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On Krause’s Multi-Agent Consensus Model
With State-Dependent Connectivity
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Abstract—We study a model of opinion dynamics introduced by
Krause: each agent has an opinion represented by a real number,
and updates its opinion by averaging all agent opinions that differ
from its own by less than one. We give a new proof of convergence
into clusters of agents, with all agents in the same cluster holding
the same opinion. We then introduce a particular notion of equi-
librium stability and provide lower bounds on the inter-cluster dis-
tances at a stable equilibrium. To better understand the behavior
of the system when the number of agents is large, we also introduce
and study a variant involving a continuum of agents, obtaining
partial convergence results and lower bounds on inter-cluster dis-
tances, under some mild assumptions.

Index Terms—Consensus, decentralized control, multi-agent
system, opinion dynamics.

I. INTRODUCTION

T HERE has been an increasing interest in recent years in
the study of multi-agent systems where agents interact

according to simple local rules, resulting in a possibly coordi-
nated global behavior. In a prominent paradigm dating back to
[11] and [29], each agent maintains a value which it updates
by taking a linear, and usually convex combination of other
agents’ values; see e.g., [5], [17], [18], [26], [29], and [27],
[28] for surveys. The interactions between agents are generally
not all-to-all, but are described by an interconnection topology.
In some applications, this topology is fixed, but several studies
consider the more intriguing case of changing topologies. For
example, in Vicsek’s swarming model [31], animals are mod-
eled as agents that move on the two-dimensional plane. All
agents have the same speed but possibly different headings,
and at each time-step they update their headings by averaging
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the headings of those agents that are sufficiently close to them.
When the topology depends on the combination of the agent
states, as in Vicsek’s model, an analysis that takes this depen-
dence into account can be difficult. For this reason, the sequence
of topologies is often treated as exogenous (see e.g., [4], [18],
[26]), with a few notable exceptions [8], [9], [19]. For instance,
the authors of [8] consider a variation of the model studied in
[18], in which communications are all-to-all, but with the rela-
tive importance given by one agent to another weighted by the
distance separating the agents. They provide conditions under
which the agent headings converge to a common value and the
distance between any two agents converges to a constant. The
same authors relax the all-to-all assumption in [9], and study
communications restricted to arbitrarily changing but connected
topologies.

We consider here a simple discrete-time system involving en-
dogenously changing topologies, and analyze it while taking
explicitly into account the dependence of the topology on the
system state. The discrete-agent model is as follows. There are

agents, and every agent , maintains a real
value . These values are synchronously updated according to

(1)

Two agents , for which are said to be
neighbors or connected (at time ). Note that with this definition,
an agent is always its own neighbor. Thus, in this model, each
agent updates its value by computing the average of the values of
its neighbors. In the sequel, we usually refer to the agent values
as “opinions,” and sometimes as “positions.”

The model (1) was introduced by Krause [20] to capture the
dynamics of opinion formation. Values represent opinions on
some subject, and an agent considers another agent as “ reason-
able” if their opinions differ by less than 11. Each agent thus
updates its opinion by computing the average of the opinions it
finds “ reasonable”. This system is also sometimes referred to
as the Hegselmann-Krause model, following [15]. It has been
abundantly studied in the literature [20], [21], [23], [24], and dis-
plays some peculiar properties that have remained unexplained.
For example, it has been experimentally observed that opinions
initially uniformly distributed on an interval tend to converge
to clusters of opinions separated by a distance slightly larger
than 2, as shown in Fig. 1. In contrast, presently available results
can only prove convergence to clusters separated by at least 1.

1In Krause’s initial formulation, all opinions belong to , and an agent
considers another one as reasonable if their opinions differ by less than a pre-
defined parameter .
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Fig. 1. Time evolution of 1000 agent opinions, according to the model (1).
Initial opinions are either uniformly spaced (case (a)) or chosen at random (case
(b)), on an interval of length 10. In both cases, opinions converge to limiting
values (“clusters”) that are separated from each other by much more than the
interaction radius, which was set to 1.

An explanation of the inter-cluster distances observed for this
system, or a proof of a nontrivial lower bound is not available.

Inter-cluster distances larger than the interaction radius
(which in our case was set to 1) have also been observed
by Deffuant et al. [10] for a related stochastic model, often
referred to as the Deffuant-Weisbuch model. In that model,
two randomly selected agents update their opinions at any
given time step. If their opinions differ by more than a certain
threshold, their opinions remain unchanged; otherwise, each
agent moves to a new opinion which is a weighted average
of its previous opinion and that of the other agent. Thus, the
Krause and Deffuant-Weisbuch models rely on the same idea of
bounded confidence, but differ because one is stochastic while
the other is deterministic. Besides, Krause’s model involves
simultaneous interactions between potentially all agents, while
the interactions in the Deffuant-Weisbuch model are pairwise.
Despite these differences, the behavior of these two systems
is similar, including inter-cluster distances significantly larger
than the interaction radius. The behavior of the Deffuant-We-
sibuch model—and in particular the final positions of the
clusters—has also been studied by considering a continuous
density approximating the discrete distribution of agents, and
examining the partial differential equation describing the evo-
lution of this density [2], [3]. Other models, involving either
discrete or continuous time, and finitely or infinitely many
agents, have also been proposed [1], [13], [30]. For a survey,
see for example [25].

The model that we consider also has similarities with certain
rendezvous algorithms (see, e.g., [22]) in which the objective is
to have all agents meet at a single point. Agents are considered
neighbors if their positions are within a given radius . The
update rules satisfy two conditions. First, when an agent moves,
its new position is a convex combination of its previous position
and the positions of its neighbors. Second, if two agents are
neighbors, they remain neighbors after updating their positions.
This ensures that an initially connected set of agents is never
split into smaller groups, so that all agents can indeed converge
to the same point.

