > 0 for all
firms n. Using Theorem 1, by symmetry we conclude that
at the Nash equilibrium, all firms n produce the same quan-
tity sn = 1/N ; further, it follows that the Lagrange multi-
plier corresponding to the constraint (11) must be:

�= �

(

1 +
1

N4N − 25

)

0

If we let wn = 41 − sn5�, then w is a Nash equilibrium
with allocation s and price p4w5= �. In particular, observe
in this case that the price markup above the competitive
price is of order 1/N 2; of course, the allocation is efficient
because all firms have the same cost function.

Now suppose that, instead, one firm has cost coefficient
�1 = � > 0, whereas all other firms n > 1 have cost coef-
ficient �n = � > �; thus, firm 1 is a “dominant” firm. We
consider two possibilities: either (1) �¾ �41+1/4N −255,
or (2) �¶ �41 + 1/4N − 255.

In the first case, it follows that the optimal solution to
(10)–(12) has s1 = D, and s21 0 0 0 1 sN = 0. Let � be any
value such that �41 + 1/4N − 255 ¶ � ¶ �. If we define
w1 = 0 and w21 0 0 0 1wN = �D, it can be verified that w is
a Nash equilibrium, and the resulting price is �. Note that
at any equilibrium the allocation is efficient in this case
(as firm 1 produces the entire demand), but the worst-case
price markup above the efficient level is bounded only by
the cost coefficient � of the inefficient firms, and does not
necessarily decrease with N . Nevertheless, the best-case
price markup (1+1/4N −25) approaches unity as N → �.

On the other hand, suppose that �¶ �41 + 1/4N − 255.
Then all firms have sn > 0 in the optimal solution to (10)–
(12). It can be verified that in this case, the Lagrange mul-
tiplier corresponding to constraint (11) is:

�= �

(

1 +
1

N − 2

)(

N − 1
1 + 4N − 15�/�

)

0

Because sn > 0 for all n, it follows from Step 8 of the proof
of Theorem 1 that � is the price in the unique Nash equi-
librium of the game. In particular, observe that the price
markup above the competitive level is of order 1/N in this
case. Finally, it can be shown that in the Nash equilibrium:

s1 = 4N − 152

(

1
1 + 4N − 15�/�

)

−N + 20

In general, therefore, the allocation in this case is inef-
ficient. However, as �/� → 1 + 1/4N − 25, the demand
served by firm 1 approaches unity.

4. Welfare Loss
We let s∗ denote an efficient production vector and let
s denote the production vector at a Nash equilibrium.
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We now ask: what is the welfare loss at the Nash equilib-
rium? To answer this question, we must compare the cost
∑

nCn4sn5 with the cost
∑

nCn4s
∗
n5. (We know, of course,

that
∑

nCn4sn5 ¾
∑

nCn4s
∗
n5 by definition of s∗.) The fol-

lowing theorem provides an explicit bound for the welfare
loss.

Theorem 2. Assume that N > 2, and suppose that
Assumption 1 is satisfied. If s∗ is any efficient production
vector, and s is the production vector at a Nash equilib-
rium, then,

∑

n

Cn4sn5¶
(

1 +
1

N − 2

)

∑

n

Cn4s
∗

n50 (14)

Furthermore, this bound is tight: for every � > 0 and
N > 2, there exists a choice of cost functions Cn, n =

11 0 0 0 1N , such that:

∑

n

Cn4sn5¾
(

1 +
1

N − 2
− �

)

∑

n

Cn4s
∗

n50 (15)

The preceding theorem shows that in the worst case,
aggregate cost rises by no more than a factor 1+1/4N −25
when firms are price anticipating. Furthermore, this bound
is essentially tight. We note that the increase in aggregate
production cost, a factor of 1/4N − 25, approaches zero
as the number of firms N grows large, even though the
firms are price anticipating. This is a form of a competitive
limit theorem (Mas-Colell et al. 1995). Competitive limit
theorems have been extensively studied, especially in the
context of strategic market games (Giraud 2003, Shapley
and Shubik 1977, Dubey and Shubik 1978). However, such
results typically use a replication approach: starting from
K firms, an economy of NK firms is created by replicating
each firm N times. As a result, no single firm can be dom-
inant in the limit. By contrast, our result holds even if only
a small number of firms continue to remain dominant as
N → �; i.e., we do not require any symmetry constraints
on the cost functions of the firms. In general, in an indus-
try with one large firm and many small firms, we do not
expect to achieve full efficiency; nevertheless, the mecha-
nism described in this paper ensures that this is the case.

