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On the Subexponential Decay of Detection Error
Probabilities in Long Tandems
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Abstract—We consider the problem of Bayesian decentralized binary hy-
pothesis testing in a network of sensors arranged in a tandem. We show that
the rate of error probability decay is always subexponential, establishing
the validity of a long-standing conjecture. Under the additional assump-
tion of bounded Kullback–Leibler (KL) divergences, we show that for all
d > 1=2, the error probability is 
(e ), where c is a positive constant.
Furthermore, the bound 
(e ), for all d > 1, holds under an ad-
ditional mild condition on the distributions. This latter bound is shown to
be tight.

Index Terms—Decentralized detection, error exponent, serial network,
tandem network.

I. INTRODUCTION

Consider a tandem network, as shown in Fig. 1, with each sensor
i observing an independent random variable Xi, which has marginal
law j under hypothesis Hj , j = 0; 1. Sensor i sends a 1-bit message
Yi = i(Yi�1; Xi) (Y0 can be defined to be always 0) to sensor i+ 1.
The transmission function i used by sensor i is thus a function of the
observedXi and the received message Yi�1 from sensor i�1. We call
the collection (1; . . . ; n) a strategy for then-sensor tandem network.

Let �j > 0 be the prior probability of hypothesis Hj , and let
Pe(n) = �0 0(Yn = 1) + �1 1(Yn = 0) be the probability of
error at sensor n, under some particular strategy. The goal of a system
designer is to design a strategy so that the probability of error Pe(n) is
minimized. Let P �e (n) = inf Pe(n), where the infimum is taken over
all possible strategies.

The problem of finding optimal strategies has been studied in
[1]–[3], while the asymptotic performance of a long tandem network
(i.e., n ! 1) is considered in [2], [4]–[8] (some of these works do
not restrict the message sent by each sensor to be binary). In the case
of binary communications, [4] and [8] show that the error probability
stays bounded away from zero iff j log d

d
j � B almost surely,

for some constant B. When the log-likelihood ratio is unbounded,
numerical examples have indicated that the error probability goes to
zero much slower than exponentially. This is to be contrasted with
the case of a parallel configuration (all sensors send messages i(Xi)
directly to a single fusion center), where the error probability decays
exponentially fast with the number of sensors n [9]. This suggests that
a tandem configuration performs worse than a parallel configuration,
when n is large. It has been conjectured in [2], [8], [10], [11] that
indeed, the rate of decay of the error probability is subexponential.
However, a proof is not available. The goal of this correspondence is
to prove this conjecture.
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Fig. 1. A tandem network.

The study of tandem networks is of interest because their simple
structure serves as a basis for the study of more complicated tree archi-
tectures [3], [8], [11], [12]. A tandem network can also be viewed as
a representation of a single node with 1 bit of memory, making obser-
vations Xi at different time periods [4], [5]. Therefore, our results are
also relevant to the sequential detection problem. For tractability rea-
sons, the tandem networks we study in this correspondence are stylized
approximations of practical networks, which typically allow multiple
bits of communication between nodes, and have noisy communication
links. Our analysis of this simplified network serves to give insights into
the rate of error decay in practical tandem networks, and more general
tree architectures.

We first note that there is a caveat to the subexponential decay
conjecture: the probability measures 0 and 1 need to be equiva-
lent, i.e., absolutely continuous with respect to (w.r.t.) each other.
Indeed, if there exists a measurable set A such that 0(A) > 0
and 1(A) = 0, then an exponential decay rate can be achieved as
follows: each sensor always declares 1 until some sensor m observes
an Xm 2 A, whereupon all sensors i � m declare 0. For this reason,
we assume throughout this correspondence that the measures 0 and
1 are equivalent. Under this assumption, we first show that the error

probability decays subexponentially fast with the number of sensors
n. When the error probability goes to zero, we would also like to
quantify the best possible (subexponential) decay rate. In this spirit,
we find lower bounds on the probability of error, under some further
mild assumptions.

The rest of the correspondence is organized as follows. In Section II,
we show that the error probability decays subexponentially. In Sec-
tion III, we derive more detailed lower bounds on the error proba-
bilities. In Section IV, we establish the tightness of one of our lower
bounds. Finally, Section V contains concluding remarks.