In this paper, we start with a simple convergence proof for the
model (1). We then introduce a particular notion of equilibrium
stability, involving a robustness requirement when an equilib-
rium is perturbed by introducing an additional agent, and prove
that an equilibrium is stable if and only if all inter-cluster dis-
tances are above a certain nontrivial lower bound. We observe

experimentally that the probability of converging to a stable
equilibrium increases with the number of agents. To better un-
derstand the case of a large numbers of agents, we introduce and
study a variation of the model, which involves a continuum of
agents (the “continuous-agent” model). We give partial conver-
gence results and provide a lower bound on the inter-cluster dis-
tances at equilibrium, under some regularity assumptions. We
also show that for a large number of discrete agents, the be-
havior of the discrete-agent model indeed approximates the con-
tinuous-agent model.

Our continuous-agent model, first introduced in [6], is ob-
tained by indexing the agents by a real number instead of an
integer. It is equivalent to the so-called “ discrete-time density
based Hegselmann-Krause model” proposed independently in
[25], which is in turn similar to a model presented in [13] in
a continuous-time setup. Furthermore, our model can also be
viewed as the limit, as the number of discrete opinions tends to
infinity, of the “ interactive Markov chain model” introduced by
Lorenz [24]; in the latter model, there is a continuous distribu-
tion of agents, but the opinions take values in a discrete set.

We provide an analysis of the discrete-agent model (1) in Sec-
tion II. We then consider the continuous-agent model in Sec-
tion III. We study the relation between these two models in Sec-
tion IV, and we end with concluding remarks and open ques-
tions, in Section V.

II. THE DISCRETE-AGENT MODEL

A. Basic Properties and Convergence

We begin with a presentation of certain basic properties of
the discrete-agent model (1), most of which have already been
proved in [15], [21], [23].

Proposition 1 (Lemma 2 in [21]): Let be a sequence of
vectors in evolving according to (1). The order of opinions
is preserved: if , then for all .

Proof: We use induction. Suppose that . Let
be the set of agents connected to and not to , the

set of agents connected to and not to , and the set of
agents connected to both and , at time . We assume here that
these sets are nonempty, but our argument can easily be adapted
if some of them are empty. For any , ,
and , we have . Therefore,

, where , respectively, is the
average of for in the corresponding set. It follows from
(1) that

where we use to denote the cardinality of a set .
In light of this result, we will assume in the sequel, without

loss of generality, that the initial opinions are sorted: if
then . The next Proposition follows immediately
from the definition of the model.

Proposition 2: Let be a sequence of vectors in
evolving according to (1), and such that is sorted, i.e., if
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, then . The smallest opinion is nonde-
creasing with time, and the largest opinion is nonincreasing
with time. Moreover, if at some time the distance between two
consecutive agent opinions and is larger than or
equal to 1 it remains so for all subsequent times , so that
the system can then be decomposed into two independent sub-
systems containing the agents , and , respec-
tively.

Note that unlike other related models as the Deffuant-Weis-
busch model [10] or the continuous-time model in [16], the av-
erage of the opinions is not necessarily preserved, and the “ vari-
ance” (sum of squared differences from the average) may occa-
sionally increase. See [16] for examples with three and eight
agents respectively. The convergence of (1) has already been
established in the literature (see [12], [23]), and is also easily
deduced from the convergence results for the case of exoge-
nously determined connectivity sequences (see e.g., [5], [17],
[23], [26]), an approach that extends to the case of higher-di-
mensional opinions. We present here a simple alternative proof,
which exploits the particular dynamics we are dealing with.

Theorem 1: If evolves according to (1), then for every
, converges to a limit in finite time. Moreover, for any

, we have either or .
Proof: Since is assumed to be sorted, the opinion

is nondecreasing and bounded above by . As a result, it
converges to a value . Let be the highest index for which
converges to .

We claim that if , there is a time such that
. Suppose, to obtain a contradiction, that the claim

does not hold, i.e., that is always smaller than
1. Fix some and a time after which the distance of from

, for , is less than . Since does not converge
to , there is a further time at which is larger than
for some . For such a time , is at least

which is larger than if is chosen sufficiently small.
This however contradicts the requirement that remain within

from . This contradiction shows that there exists a time at
which . Subsequent to that time, using also
Proposition 2, cannot increase and cannot decrease, so
that the inequality continues to hold forever.
In particular, agents will no more interact with the re-
maining agents. Thus, if , there will be some finite time
after which the agents behave as an independent
system, to which we can apply the same argument. Continuing
recursively, this establishes the convergence of all opinions to
limiting values that are separated by at least 1.

It remains to prove that convergence takes place in finite time.
Consider the set of agents converging to a particular limiting
value. It follows from the argument above that there is a time
after which none of them is connected to any agent outside that
set. Moreover, since they converge to a common value, they
eventually get sufficiently close so that they are all connected
to each other. When this happens, they all compute the same
average, reach the same opinion at the next time step, and keep

this opinion for all subsequent times. Thus, they converge in fi-
nite time. Finite time convergence for the entire systems follows
because the number of agents is finite.

We will refer to the limiting values to which opinions con-
verge as clusters. With some abuse of terminology, we will also
refer to a set of agents whose opinions converge to a common
value as a cluster.