In Johari and Tsitsiklis (2004), for the proportional allo-
cation of a divisible good among strategic buyers, it is
shown that the worst-case efficiency loss when buyers are
price anticipating is 25% of the maximum possible aggre-
gate utility. The worst-case efficiency loss there is obtained
when one buyer receives a constant fraction of the resource,
and the remainder of the resource is split into vanishingly
small slices among a large collection of buyers. However,
in our setting, the total “relief” available to firms scales as
4N − 15D, and each firm can only obtain a relief at most
equal to D (cf. the discussion in §3). This feature of the
mechanism intuitively limits the efficiency loss one firm
can create, and provides insight into the decay of efficiency
loss to zero as N → �.

5. Price Bounds
In this section we prove two upper bounds on the Nash
equilibrium price; because the demand is fixed and inelas-
tic, these will also be upper bounds on the revenue to the
firms at a Nash equilibrium. We restrict attention to settings
where at least two firms are active at the Nash equilibrium;
by Corollary 1, this is guaranteed if any efficient allocation
calls for at least two active producers.

The following theorem compares the price at a Nash
equilibrium to the price at a competitive equilibrium.

Theorem 3. Assume that N > 2, and suppose that
Assumption 1 is satisfied. Suppose that w ¾ 0 is a Nash
equilibrium of the game defined by 4Q11 0 0 0 1QN 5 such that
S4p4w51wn5 > 0 and S4p4w51wm5 > 0 for at least two
firms m1n, m 6= n. Let w∗ and �∗ denote a competitive
equilibrium: Then,

p4w5¶
(

1 +
1

N − 2

)

�∗0

The preceding theorem shows that the Nash equilibrium
price is no more than a factor 1 + 1/4N − 25 above the
competitive price level. Note that because the total payment
to the firms is p4w5D at the Nash equilibrium, and �∗D at
the competitive equilibrium, the same bound holds for the
total payment made to the firms.

We can use a similar approach to bound the Lerner index,
which we define as follows at a strategy vector w:

L4w5= max
r

[

p4w5− ¡C+
r 4S4p4w51wr55/¡sr
p4w5

]

0

(We have chosen to define the Lerner index using the right
directional derivative of the cost; of course, if the cost
functions are differentiable, this choice is inconsequential.)
The Lerner index is commonly used to measure the price
markup above competitive levels in oligopolies. We bound
the index in the following corollary.

Corollary 2. Assume that N > 2, and suppose that
Assumption 1 is satisfied. Suppose that w is a Nash equi-
librium w ¾ 0 of the game defined by 4Q11 0 0 0 1QN 5 such
that S4p4w51wn5 > 0 and S4p4w51wm5 > 0 for at least two
firms m1n, m 6= n. Then,

L4w5¶ 1
N − 1

0

The bounds of this section, together with the welfare loss
bounds of the previous section, strongly characterize the
performance of the mechanism we have proposed. We note
that as in the comment at the end of the preceding section,
our bounds on prices show convergence to the competi-
tive price level as the number of firms approaches infinity.
This limit holds even in the absence of symmetry between
the firms.
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6. A Characterization Theorem
In this section, we provide a positive characterization of the
market mechanism studied in this paper. Our presentation is
inspired by a related result derived for a mechanism where
consumers submit demand functions to a market that allo-
cates a resource with inelastic supply, as reported in Johari
and Tsitsiklis (2009). In that paper, we showed that among
all mechanisms satisfying certain reasonable assumptions,
the bidding mechanism considered minimizes the worst-
case efficiency loss at a Nash equilibrium. In this paper, we
present a corresponding result that demonstrates that within
a reasonable class of market mechanisms that use parame-
terized supply functions, the one studied in this paper yields
the lowest-possible worst-case welfare loss at Nash equi-
librium. Because the argument is closely related to that
in Johari and Tsitsiklis (2009), we omit the details of the
proof; they can be found in Johari (2004). Nevertheless, as
we describe below, this characterization result differs from
the result obtained in Johari and Tsitsiklis (2009).

For the purposes of this section, we let C denote the set
of all cost functions that satisfy Assumption 1; i.e.,

C=
{

C2 �→�+
� C is continuous on �1

strictly increasing, and convex on �+1 (16)
and C4s5= 0 for s ¶ 090

We begin by defining the class of market mechanisms we
will study in this section.