II. SUBEXPONENTIAL DECAY

In this section, we show that the rate of decay of the error proba-
bility is always subexponential. Although the proof is simple, we have
not been able to find it in the literature. Instead, all works on this topic,
to our best knowledge, have only conjectured that the decay is subex-
ponential, with numerical examples as supporting evidence.

We first state an elementary fact that we will make use of throughout
this correspondence. A proof can be found in [13].

Lemma 1: Suppose that and are two equivalent probability
measures. If A1; A2; . . . is a sequence of measurable events such that
(An)! 0, as n ! 1, then (An)! 0, as n ! 1.

Let Li = log d

d
(Xi) be the log-likelihood ratio associated with

the observation made by sensor i. From [1], [8], [10], [14], there is
no loss in optimality if we require each sensor to form its messages
by using a log-likelihood ratio quantizer (LLRQ), i.e., Yi = 0 iff
Li � ti;n(y), where ti;n(y) is a threshold whose value depends on
the message Yi�1 = y received by sensor i. In the sequel, we will as-
sume, without loss of optimality, that all sensors use an LLRQ. The next
lemma follows easily from the existence results in [14], and Proposi-
tion 4.2 in [10]. A proof can be found in [13].

0018-9448/$25.00 © 2008 IEEE



4768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 10, OCTOBER 2008

Lemma 2: There exists an optimal strategy under which each sensor
uses an LLRQ, with thresholds that satisfy ti;n(1) � ti;n(0) for all
i = 1; . . . ; n.

Proposition 1: The rate of decay of the error probability in a tandem
network is subexponential, i.e.,

lim
n!1

1

n
logP �e (n) = 0:

Proof: Suppose that P �e (n)! 0 as n!1, else the proposition
is trivially true. Fix some n and consider an optimal strategy for the
tandem network of length n. In view of Lemma 2, we can restrict to
strategies in which ti;n(1) � ti;n(0) for all i. We have

0(Yi = 1) = 0 Li > ti;n(0) � 0(Yi�1 = 0)

+ 0 Li > ti;n(1) � 0(Yi�1 = 1) (1)

1(Yi = 0) = 1 Li � ti;n(0) � 1(Yi�1 = 0)

+ 1 Li � ti;n(1) � 1(Yi�1 = 1): (2)

From (1) and (2), with i = n, and applying Lemma 2, we have

P �e (n)=�0 0(Yn = 1) + �1 1(Yn = 0)

=�0 0 Ln > tn;n(0)

+ 0 tn;n(1) < Ln � tn;n(0) � 0(Yn�1 = 1)

+ �1 1 Ln � tn;n(1)

+ 1 tn;n(1) <Ln � tn;n(0) � 1(Yn�1= 0) (3)

� min
j=0;1

j tn;n(1) < Ln � tn;n(0) � P �e (n�1): (4)

From (3), in order to have P �e (n) ! 0 as n ! 1, we must have
0(Ln > tn;n(0)) ! 0 and 1(Ln � tn;n(1)) ! 0, as n ! 1.

Because 0 and 1 are equivalent measures, from Lemma 1, we have
1(Ln > tn;n(0)) ! 0 and 0(Ln � tn;n(1)) ! 0, as n ! 1.

Hence, j(tn;n(1) < Ln � tn;n(0)) ! 1 for j = 0; 1. Therefore,
from (4), the error probability cannot decay exponentially fast.

We have established that the decay of the error probability is subex-
ponential. This confirms that the parallel configuration performs much
better than the tandem configuration when n is large. In the next sec-
tion, we investigate the best performance that a tandem configuration
can possibly achieve.

III. RATE OF DECAY

In this section, we show that under the assumption of bounded Kull-
back–Leibler (KL) divergences, the error probability is 
(e�cn ), for
some positive constant c and for all d > 1=2. Under some additional
assumptions, the lower bound is improved to 
(e�c(logn) ), for any
d > 1. We rely on a sequence of comparisons of the tandem configu-
ration with other tree configurations, whose performance can be quan-
tified using methods similar to [12].