It can be shown that the convergence time is bounded above
by some constant that depends only on . On the other
hand, an upper bound that is independent of is not possible,
even if all agent opinions lie in the interval for a fixed .
To see this, consider agents, with odd, one agent initially
placed at 1, and agents initially placed at 0.1 and
1.9. All agents will converge to a single cluster at 1, but the
convergence time increases to infinity as grows.

We note that the convergence result in Theorem 1 does
not hold if we consider the same model but with a countable
number of agents. Indeed, consider a countably infinite number
of agents, all with positive initial opinions. Let be the
number of agents having an initial opinion . Suppose that

, and consider an initial condition for which
, ,

for every integer , and for every other value of
. Then, the update rule (1) implies that ,

for every agent and time , and convergence fails to hold. A
countable number of agents also admits equilibria where the
limiting values are separated by less than 1. An example of
such an equilibrium is obtained by considering one agent at
every integer multiple of 1/2.

We also note that equilibria in which clusters are separated
by less than 1 become possible when opinions are elements
of a manifold, instead of the real line. For example, suppose
that opinions belong to (identified with elements of the
unit circle), and that two agents are neighbors if and only if

. If every agent updates its angle by
moving to the average of its neighbors’ angles, it can be seen that
an initial configuration with agents located at angles ,

, is an equilibrium. Moreover, more complex
equilibria also exist. Convergence has been experimentally ob-
served for models of this type, but no proof is available.

B. Experimental Observations

Theorem 1 states that opinions converge to clusters separated
by at least 1. Since the smallest and largest opinions are non-
decreasing and nonincreasing, respectively, it follows that opin-
ions initially confined to an interval of length can converge
to at most clusters. It has however been observed in
the literature that the distances between clusters are usually sig-
nificantly larger than 1 (see [21], [24], and Fig. 1), resulting in
a number of clusters that is significantly smaller than the upper
bound of . To further study this phenomenon, we analyze
below different experimental results, similar to those in [24].

Fig. 2 shows the dependence on of the cluster number and
positions, for the case of a large number of agents and initial
opinions that are uniformly spaced on an interval of length .
Such incremental analyses also appear in the literature for var-
ious similar systems [2], [14], [24], [25]. We see that the cluster
positions tend to change with in a piecewise continuous (and
sometimes linear) manner. The discontinuities correspond to the
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Fig. 2. Locations of the different clusters at equilibrium, as a function of ,
for agents whose initial opinions are uniformly spaced on , repre-
sented in terms of their distance from . The dashed lines correspond to the
endpoints 0 and of the initial opinion distribution. Similar results are obtained
if the initial opinions are chosen at random, with a uniform distribution.

emergence of new clusters, or to the splitting of a cluster into
two smaller ones. The number of clusters tends to increase lin-
early with , with a coefficient slightly smaller than 1/2, corre-
sponding to an inter-cluster distance slightly larger than 2. Note
however that this evolution is more complex than it may ap-
pear: Irregularities in the distance between clusters and in their
weights can be observed for growing , as already noted in [24].
Besides, for larger scale simulations , a
small proportion of clusters take much larger or much smaller
weights than the others, and some inter-cluster distances are as
large as 4 or as small as 1.5. These irregularities could be in-
herent to the model, but may also be the result of the particular
discretization chosen or of the accumulation of numerical errors
in a discontinuous system.

Because no nontrivial lower bound is available to explain the
observed inter-cluster distances in Krause’s model, we start with
three observations that can lead to some partial understanding.
In fact, the last observation will lead us to a formal stability
analysis, to be developed in the next subsection.

a) We observe from Fig. 2 that the minimal value of that
leads to multiple clusters is approximately 5.1, while
Theorem 1 only requires that this value be at least 1.
This motivates us to address the question of whether a
more accurate bound can be derived analytically. Sup-
pose that there is an odd number of agents whose initial
opinions are uniformly spaced on . An explicit
calculation shows that all opinions belong to an interval

after one iteration, and
to an interval
after two iterations. Furthermore, by Proposition 2,
all opinions must subsequently remain inside these
intervals. On the other hand, note that with an odd
number of agents, there is one agent that always stays
at . Thus, if all opinions eventually enter the in-
terval , then there can only be a
single cluster. This implies that there will be a single
cluster if , that is, if

. This bound is smaller than
the experimentally observed value of about 5.1. It can be

further improved by carrying out explicit calculations of
the smallest position after a further number of iterations.
Also, as long as the number of agents is sufficiently large,
a similar analysis is possible if the number of agents is
even, or in the presence of random initial opinions.

b) When is sufficiently large, Fig. 2 shows that the position
of the leftmost clusters becomes independent of . This
can be explained by analyzing the propagation of informa-
tion: at each iteration, an agent is only influenced by those
opinions within distance 1 of its own, and its opinion is
modified by less than 1. So, information is propagated by
at most a distance 2 at every iteration. For the case of uni-
formly spaced initial opinions on , with large, the
agents with initial opinions close to 0 behave, at least in
the first iterations, as if opinions were initially distributed
uniformly on . Moreover, once a group of opin-
ions is separated from other opinions by more than 1, this
group becomes decoupled. Therefore, if the agents with
initial opinions close to 0 become separated from the re-
maining agents in finite time, their evolution under a uni-
form initial distribution on for a sufficiently large
is the same as in the case of a uniform initial distribution
on .
We performed simulations with initial opinions uniformly
spaced on , as in [24]. We found that every agent
eventually becomes connected with a finite number of
agents and disconnected from the remaining agents. The
groups formed then behave independently and converge
to clusters. As shown in Fig. 3, the distances between two
consecutive clusters are close to 2.2. These distances par-
tially explain the evolution of the number of clusters (as
a function of ) shown in Fig. 2. However, a proof of
these observed properties is not available, and it is un-
clear whether the successive inter-cluster distances pos-
sess some regularity or convergence properties.