Definition 1. Given D > 0 and N > 1, the class
S4D1N5 consists of all differentiable functions S2 401�5×
601�5→� such that:

1. For all nonzero w ∈ 4�+5N , there exists a unique
market-clearing price, i.e., a unique solution p > 0 to the
following equation:

N
∑

n=1

S4p1wn5=D0

We let pS4w5 denote this solution.
2. For all C ∈ C, a firm’s payoff is concave if the firm

is price taking; that is, for all p > 0 the function

w 7→ pS4p1w5−C4S4p1w55

is concave for w¾ 0.
3. For all Cn ∈C, a firm’s payoff is concave if the firm

is price anticipating; that is, for all w−n ∈ 4�+5N−1, the
function

wn 7→ pS4w5S4pS4w51wn5−Cn4S4pS4w51wn55

is concave in wn > 0 if w−n = 0, and concave in wn ¾ 0 if
w−n 6= 0.

4. The function S is uniformly less than or equal to D;
i.e., for all p > 0 and w¾ 0, S4p1w5¶D.

5. The function S4p1 ·5 has range containing 601D7; i.e.,
for all p > 0 and for all x ∈ 601D7, there exists a w ¾ 0
such that S4p1w5= x.

Given any S ∈S4D1N5, we interpret the resulting mar-
ket mechanism as follows: each firm n chooses a parame-
ter wn, thus specifying a supply function S4 · 1wn5, and the
market clears according to pS4w5. This determines the pro-
duction, and hence the profit, of each firm—just as for the
mechanism developed in §3.

We now briefly discuss each of the assumptions in Defi-
nition 1. The first assumption ensures that a unique market-
clearing price exists; without this assumption, firms may
not have a unique prediction of the market outcome given
a strategic decision they make. The second and third con-
ditions ease characterization of equilibria in terms of only
first-order conditions. The second condition allows us to
characterize competitive equilibria in terms of only first-
order conditions, as in the proof of Theorem EC.1. The
third condition allows us to characterize Nash equilibria in
terms of only first-order conditions, a property we exploited
in the proof of Theorem 1; indeed, at least quasiconcav-
ity is generally used to guarantee existence of pure-strategy
Nash equilibria in games with continuous action spaces
(Fudenberg and Tirole 1991). The fourth condition forces
the declared supply to be no larger than D; this is a reason-
able assumption when demand is deterministically known
in advance, as we have assumed. Finally, the fifth condition
is a “full range” assumption: it ensures that firms always
have a strategic choice available to declare any supply
between 601D7, given the eventual market-clearing price p.
This condition would be necessary to ensure that welfare
maximization is possible; otherwise, for some choices of
cost functions, no choice of w could achieve the efficient
outcome.

This class of market mechanisms generalizes the sup-
ply function interpretation of the mechanism discussed in
§3. According to (4), each firm submits a supply function
of the form S4p1w5 = D − w/p, and the resource man-
ager chooses a price pS4w5 to ensure that

∑N
n=1 S4p1wn5=

D. Thus, for this mechanism we have pS4w5 =
∑N

n=1 wn/
44N −15D5 if w 6= 0. Another possible mechanism is given
by S4p1w5=D−w/

√
p; it is straightforward to verify that

pS4w5= 6
∑N

n=1 wn/44N − 15D572 if w 6= 0.
Our interest is in the worst-case ratio (over C11 0 0 0 1

CN ∈C) of aggregate cost at any Nash equilibrium to min-
imal aggregate cost, defined as the solution to (1)–(3). For-
mally, for S ∈S4D1N5 we define a constant �4D1N 1S5 as
follows:

�4D1N 1S5

= sup

{

∑N
n=1 Cn4S4pS4w51wn55

∑N
n=1 Cn4sn5

∣

∣

∣

∣

Ci ∈C for all i1

s solves (1)–(3)1 and w is a Nash equilibrium

}

0
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Note that because any cost function satisfying Assump-
tion 1 is strictly increasing and nonnegative, and D > 0,
∑N

n=1 Cn4sn5 is strictly positive at any optimal solution s
to (1)–(3). However, Nash equilibria may not exist for
some cost function choices C11 0 0 0 1CN ; in this case we set
�4D1N 1S5 = �. We have the following theorem; as dis-
cussed above, the proof is related to that for Theorem 1 in
Johari and Tsitsiklis (2009), and full details of the argument
can be found in Johari (2004), Chapter 5, Theorem 5.9.

Theorem 4. Assume D > 0 and N > 1. Fix S ∈S4D1N5.
Then:

1. For any choice C11 0 0 0 1CN ∈C, there exists a compet-
itive equilibrium, and the resulting production vector solves
(1)–(3) (i.e., it is efficient).