Our results involve the KL divergences, defined by

D0 = 0 log
d 1

d 0
; D1 = 1 log

d 1

d 0
:

We assume that �1 < D0 < 0 < D1 <1, throughout this section.
Let k and m be positive integers, and let n = km. Let us com-

pare the following two networks: i) a tandem network, as in Fig. 1,

Fig. 2. A modified tandem network T (k;m) that outperforms a tandem net-
work with n = km sensors.

with n sensors, where each sensor i obtains a single observation Xi;
ii) a modified tandem network T (k;m), as in Fig. 2, with k sensors,
where each sensor vi obtains m (conditionally) independent observa-
tionsX(i�1)m+1; . . . ; Xim, given either hypothesis. In both networks,
a sensor sends a binary message to its recipient. It should be clear that
when we keep the total number of observations n = km the same in
both networks, the network T (k;m) can perform at least as well as the
original one. Indeed, each sensor vi in the modified network can emu-
late the behavior of m sensors in tandem in the original network.

Therefore, it suffices to establish a lower bound for the error prob-
ability in the network T (k;m). Toward this goal, we will use some
standard results in large deviations theory, notably Cramér’s theorem
[15], as stated in the lemma that follows. A proof is provided in [13].

Lemma 3: Suppose that �1 < D0 < 0 < D1 < 1, and that
X1; X2; . . . are independent and identically distributed (i.i.d.) under
either hypothesis Hj , with marginal law j . Let Sm = m

i=1 Li, and
for j = 0; 1, let

��j (t) = sup
�2

�t� log j
d 1

d 0

�

:

.
(a) For every � > 0, there exist a 2 (0; 1), c > 0, and M � 1, such

that for all m � M

0(Sm=m > D1 + �) � ae�mc

1(Sm=m � D0 � �) � ae�mc:

(b) Suppose that 1
d
d

s

< 1 for some s > 0. Then, there

exists some � > 0, such that ��1(D1 + �) > 0, and

1(Sm=m � D1 + �) � 1� e�m� (D +�); 8m � 1:

(c) Suppose that 0
d
d

s

< 1 for some s < 0. Then, there

exists some � > 0, such that ��0(D0 � �) > 0, and

0(Sm=m > D0 � �) � 1� e�m� (D ��); 8m � 1:

(d) For every � > 0, there exists some M � 1 such that

1(Sm=m � D1 + �) � 1=2; 8m �M:

Moreover, if for some integer r � 2, 1 log d
d

r

< 1,
then there exists some cr > 0 such that

1(Sm=m � D1 + �) � 1�
cr

mr=2�r
; 8m � 1:

(e) For every � > 0, there exists some M � 1 such that

0(Sm=m > D0 � �) � 1=2; 8m �M:

Moreover, if for some integer r � 2, 0 log d
d

r

< 1,
then there exists some cr > 0 such that

0(Sm=m > D0 � �) � 1�
cr

mr=2�r
; 8m � 1:
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We now state our main result. Part (ii) of the following proposition
is a general lower bound that always holds; part (i) is a stronger lower
bound, under an additional assumption. Note that the condition in part
(i) implies that j log d

d

r

< 1 for all r, but the reverse impli-
cation is not always true.

Proposition 2: Suppose that �1 < D0 < 0 < D1 <1.
(i) Suppose that there exists some �0 > 0 such that for all s 2

[��0; 1 + �0], 0
d
d

s

< 1. Then

lim
n!1

1

(logn)d
logP �e (n) = 0

for all d > 1.
(ii) For all d > 1=2, we have

lim
n!1

1

nd
logP �e (n) = 0:

Furthermore, if for some integer r � 2, j log d
d

r

<1

for both j = 0; 1, then the above is true for all d > 1=(2+ r=2).
Proof: Let us fix m and k, and an optimal strategy for the modi-

fied network T (k;m). Let Yv be the 1-bit message sent by sensor vi,
under that strategy. Let

Si;m =

m

l=1

L(i�1)m+l (5)

which is the log-likelihood ratio of the observations obtained at sensor
vi. For the same reasons as in Lemma 2, an optimal strategy exists and
can be taken to be an LLRQ, i.e., Yv = 0 iff Si;m=m � ti;m(y),
where ti;m(y) is a threshold whose value depends on the message y
received by sensor vi from sensor vi�1. For the same reasons as in
Lemma 2, we can assume that the optimal strategy is chosen such that
ti;m(1) � ti;m(0), for all m � 1, and for all i � 1.