c) A last observation that leads to a better understanding of
the size of the inter-cluster distances is the following. Sup-
pose that is just below the value at which two clusters
are formed, and note the special nature of the resulting
evolution, shown in Fig. 4. The system first converges
to a “meta-stable state” in which there are two groups,
separated by a distance slightly larger than 1, and which
therefore do not interact directly with each other. The
two groups are however slowly attracted by some iso-
lated agents located in between; furthermore, these iso-
lated agents are being pulled by both of these groups and
remain at the weighted average of the opinions in the two
groups. Eventually, the distance between the two groups
becomes smaller than 1, the two groups start attracting
each other directly, and merge into a single cluster. (This
corresponds to one of the slow convergence phenomena
observed in [24].) The initial convergence towards a two-
cluster equilibrium is thus made impossible by the pres-
ence of a few agents in between. Moreover, the number of
these isolated agents required to destabilize a meta-stable
state can be arbitrarily small compared to the number of
agents in the two groups. On the other hand, this phenom-
enon will not arise if the two clusters are separated by
a sufficiently large distance. For example, if the distance
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Fig. 3. Time evolution when the initial opinions are uniformly spaced on a
semi-infinite interval, with a density of 100 per unit length. Groups of agents
become separated from the remaining agents, and converge to clusters separated
by approximately 2.2.

Fig. 4. Example of a temporary “meta-stable” state. Initially, two groups are
formed that do not interact with each other, but they both interact with a small
number of agents lying in between. As a result, the distance separating the two
groups decreases slowly and eventually becomes smaller than 1. At that point,
the groups attract each other directly and merge into a single cluster.

between the two groups is more than 2, no agent can be
simultaneously connected to both groups. This suggests
that, depending on the distance between clusters, some
equilibria are stable with respect to the presence of a small
number of additional agents, while some are not.

C. Stability With Respect to a Perturbing Agent

In this section, we introduce a notion of equilibrium stability,
motivated by the last observation in the preceding subsection.
We first generalize the model (1), so that each agent has an

associated weight and updates its opinion according to the
weighted discrete-agent model

(2)

It can be verified that the convergence results in Theorem 1 and
the properties proved in Propositions 1 and 2 continue to hold.
We will use the term weight of a cluster to refer to the sum of
the weights of all agents in the cluster. Observe that if a number

of agents in system (1) have the same position, they behave
as a single agent with weight in the model (2). This corre-
spondence can also be reversed, so that (2) can be viewed as a
special case of (1), whenever the weights are integer, or more
generally, rational numbers.

Let be a vector of agent opinions at equilibrium. Suppose
that we add a perturbing agent indexed by 0, with weight and
initial opinion , that we let the system evolve again, until it
converges to a new, perturbed equilibrium, and then remove the
perturbing agent. The opinion vector so obtained is again
an equilibrium. We define , which is
a measure of the distance between the original and perturbed
equilibria. We say that is stable if , the supremum
of distances between initial and perturbed equilibria caused by
a perturbing agent of given weight , converges to zero as
vanishes. Equivalently, an equilibrium is unstable if a substantial
change in the equilibrium can be induced by a perturbing agent
of arbitrarily small weight.

Theorem 2: An equilibrium is stable if and only if for
any two clusters and with weights and , re-
spectively, the following holds: either and
the inter-cluster distance is greater than or equal to 2; or

and the inter-cluster distance is strictly greater
than . (Note that the two
cases are consistent, except that the second involves a strict
inequality.)

Proof: We start with an interpretation of the strict
inequality in the statement of the theorem. Consider
two clusters and , at positions and , and let

, which is their center of
mass. Then, an easy calculation shows that

(3)

Suppose that an equilibrium satisfies the conditions in the
theorem. We will show that is stable. Let us insert a per-
turbing agent of weight . Note that since is an equilibrium,
and therefore the clusters are at least 1 apart, the perturbing
agent is connected to at most two clusters. If this agent is dis-
connected from all clusters, it has no influence, and .
If it is connected to exactly one cluster , with position and
weight , the system reaches a new equilibrium after one time
step, where both the perturbing agent and the cluster have an
opinion . Then
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which converges to 0 as . Suppose finally that the per-
turbing agent is connected to two clusters . This implies
that the distance between these two clusters is less than 2, and
since satisfies the conditions in the theorem, it must be
greater than . Therefore,
using (3), the distance of one these clusters from their center
of mass is greater than 1. The opinion of the perturbed
agent after one iteration is within from , while the
two clusters only move by an amount. Since the original
distance between one of the two clusters and is greater than
1, it follows that after one iteration, and when is sufficiently
small, the distance of the perturbing agent from one of the
clusters is greater than 1, which brings us back to the case
considered earlier, and again implies that converges to
zero as decreases.