2. �4D121 S5= �.
3. If N > 2, then there exists a concave, strictly increas-

ing, differentiable, and invertible function B2 401�5 →

401�5 such that for all p > 0 and w¾ 0,

S4p1w5=D−
w

B4p5
0

4. For N > 2, �4D1N 1S5 ¾ 1 + 1/4N − 25, and this
bound is met with equality if and only if S4p1w5 = D −

ãw/p for some ã> 0.

We now briefly comment on the relationship between
this result and the result obtained in Johari and Tsitsiklis
(2009), where the authors consider the allocation of a divis-
ible good among strategic buyers. It is shown that the
proportional allocation mechanism (cf. §3) minimizes the
worst-case efficiency loss when users are price anticipat-
ing, among all market-clearing mechanisms satisfying a set
of conditions similar (though weaker) than those in Def-
inition 1. In some sense, that theorem obtains a slightly
stronger result than our result in this paper: in particular,
Johari and Tsitsiklis (2009) obtain an explicit characteri-
zation of all mechanisms in the class they study; in part,
this is due to the fact that they study mechanisms that are
well defined for any quantity of resource and number of
users. By contrast, in our setting the mechanisms we con-
sider explicitly depend on the amount of resource available.
Further, because our efficiency loss result in Theorem 2
depends explicitly on the number of firms, we consider a
class of mechanisms in Definition 1 where the number of
firms is fixed. Both of these features require a slightly dif-
ferent argument than that in Johari and Tsitsiklis (2009),
although of course the results share a common heritage.

The preceding theorem establishes that, at least within
the class S4D1N5, the choice S4p1w5=D−w/p that we
have studied in this paper is in some sense “optimal:” it
minimizes the worst-case welfare loss over all mechanisms
in S4D1N5. Note that in the third result of the theorem,
we find that all mechanisms in S4D1N5 are actually inde-
pendent of N . Thus, our chosen mechanism from (4) is
actually worst-case optimal for any number of firms N .

This result has two major caveats. First, there are strong
concavity restrictions imposed for mathematical tractabil-
ity; removing these remains a direction for future research.
Second, and perhaps more undesirable from a practical
standpoint, is the eventual deduction that any mechanism
in S4D1N5 has the possibility of “negative supply” out of
equilibrium—i.e., a firm being asked to purchase the good
rather than to supply it. (This follows from the character-
ization in part 3 of the theorem.) We address this issue in
the following section.

7. Negative Supply
One undesirable feature of the parameterized supply func-
tions we have chosen is that they allow for nonequilibrium
outcomes in which a firm may have a negative supply.
Although we have shown that the supply of each firm is
nonnegative at both the competitive equilibrium and at the
Nash equilibrium, nonequilibrium bidding may lead to neg-
ative supply to some firms. In practical terms, this implies
that firms may be asked to buy the good when the market
clears, even if they have no intention or ability to do so.

A natural question, therefore, is whether a reasonable
parametric class of supply functions can be designed with
properties similar to those we have already proven, but
where the supply functions are uniformly nonnegative. Our
first result, in §7.1, will demonstrate this is not possible in
general. However, if we enforce a finite “maximum liabil-
ity” for each firm, then we can use the same mechanism as
that described earlier in the paper to achieve good market
performance; we discuss such an approach in §7.2.

7.1. Nonnegative Parameterized Supply Functions

In this section, we will consider parameterized supply func-
tions S that are uniformly nonnegative, and for which the
payoffs to market participants are concave when they are
price anticipating. These are formalized in the following
definition; recall the definition of C in (16).

Definition 2. Given D>0 and N>0, the class S+4D1N5
consists of all differentiable functions S: 401�5 × 601�5
→� such that:

1. For all nonzero w ∈ 4�+5N , there exists a unique solu-
tion p > 0 to the following equation:

N
∑

n=1

S4p1wn5=D0

We let pS4w5 denote this solution.
2. For all p > 0 and all w¾ 0, S4p1w5¾ 0.
3. For all Cn ∈C, a firm’s payoff is concave if the firm

is price anticipating; that is, for all w−n ∈ 4�+5N−1, the
function:

wn 7→ pS4w5S4pS4w51wn5−Cn4S4pS4w51wn55

is concave in wn > 0 if w−n = 0, and concave in wn ¾ 0 if
w−n 6= 0.