Let q0;i = 0(Yv = 1) and q1;i = 1(Yv = 0) be the Type I and
II error probabilities at sensor vi. Suppose that the conditions in part
(i) of the proposition hold. Let � = minf��0(D0 � �);��1(D1 + �)g.
From parts (ii) and (iii) of Lemma 3, there exists � > 0 such that � > 0.
Let us fix such an �, and let a 2 (0; 1), c > 0, and M � 1 be as in
Lemma 3 (i). We first show a lower bound on the Type I and II error
probabilities qj;i.

Lemma 4: There exists some �M such that for every i � 1, and every
m � �M , either

q0;i �
a

2
e�mc(1� e�m�)i (6)

or

q1;i �
a

2
e�mc(1� e�m�)i: (7)

Proof: The proof proceeds by induction on i. When i = 1, the
result is an immediate consequence of Lemma 3 (i). Indeed, if the
threshold t used by sensor v1 satisfies t � D1, then q0;1 � ae�mc,
and if t � D0, then q1;1 � ae�mc.

Assume now that i > 1 and that the result holds for i � 1. We will
show that it also holds for i. Let Si;m be as defined in (5). We have for
i > 1

q0;i =(1� q0;i�1) 0(Si;m=m > ti;m(0))

+ q0;i�1 0(Si;m=m > ti;m(1)) (8)

q1;i =(1� q1;i�1) 1(Si;m=m � ti;m(1))

+ q1;i�1 1(Si;m=m � ti;m(0)): (9)

We start by considering the case where q0;i�1 < 1=2 and q1;i�1 <
1=2. Suppose that ti;m(0) � D1 + �. From (8) and Lemma 3 (i), we
have for all m � M

q0;i �
1

2
0(Si;m=m > D1 + �)

�
a

2
e�mc

�
a

2
e�mc(1� e�m�)i:

Similarly, if ti;m(1) � D0� �, we have q1;i � ae�mc(1�e�m�)i=2.
It remains to consider the case where ti;m(0) > D1 + � and

ti;m(1) < D0 � �. From (8) and Lemma 3 (iii), we obtain

q0;i � q0;i�1 0(Si;m=m > D0 � �)

� q0;i�1(1� e�m�):

Similarly, from (9) and Lemma 3 (ii), we have

q1;i � q1;i�1 1(Si;m=m � D1 + �)

� q1;i�1(1� e�m�):

Using the induction hypothesis, either (6) or (7) holds.
We next consider the case where q0;i�1 � 1=2 and q1;i�1 < 1=2.

If either
a) ti;m(1) � D0 � �, or
b) ti;m(0) > D1 + � and ti;m(1) < D0 � �,

we obtain, via the same argument as above, the desired conclusion.
Suppose then that ti;m(0) � D1 + � and ti;m(1) < D0 � �. From (8)
and the Weak Law of Large Numbers (WLLN), we have for some �M
sufficiently large, and for all m � �M

q0;i �
1

2
0(Si;m=m > ti;m(1))

�
1

2
0(Si;m=m > D0 � �) �

1

4

so that the claim holds trivially. The case q0;i�1 < 1=2 and q1;i�1 �
1=2 is similar.

We finally consider the case where q0;i�1 � 1=2 and q1;i�1 � 1=2.
If ti;m(1) � D1, then

q0;i �
1

2
0(Si;m=m > D1) �

a

2
e�mc:

If, on the other hand, ti;m(1) > D1, then ti;m(0) � ti;m(1) > D1 >
D0, and

q1;i �
1

2
1(Si;m=m � D0) �

a

2
e�mc:

This concludes the proof of the lemma.

We return to the proof of part (i) of Proposition 2. Fix some d > 1
and some l 2 (1=d;1). Let k = k(m) = exp(ml). For a tandem
network with n sensors, since k(m)m = exp(ml)m is increasing in
m, we have exp((m � 1)l)(m � 1) < n � exp(ml)m, for some
m. Since the tree network T (k(m);m) outperforms a tandem network
with n sensors, we have

P �e (n) ��0q0;k(m) + �1q1;k(m)

� minf�0; �1g
a

2
e�mc(1� e�m�)k(m) (10)

where the last inequality follows from Lemma 4. Note that

1

(log(k(m)m))d
log e�mc(1� e�m�)k(m)

= �
mc

(ml + logm)d
+

em

(ml + logm)d
log 1� e�m�

= �
mc

(ml + logm)d
+

em �m�

(ml + logm)d
log 1�e�m�

e

: (11)
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Since dl > 1 and l < 1, the right-hand side (RHS) of (11) converges
to 0 as m ! 1. Moreover, since