To prove the converse, we now suppose that the distance be-
tween two clusters and , at positions and , is less than
2, and also less than . As-
suming without loss of generality that , their center of
mass is in the interval . Let us fix an
such that . Suppose that
at some time after the introduction of the perturbing agent we
have

(4)

with , where , , , and
represent the positions at time of the perturbing agent, of the
clusters A and B, and of their center of mass, respectively. One
can easily verify that ,
and , so that

, and

Moreover, observe that if were 0, we would have
. For , is close to , and we have

. Since

we obtain , and therefore
, as long as is sufficiently small

with respect to .
We have shown that if is chosen so that the

condition (4) is satisfied for , and if is sufficiently
small, the condition (4) remains satisfied as long as

. The perturbing agent remains thus close to the
center of mass, attracting both clusters, until at some time
we have . The two clusters then merge
at the next time step. The result of this process is independent
of the weight of the perturbing agent, which proves that
is not stable. Finally, a similar but slightly more complicated
argument shows that is not stable when

, and .
Theorem 2 characterizes the stable equilibria in terms of a

lower bound on the inter-cluster distances. It allows for inter-
cluster distances at a stable equilibrium that are smaller than 2,
provided that the clusters have different weights. This is consis-
tent with experimental observations for certain initial opinion
distributions, as shown in Fig. 5. On the other hand, for the

Fig. 5. Example of convergence to a stable equilibrium where the clusters are
separated by less than 2. The initial distribution of opinions is obtained by
taking 251 uniformly spaced opinions on and 500 uniformly opinions
on . Opinions converge to two clusters with 153 and 598 agents, respec-
tively, that are separated by a distance .
Similar results are obtained when larger number of agents are used, provided
that the initial opinions are distributed in the same way, i.e, with a density on

which is ten times larger than the density on .

frequently observed case of clusters with equal weights, sta-
bility requires the inter-cluster distances to be at least 2. Thus,
this result comes close to a full explanation of the observed
inter-cluster distances of about 2.2.

In general, there is no guarantee that the system (1) will con-
verge to a stable equilibrium. (A trivial example is obtained
by initializing the system at an unstable equilibrium, such as

for half of the agents and for
the other half). On the other hand, we have observed that for a
given smooth distribution of initial opinions, and as the number
of agents increases, we almost always obtain convergence to a
stable equilibrium. This leads us to the following conjecture.

Conjecture 1: Suppose that the initial opinions are chosen
randomly and independently according to a particular contin-
uous and bounded probability density function (PDF) with con-
nected support. Then, the probability of convergence to a stable
equilibrium tends to 1, as the number of agents increases to in-
finity.

Besides the extensive numerical evidence (see e.g., Fig. 6),
this conjecture is supported by the intuitive idea that if the
number of agents is sufficiently large, whenever two groups
of agents start forming two clusters, there will still be a small
number agents in between, whose presence will preclude
convergence to an unstable equilibrium. The conjecture is
also supported by Theorem 7 in Section III, which deals with a
continuum of agents, together with the results in Section IV that
provide a link between the discrete-agent and continuous-agent
models.

III. THE CONTINUOUS-AGENT MODEL

The discussion in the previous section indicates that much
insight can be gained by focusing on the case of a large number
of agents. This motivates us to consider a model involving a
continuum of agents. We use the interval to index
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Fig. 6. Time evolution of agent opinions, when initial opinions are drawn from
a common PDF which is larger on the interval (2.5,3) than on the interval (0,2.5).
In (a), we have 501 agents and they converge to an unstable equilibrium: the
clusters have respective weights 152 and 349, and their distance is 1.399 1

152/349 1.436. In (b), we have 5001 agents and they converge to a stable
equilibrium: we see two clusters being formed originally, but they are eventually
drawn together by a small number of agents in between.

the agents, and we consider opinions that are nonnegative and
bounded above by a positive constant . We denote by
the opinion of agent at time . We use to denote the
set of measurable functions , and the set
of measurable functions . The evolution of the
opinions is described by

(5)

where is defined for any by

If the denominator in (5) is zero, we use the convention
. However, since the set of agents for which

this convention applies has zero measure, we can ignore such
agents in the sequel. We assume that . We then see
that for every , we have , so that the dynamics
are well-defined. In the sequel, we denote by the indicator
function of , that is, if , and

otherwise.
We note that for the same reasons as in the discrete-agent

model, if for some and we have the relation
or at some , then the same relation continues
to hold at all subsequent times. Furthermore, if only takes a
finite number of values, the continuous-agent model coincides
with the weighted discrete-agent model (2), with the same range
of initial opinions, and where each discrete agent’s weight is set
equal to the measure of the set of indices for which
takes the corresponding value.

In the remainder of this section, we will study the conver-
gence properties of the continuous-agent model, and the inter-
cluster distances at suitably defined stable equilibria.

A. Operator Formalism

To analyze the continuous-agent model (5), it is convenient
to introduce a few concepts, extending well known matrix and
graph theoretic tools to the continuous case. By analogy with
interaction graphs in discrete multi-agent systems, we define for

the adjacency operator , which maps the set of
measurable functions on into itself, by letting

Applying this operator can be viewed as multiplying by the
“continuous adjacency matrix” , and using an extension of
the matrix product to the continuous case. We also define the
degree function , representing the measure of the
set of agents to which a particular agent is connected, by

where is the constant function that takes the value
1 for every . Multiplying a function by the degree function
can be viewed as applying an operator defined by

When is positive everywhere, we can also define the operator
, which multiplies a function by . Finally, we define

the Laplacian operator . It follows directly from
these definitions that , similar to what is known for the
Laplacian matrix. In the sequel, we also use the scalar product

. We now introduce two lemmas to ease
the manipulation of these operators.

Lemma 1: The operators defined above are symmetric with
respect to the scalar product: for any , we have

, , and
.