Johari and Tsitsiklis: Parameterized Supply Function Bidding
1088 Operations Research 59(5), pp. 1079–1089, © 2011 INFORMS

Note that Condition 1 in the preceding definition is iden-
tical to Condition 1 in Definition 1, and Condition 2 in the
preceding definition is identical to Condition 3 in Defini-
tion 1. The key difference is that in addition to these two
conditions, we only have one simple constraint: the param-
eterized supply functions must be nonnegative. We have the
following result.

Proposition 1. Fix N > 0 and D> 0. Let S ∈S+4D1N5.
Let C = 4C11 0 0 0 1CN 5, and C̄ = 4C̄11 0 0 0 1 C̄N 5 be two col-
lections of cost functions such that Cn1 C̄n ∈C for all n. If
w is a Nash equilibrium when the firms have costs given
by C, then w is also a Nash equilibrium when the firms
have costs given by C̄.

The preceding result is disconcerting: clearly, any mech-
anism satisfying the conditions of the proposition can have
arbitrarily high welfare loss, as well as an arbitrarily high
markup above the competitive price, when firms are price
anticipating. In the next section, we consider an alternate
method by which we can address the problem of negative
supply.

7.2. Maximum Liability

In this section we consider a simple modification to the
basic model that protects firms from large payments due
to having to buy some of the product (i.e., if they have
negative supply) at a nonequilibrium outcome.

We continue to assume that S4p1wn5 and the market-
clearing price p4w5 are defined as before, i.e., S4p1wn5 =

D−wn/p. We fix a maximum liability W > 0, such that no
firm will ever have to pay more than W when the market
is cleared. Thus, if p4w5S4p4w1wn5 < −W , then firm n
only pays W to the market manager. Formally, the payoff
of firm n now becomes:

Q̄n4wn3w−n5= max8−W1p4w5S4p4w51wn59

−Cn4S4p4w51wn550 (17)

One interpretation of this game is as follows. Each firm
submits a “deposit” of W to the market manager. The game
is then played as before, and the market manager clears the
market. At the resulting allocation, any required payment
higher than W by a firm is forgiven.

We have the following proposition.

Proposition 2. Assume that N > 2 and W > 0. Suppose
also that Assumption 1 is satisfied. Then w is a Nash
equilibrium of the game defined by 4Q11 0 0 0 1QN 5 if and
only if w is a Nash equilibrium of the game defined by
4Q̄11 0 0 0 1 Q̄N 5.

While this extension to the game is appealing from a
market implementation point of view, we must be care-
ful in interpreting the preceding result. Suppose that w
is a strategy vector where p4w5S4p4w51wn5 < −W ; in
particular, S4p4w51wn5 < 0. In this case we will have
∑

m 6=n S4p4w51wm5 > D—that is, the remaining firms will

be producing excess supply. In an economy with free dis-
posal, this does not pose any problem, but if free disposal
fails, then the market mechanism is problematic.2 Further-
more, we note that if the maximum liability rule is imple-
mented, then the market operator effectively subsidizes the
misalignment of supply and demand; the total payment
received from the demand side of the market is insufficient
to compensate those suppliers that deliver positive supply.
In general, then, addressing the possibility of negative sup-
ply when w is out of equilibrium remains an important
implementation-dependent issue.

8. Conclusion
We have considered a resource allocation problem where
multiple suppliers compete to meet an inelastic demand.
We present a novel investigation of a fundamental issue in
mechanism design: how much strategic flexibility should
players be given to ensure successful market performance?
In our model, we restrict attention to uniform price market-
clearing mechanisms. We demonstrate in this paper that by
using a properly chosen class of supply functions param-
eterized by a single scalar, both high efficiency and low
price markups can be guaranteed.

In addition to the analysis carried out here, we have
extended the model and market mechanism to include the
possibility that demand may be stochastic. Due to space
constraints, we have deferred discussion of this extension
to §EC.2 in the e-companion. We demonstrate there that
the welfare loss result of §4 carries over even to a setting
where demand is inelastic but stochastically determined, by
showing that in such an instance it is as if firms play a game
with deterministic demand but different cost functions.

9. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes
1. Indeed, as Joskow (2001) notes, this behavior was
observed quite forcefully in the California electricity mar-
kets during the crisis in 2000.
2. In the context of electricity markets, such a situation
indicates a misalignment of supply and demand, and can
induce instability in the power grid. If this situation arises
in the day-ahead market, then in principle supply and
demand might be properly aligned using the real-time mar-
kets prior to actual delivery; in practice, however, electricity
markets never force generators to serve as power sinks.
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