1 � log(k(m)m)

logn
� ml + logm

(m� 1)l + log(m� 1)
! 1

as m ! 1, we have from (10)

lim
n!1

1

(logn)d
logP �e (n) = 0

which proves part (i) of the proposition.
For part (ii), the argument is the same, except that we use parts (iv)

and (v) of Lemma 3 (instead of parts (ii) and (iii)), and the inequalities
(6) and (7) are replaced by

q0;i � a

2
e�mc 1

2i
and q1;i � a

2
e�mc 1

2i

respectively, and we let k = ml where l 2 (1=d � 1; 1), for 1=2 <

d < 1. The conclusion when j log d
d

r

< 1 for some integer
r � 2 can be derived similarly.

We note that our results also apply to the case of independent, but
nonidentical distributions of the sensor observations, if we assume that
no sensor can perform significantly better or worse than the others. To
be more specific, we assume that there exists two pairs of distributions
( l

0;
l
1) and ( u

0 ;
u
1 ), such that for all sensors i, and for all s 2 [0; 1],

we have

0
d l

1

d l
0

s

� 0
d i

1

d i
0

s

� 0
d u

1

d u
0

s

where i
j is the distribution of Xi under hypothesis Hj . Then the

bounds in Proposition 2 still hold. The above assumption is reasonable
in most practical networks consisting of nodes that are similar in na-
ture. It is violated when we have an infinite tandem network, with each
node making raw observations that are qualitatively better than the pre-
vious one. However, we believe that such a scenario is uncommon in
practice.

IV. TIGHTNESS

Part (i) of Proposition 2 translates to a bound of the form

(e�c(logn) ), for every d > 1. In this section, we show that
this family of bounds is tight, in the sense that it cannot be extended
to values of d less than one. This is accomplished by constructing an
example in which the error probability is O(e�c(logn) ), with d = 1,
i.e., the error probability is of the order O(n�c) for some c > 0.

Our example involves a Gaussian hypothesis testing problem. We
assume that under Hj , X1 is distributed according to a normal distri-
bution with mean 0 and variance �2

j , where 0 < �2
0 < 1=2 < �2

1 . It
is easy to check that the condition in part (i) of Proposition 2 is satis-
fied [13].

For each n, let an =
p
logn. Consider the following suboptimal

strategy [8]: for i � 1, let

i(Yi�1;Xi) =
0; if X2

i � a2n and Yi�1 = 0

1; otherwise

where Y0 = 0. Thus, the decision at sensor n is Yn = 1 iff we have
X2
i > a2n for some i � n.

Proposition 3: With the above described strategy, the probability of
error is O(n�c), for some c > 0.

Fig. 3. A plot of the optimal error probability as a function of the number of
sensors, for the problem of detecting the presence of a known signal in Gaussian
noise. The optimal thresholds for the LLRQs at each sensor are given in [2]. For
large n, the plot is almost linear.

Proof: Let Q(�) be the Gaussian complementary error function,
i.e., Q(x) = (Z � x), where Z is a standard normal random vari-
able. We use the well-known bound Q(x) � exp(�x2=2) (see, e.g.,
[16]). The Type I error probability is given by

0(Yn = 1) = 0(X
2
i > a2n for some i)

�n 0(X
2
1 > a2n)

= 2nQ an=�0

� 2ne�a =2�

=2n
1�

which is of the form O(n�c), with c > 0.
The Type II error probability is

1(Yn = 0) = 1(X
2
1 � a2n)

n

= 1� 1(X
2
1 > a2n)

n

� e�n (X >a ): (12)

From the lower boundQ(x) � 1

x
p
2�

(1� 1
x
) exp(�x2=2) (see [16]),

we have

n 1(X
2
1 > a2n) = 2nQ an=�1

� 2

�
� �1
an

1� �2
1

a2n
exp

�a =2�
n

=
2

�
� �1p

logn
1� �2

1

logn
n
1�

=
(nd )

where d1 > 0. From (12), we obtain that 1(Yn = 0) =
O(exp(�nd )). Hence, the overall error probability is dominated by
the Type I error probability, and this strategy achieves a decay rate of
n�c for some positive constant c.