Proof: The result is trivial for . For , we have

Since for all , this implies
. By linearity, the result also holds for and any other

linear combination of those operators.
Lemma 2: For any , we have

In particular, is positive semi-definite.
Proof: From the definition of the operators, we have

The right-hand side of this equality can be rewritten as

The symmetry of then implies that equals
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from which the results follows directly.
The update (5) can be rewritten, more compactly, in the form

(6)

where the second notation is formally more general as it also
holds on the possibly nonempty zero-measure set on which

. We say that is a fixed point of the system
if holds almost everywhere (a.e., for short), that is,
except possibly on a zero-measure set. It follows from (6) that
the set of fixed points is characterized by the equality ,
a.e. One can easily see that the set of fixed points contains the
set of
opinion functions taking a discrete number of values that are at
least one apart. Let be the set of functions for which
there exists such that , a.e. We prove later that
is exactly the set of solutions to , a.e., and thus the set
of fixed points of (6).

B. Convergence

In this section we present some partial convergence results. In
particular, we show that the change of the opinion function
decays to 0, and that tends to the set of fixed points. We begin
by proving the decay of a quantity related to .

Theorem 3: For any initial condition of the system (6), we
have

Proof: We consider the nonnegative potential function
defined by

(7)

and show that

which by Lemma 2 implies the desired result.
We observe that for every , since

is smaller than or equal to

both 1 and , there holds

(8)

where Lemma 2 was used to obtain the last equability. For
, it follows from the definition of that the above inequality

is tight. In particular, the following two relations hold for any
and :

Taking , we obtain

where we have used the symmetry of . It follows from (6)
that , so that

since .
As will be seen below, this result implies the convergence

of to 0 in a suitable topology. We now show that is
small only if is close to , the set of functions taking discrete
values separated by at least 1. As a corollary, we then obtain
the result that is exactly the set of fixed points, as also shown
in [25]. The intuition behind the proof of these results parallels
our proof of Theorem 1, and is as follows. Consider an agent
with one of the smallest opinions . If the change in
is small, its attraction by agents with larger opinions must be
small, because almost no agents have an opinion smaller than

. Therefore, there must be very few agents with an opinion
significantly larger than that interact with , while there
might be many of them who have an opinion close to .
In other words, possibly many agents have approximately the
same opinion , and very few agents have an opinion in the
interval , so that is close to a function in
in that zone. Take now an agent with an opinion larger than

, and such that very few agents have an opinion in
. This agent interacts with very few agents

having an opinion smaller than its own. Thus, if the change in
such an agent’s opinion is small, this implies that its attraction
by agents having larger opinions is also small, and we can repeat
the previous reasoning.

In order to provide a precise statement of the result, we as-
sociate an opinion function with a measure that describes the
distribution of opinions, and use a measure-theoretic formalism.
For a measurable function (i.e., ), and a
measurable set , we let be the Lebesgue mea-
sure of the set . By convention, we let
if . To avoid confusion with , we use to
denote the standard Lebesgue measure of a set . We also in-
troduce a suitable topology on the set of opinion functions. We
write if . Similarly, if

, and if . We
define the “ball” as the set .
This allows us to define a corresponding notion of limit. We say
that if for all , there is a such that for all
we have . We write for a set if for all

, there is a such that for all , there is a for
which .

The result below states that the distance between
and (the subset of consisting of functions taking discrete
values separated by at least 1) decreases to 0 (in a certain uni-
form sense) when . The proof, omitted for space rea-
sons, is available in the appendix of [7] or in [16].

Theorem 4: For any , there exists a such that if
, then there exists some with . In

particular, if , then .

Authorized licensed use limited to: MIT Libraries. Downloaded on November 10, 2009 at 11:42 from IEEE Xplore.  Restrictions apply. 



2594 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 11, NOVEMBER 2009

The next theorem compiles our convergence results.
Theorem 5: Let be a sequence of functions in

evolving according to the model (5), and let be the set of
functions taking discrete values separated by at least 1. Then

and . (In particular, periodic trajec-
tories, other than fixed points, are not possible.) Furthermore,
is a fixed point of (5) if and only if .

Proof: We begin by proving the convergence of . Sup-
pose that does not hold. Then, there is
an such that for arbitrarily large , there is a set of measure
at least such that for every in that set. Con-
sider such a time . Without loss of generality, assume that there
is a set of measure at least on which .
(Otherwise, we can use a similar argument for the set on which

.) Fix some . For , let
be the set on which . For any and

for any , there holds and thus
. Therefore, for all . Moreover, the sets

cover , so that . Thus,
there exists some such that . We then
have

Thus, if does not hold, then

does not decay to 0, which contra-
dicts Theorem 3. We conclude that . Using also (6)
and the fact , we obtain . Theorem 4
then implies that .

If , it is immediate that is a fixed point. Conversely,
if is a fixed point, then , a.e., for all . Then, the
fact implies that .

We note that the fact means that the measure as-
sociated with any limit point of is a discrete measure whose
support consists of values separated by at least 1. Furthermore,
it can be shown that at least one such limit point exists, because
of the semi-compactness of the set of measures under the weak
topology.

Theorem 5 states that tends to the set , but does not guar-
antee convergence to an element of this set. We make the fol-
lowing conjecture, which is currently unresolved.

Conjecture 2: Let be a sequence of functions in ,
evolving according to the model (5). Then, there is a function

such that .

C. Inter-Cluster Distances and Stability of Equilibria

We have found that is a fixed point of (5) if and only if it be-
longs to , that is, with the exception of a zero-measure set, the
range of is a discrete set of values that are separated by at least
one. As before, we will refer to these discrete values as clusters.
In this section, we consider the stability of equilibria, and show
that a condition on the inter-cluster distances similar to the one
in Theorem 2 is necessary for stability. Furthermore, we show

that under a certain smoothness assumption, the system cannot
converge to a fixed point that does not satisfy this condition.

In contrast to the discrete case, we can study the continuous-
agent model using the classical definition of stability. We say
that is stable if for any , there is a such that
for any , we have for all . It can
be shown that this notion encompasses the stability with respect
to the addition of a perturbing agent used in Section II-C. More
precisely, if we view the discrete-agent system as a special case
of the continuum model, stability under the current definition
implies stability with respect to the notion used in Section II-C.
The introduction of a perturbing agent with opinion can in-
deed be simulated by taking everywhere except
on an appropriate set of measure less than , and on
this set. (However, the converse implication turns out to not hold
in some pathological cases. Indeed, consider two agents sepa-
rated by exactly 2. They are stable with respect to the definition
of Section II-C, but not under the current definition. This is be-
cause if we introduce a small measure set of additional agents
that are uniformly spread between the two original agents, we
will obtain convergence to a single cluster.) Moreover, it can
be verified that the notion of stability used here is equivalent
to both and stability. In the sequel, and to simplify the
presentation, we will neglect any zero measure sets on which

, and will give the proof for a fixed point in . The
extension to fixed points in is straightforward. The proof of
the following result is similar to that of its discrete counterpart,
the necessary part of Theorem 2. It is omitted for space reasons,
but can be found in the appendix of [7] or in [16].

Theorem 6: Let be a fixed point of (5), and let two
values taken by . If is stable, then

(9)

With a little extra work, focused on the case where the dis-
tance between the two clusters is exactly equal to 2, we
can show that the strict inequality version of condition (9) is
necessary for stability. We conjecture that this strict inequality
version is also sufficient.

We will now proceed to show that under an additional
smoothness assumption on the initial opinion function, we can
never have convergence to a fixed point that violates condition
(9). We start by introducing the notion of a regular opinion
function. We say that a function is regular if there
exist such that any interval
satisfies . Intuitively, a function is
regular if the set of opinions is connected, and if the density of
agents on any interval of opinions is bounded from above and
from below by positive constants. (In particular, no single value
is taken by a positive measure set of agents.) For example, any
piecewise differentiable with positive upper and lower
bounds on its derivative is regular.

We will show that if is regular and if converges,
then converges to an equilibrium satisfying the condition
(9) on the minimal distance between opinions, provided that

remains always larger than 2. For conve-
nience, we introduce a nonlinear update operator on , de-
fined by , so that the re-
currence (5) can be written as . The proof of the
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following proposition is available in the appendix of [7] and in
[16].

Proposition 3: Let be a regular function such that
. Then is regular.

We note that the assumption in Propo-
sition 3 is necessary for the result to hold. Indeed, if the opinion
values are confined to a set , with , then
all agents with opinions in the set are connected
with every other agent, and their next opinions will be the same,
resulting in a non-regular opinion function.

As a consequence of Proposition 3, together with Theorem 5,
if is regular, then there are two main possibilities: i) There
exists some time at which . In this case,
the measure will have point masses shortly thereafter, and
will eventually converge to the set of fixed points with at most
two clusters. ii) Alternatively, in the “regular” case, we have

for all times. Then, every is regular,
and convergence cannot take place in finite time. Furthermore,
as we now proceed to show, convergence to a fixed point that
violates the stability condition (9) is impossible. Let us note
however that tight conditions for a sequence of regular functions
to maintain the property at all times appear
to be difficult to obtain.

Theorem 7: Let be a sequence of functions in that
evolve according to (5). We assume that is regular and that

for all . If converges, then it con-
verges to a function such that

for any two distinct values , , with . In par-
ticular, if , then .

Proof: Suppose that converges to some . It follows
from Theorem 5 that , and from Proposition 3 that all

are regular. Suppose now that violates the condition in the
theorem, for some , , with . Then, , and we
must have because all discrete values taken by

(with positive measure) must differ by at least 1. We claim
that there exists a positive length interval such that

whenever , for a sufficiently
small . Since converges to , this will imply that there
exists a finite time after which is nondecreasing, and

. On the other hand, since
, must converge to zero. This is a contra-

diction and establishes the desired result.
We now establish the above claim. Let

be the weighted
average of and . The fact that the condition in the theorem
is violated implies (c.f (3)) that and .
Let be such that and , and
consider the interval . For any ,
we have

where we have used the fact that the values taken by are sepa-
rated by at least 1. Suppose now that is sufficiently small so that

and . This implies that for every
such that , we have .
If were equal to zero, we would have . When is
small, the location of the masses at and moves by an
amount, and an additional mass is introduced. The overall
effect is easily shown to be (the detailed calculation can be
found in [16]). Thus, is of order . When is
chosen sufficiently small, we obtain ,
i.e., for all such that . This implies
that , and completes the proof.

IV. RELATION BETWEEN THE DISCRETE AND
THE CONTINUOUS-AGENT MODELS

We now analyze the extent to which the continuous-agent
model (5) can be viewed as a limiting case of the discrete-agent
model (1), when the number of agents tends to infinity. As al-
ready explained in Section III, the continuous-agent model can
simulate exactly the discrete-agent model. In this section, we
are interested in the converse; namely, the extent to which a dis-
crete-agent model can describe, with arbitrarily good precision,
the continuous-agent model. We will rely on the following re-
sult on the continuity of the update operator.

Proposition 4: Let be a regular function. Then, the
update operator is continuous at with respect to the norm

. More precisely, for any there exists some
such that if then .