We note that in most cases, the rate n�c is not achievable. For ex-
ample, suppose that under H0, the distribution of X1 is normal with
mean �� and variance 1, while under H1, the distribution is normal
with mean� and variance 1. A numerical computation indicates that the
optimal error probability decay is of the order exp(�cplogn) (see [2]
and Fig. 3). Finding the exact decay rate analytically for particular pairs
of distributions seems to be difficult because there is no closed-form
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solution for the optimal thresholds used in the LLRQ decision rule at
each sensor [8], except for distributions with certain symmetric prop-
erties [2].

V. CONCLUSION

In this correspondence, we have shown that, in Bayesian decentral-
ized detection, using a long tandem of sensors, the rate of decay of the
error probability is subexponential. We also provided lower bounds for
the rate of error decay, under additional mild assumptions on the dis-
tributions.

In our model, we have assumed binary communication between sen-
sors, and we have been concerned with a binary hypothesis testing
problem. The question of whether k-valued messages (with k > 2)
will result in a faster decay rate, or even an exponential decay rate,
remains open. In the case of m-ary hypothesis testing using a tandem
network where each sensor observation is a Bernoulli random variable,
[6] shows that using (m+ 1)-valued messages is necessary and suffi-
cient for the error probability to decrease to 0 as n increases. However,
it is unknown what the decay rate is.

We finally note that under a Neyman–Pearson formulation, the pic-
ture is less complete. We are able to show the subexponential decay of
the Type II error probability, but only for a myopic sensor strategy [13].
The case of general strategies is an interesting open problem.
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New Binary Sequences With Optimal
Autocorrelation Magnitude

Nam Yul Yu, Member, IEEE, and Guang Gong, Senior Member, IEEE

Abstract—New binary sequences of period N = 4(2 � 1) for even
m � 4 are found, where the sequences are described by a 4 � (2 � 1)
array structure. The new sequences are almost balanced and have four-
valued autocorrelation, i.e., fN; 0;�4g, which is optimal with respect to
autocorrelation magnitude. The complete autocorrelation distribution and
the exact linear complexity of the sequences are mathematically derived.
Finally, it is shown that the sequences are implemented by a combination
of linear feedback shift registers and a simple logic.

Index Terms—Binary sequences, interleaved sequences, linear com-
plexity, optimal autocorrelation.

I. INTRODUCTION

Binary pseudorandom sequences with optimal autocorrelation play
important roles in many areas of communication and cryptography. In
code-division multiple-access (CDMA) communication systems, the
sequences are needed to acquire the accurate timing information of re-
ceived signals. In cryptography, on the other hand, the sequences are
employed to generate key streams in stream cipher encryptions. There-
fore, lots of attention have been paid to binary sequences with optimal
autocorrelation. More details on the sequences will be discussed in
Section II.

For a binary sequence of period N � 0 (mod 4), the autocorre-
lation fN; 0;�4g or fN; 0; 4g is optimal in the sense that it has the
two out-of-phase values with the smallest magnitudes [17]. If we allow
three out-of-phase values with the smallest magnitudes, then the best
autocorrelation should be fN; 0;�4g, where the autocorrelation is op-
timal with respect to its magnitude. In practical applications, it has the
same meaning as conventional optimal autocorrelation. Consequently,
the autocorrelation of fN; 0;�4g is also considered as optimal in this
correspondence.

In [13], Gong introduced the interleaved structure of sequences that
is indeed a good method not only for understanding a sequence struc-
ture, but also for constructing new sequences of an interleaved form
[13], [14]. In this correspondence, we show that binary sequences of
period 4v with optimal autocorrelation shown in [1] can be represented
by a v � 4 interleaved structure. We also show that a binary product
sequence [19] of period 4v with optimal autocorrelation can be rep-
resented as a 4 � v interleaved structure. Inspired by these interpre-
tations, we discover a new construction of binary sequences of period
N = 4(2m � 1) with the four-valued autocorrelation fN; 0;�4g by
the interleaved method. In details, we use a 4� (2m � 1) interleaved
structure defined by the perfect binary sequence of period 4 and a bi-
nary m-sequence of period 2m � 1. In the interleaved structure, a se-
quence defined over 4 is used as a shift sequence. The new sequences
are almost balanced, i.e., the difference between the numbers of zeros
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