Proof: Consider a regular function , and an ar-
bitrary . Let be smaller than , where and

(with ) are the bounds in the definition of regular
opinion functions applied to . We will show that if a function

satisfies , then .
Fix some , and let be the set of agents

connected to according to the interconnection topologies
and defined by and , respectively. We let ,

and . Since , the
values and differ by at most , for
any . As a consequence, if , then

. Similarly, if , then
. Combining these two inequalities with the

definitions of , , and , we obtain

Since is regular, we have and
. Let now and be the average

value of on and , respectively. Similarly, let , and
be the average value of on and . Since

, and differ by at most . It follows from the
definition of the model (5) that:
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It can be seen that and ,
from which we obtain that is upper

where we have used the fact that .
Since the above is true for any , we conclude that

.
Let be the composition of the update oper-

ator, defined by , so that .
Proposition 4 is readily extended to a continuity result for .

Corollary 1: Let be a regular function such that
for every . Then for any

finite , is continuous at with respect to the norm .
Proof: Since is regular and since

for all , Proposition 3 implies that all
are regular. Proposition 4 then implies that for all , is contin-
uous at , and therefore the composition is continuous
at .

Corollary 1 allows us to prove that, in the regular case, and
for any given finite time horizon, the continuous-agent model is
the limit of the discrete-agent model, as the number of agents
grows. To this effect, for any given partition of into

disjoint sets , we define an operator
that translates the opinions in an -agent system to an opinion
function in the continuous-agent model. More precisely, for a
vector and any , we let be equal to the

component of .
Theorem 8: Let be a regular function and assume

that for . Then, the sequence
, , can be approximated arbitrarily well by

a sequence of opinion vectors evolving according to (1),
in the following sense. For any , there exists some , a
partition of into disjoint sets , and a vector

such that the sequence of vectors generated by the dis-
crete-agent model (1), starting from , satisfies
, for .

Proof: Fix . Since all are continuous at , there
is some such that if , then

, for . Since is regular, we can divide into
subsets , so that for all , and

for all , in the same set . (This is done by letting
be such that , and defining

, where is sufficiently large.) We define
by letting its th component be equal to . We then

have . This implies that
, for . Since the continuous-agent model, initialized with

a discrete distribution, simulates the discrete-agent model, we
have , and the desired result follows.

Theorem 8 supports the intuition that for large values of ,
the continuous-agent model behaves approximatively as the dis-
crete-agent model, over any finite horizon. In view of Theorem
6, this suggests that the discrete-agent system should always
converge to a stable equilibrium (in the sense defined in Sec-
tion II) when is sufficiently large, as stated in Conjecture
1, and observed in many examples (see, e.g., Fig. 6). Indeed,
Theorem 6 states that under the regularity assumption, the con-
tinuum system cannot converge to an equilibrium that does not

satisfy condition (9) on the inter-cluster distances. However, this
argument does not translate to a proof of the conjecture because
the approximation property in Theorem 8 only holds over a fi-
nite time horizon, and does not necessarily provide information
on the limiting behavior.

V. CONCLUSION

We have analyzed the model of opinion dynamics (1) intro-
duced by Krause, from several angles. Our motivation was to
provide an analysis of a simple multi-agent system with an en-
dogenously changing interconnection topology while taking ex-
plicitly advantage of the topology dynamics, something that is
rarely done in the related literature.

We focused our attention on an intriguing phenomenon, the
fact that equilibrium inter-cluster distances are usually signifi-
cantly larger than 1, and typically close to two. We proposed an
explanation of this phenomenon based on a notion of stability
with respect to the addition of a perturbing agent. We showed
that such stability translates to a certain lower bound on the
inter-cluster distances, with the bound equal to two when the
clusters have identical weights. We also discussed the conjec-
ture that when the number of agents is sufficiently large, the
system converges to a stable equilibrium for “most” initial con-
ditions.

To avoid granularity problems linked with the presence or ab-
sence of an agent in a particular region, we introduced a new
opinion dynamics model that allows for a continuum of agents.
For this model we proved that under some regularity assump-
tions, there is always a finite density of agents between any two
clusters during the convergence process. As a result, we could
prove that such systems never converge to an unstable equilib-
rium. We also proved that the continuous-agent model is indeed
the limit of a discrete model, over any given finite time horizon,
as the number of agents grows to infinity. These results provide
some additional support for the conjectured, but not yet estab-
lished, generic convergence to stable equilibria.

We originally introduced the continuous-agent model as a
tool for the study of the discrete-agent model, but it is also of
independent interest and raises some challenging open ques-
tions. An important one is the question of whether the contin-
uous-agent model is always guaranteed to converge. (We only
succeeded in establishing convergence to the set of fixed points,
not to a single fixed point.)

Finally, the study of the continuous-agent model suggests
some broader questions. In the same way that the convergence of
the discrete-agent model can be viewed as a special case of con-
vergence of inhomogeneous products of stochastic matrices, it
may be fruitful to view the convergence of the continuous-agent
model as a special case of convergence of inhomogeneous com-
positions of stochastic operators, and to develop results for the
latter problem.

The model (1) can of course be extended to higher dimen-
sional spaces, as is often done in the opinion dynamics litera-
ture (see [25] for a survey). Numerical experiments again show
the emergence of clusters that are separated by distances sig-
nificantly larger than 1. The notion of stability with respect to
the addition of an agent can also be extended to higher dimen-
sions. However, stability conditions become more complicated,
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and in particular cannot be expressed as a conjunction of inde-
pendent conditions, one for each pair of clusters. For example,
it turns out that adding a cluster to an unstable equilibrium may
render it stable [16]. In addition, a formal analysis appears dif-
ficult because in , with , the support of the opinion dis-
tribution can be connected without being convex, and convexity
is not necessarily preserved by our systems. For this reason,
even under “regularity” assumptions, the presence of perturbing
agents between clusters is not guaranteed.
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