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1. Introduction
Bellman’s value function plays a central role in the
optimization of dynamic decision-making models, as
well as in the structural estimation of dynamic mod-
els of rational agents. For the important case of a
finite-state Markov decision process (MDP), the value
function depends on two types of model parameters:
the transition probabilities between states and the
expected one-step rewards from each state. In many
applications in the social sciences and in engineer-
ing, the transition probabilities and expected rewards
are not known and instead must be estimated from
finite samples of data. The estimation errors for these
parameters introduce bias and variance in the value
function estimates.
In this paper, we present a methodology for evalu-

ating this bias and variance. This, in turn, allows the
calculation of confidence intervals around the value
function estimates. The confidence intervals are them-
selves approximations. For analytical and computa-
tional tractability, they rely on second-order Taylor
series approximations. Moreover, because the expres-
sions for the bias and the variance approximation
require the true but unknown model parameters, we
replace these unknown parameters by their estimates.
We evaluate the accuracy of these approximations and

validate the expressions using a large sample of real
data obtained from a mail-order catalog company.

1.1. Sources of Variance
We start by distinguishing between two types of vari-
ance that can arise in an MDP: internal and para-
metric. Internal variance reflects the stochasticity in
the transitions and rewards. For example, in a mar-
keting setting there is rarely certainty as to whether
an individual customer will purchase, resulting in
genuinely stochastic transitions and rewards. Para-
metric variance arises if the true transition probabil-
ities and expected rewards are estimated rather than
known; the potential for error in the estimates of these
parameters introduces variance in the value function
estimates.
The two types of variance have different sources

and can be illustrated through different experiments.
To illustrate internal variance, we can fix the model
parameters and then generate a number of finite-
length sample trajectories (with all trajectories having
the same length, starting from the same state, and
using a common control policy). The variation across
sample trajectories in the total rewards and/or the
identity of the final state reflects internal variance. In
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contrast, aggregation across samples does not miti-
gate parametric variance. The latter can be illustrated
by comparing the average outcomes from a large
number of samples generated under different esti-
mates for the model parameters. The variation in the
average outcomes under different estimates reflects
parametric variance.
Internal variance has already been considered in

the literature. In particular, Sobel (1982) provides an
expression for the internal variance in an MDP with
discounted rewards, while Filar et al. (1989) and
Baukal-Gursoy and Ross (1992) consider the average
reward criterion. In this paper, we focus on paramet-
ric variance. Our motivation is that in many contexts
the underlying objective involves averaging outcomes
across a large number of samples, in which case the
internal variance is averaged out. For example, in a
marketing application, firm profits typically represent
the aggregation of outcomes across a large number
of customers. Similarly, in a labor economics setting,
a firm often aggregates across a large number of
employees. Of course, there are settings where inter-
nal variance is also important. For example, when
allocating financial portfolios, the (internal) variance
of the return on a single financial portfolio is impor-
tant in its own right.

1.2. Literature
Markov decision problems and the associated meth-
odology of dynamic programming have found a
broad range of applications in numerous fields in the
social sciences and in engineering. These applications
can be broadly divided in two categories based on the
research objectives.
The first and more traditional category of applica-

tions focuses on optimizing the operation of human
or engineering systems and on providing tools for
effective decision making. The application areas are
vast, and include finance (Luenberger 1997, Campbell
and Viceira 2002), economics (Dixit and Pindyck
1994), inventory control and supply chain manage-
ment (Zipkin 2000), revenue and yield management
(McGill and van Ryzin 1999), transportation (Godfrey
and Powell 2002), communications, water resource
management, and electric power systems. The vast
majority of this literature assumes that an accu-
rate system model is available. There is an under-
lying implicit assumption that the true model will
be estimated using statistical methods on the basis
of whatever data are available. However, the statisti-
cal ramifications of working with finite data records
have received little attention. An exception is the
literature dealing with online learning of optimal poli-
cies (adaptive control of Markov chains, reinforce-
ment learning) (Sutton and Barto 1998, Bertsekas and
Tsitsiklis 1996). However, this literature is concerned

with asymptotic convergence as opposed to the com-
mon statistical questions of standard errors and con-
fidence intervals.
The second category of applications focuses on

explaining observed phenomena. Among the most
widely cited examples is the work of Rust (1987), who
develops a discrete dynamic programming model
of the optimal replacement policy for bus engines.
According to this approach, the researcher starts by
assuming that individuals or firms behave optimally,
but that the parameters of the firm or the customer
decision problem are unknown. By maximizing the
likelihood of the empirically observed actions of indi-
viduals or firms under the optimal policies for differ-
ent sets of parameters, the researcher seeks to identify
these unobserved parameters. Similar applications of
discrete dynamic programming models have become
increasingly common, particularly in the labor (Keane
and Wolpin 1994), industrial organization (Hendel
and Nevo 2002), and marketing (Gönül and Shi 1998)
literatures.
While these methods use a variety of approaches

to calculate or approximate the value function, the
value function relies on point estimates of the model
parameters. Previous attempts to consider the impact
of parameter error on the calculated value function
have been limited to simulation-based approaches.
We finally note that the impact of uncertainty in the

model parameters on the accuracy of the value func-
tion estimates has received attention in the finance
literature. For example, Xia (2001) and Barberis (2000)
investigate how dynamic learning about stock return
predictability affects optimal portfolio allocations. The
general problem considered in these studies is sim-
ilar to the one addressed in this paper. However,
the sources of variance are different. In particular,
the finance literature is concerned with internal vari-
ance due to the stochasticity in the underlying process
and parametric variance due to nonstationarity of the
model parameters, including changes in the invest-
ment horizon and/or dynamic learning. In contrast,
we abstract away from the problem of internal vari-
ance, assume that the model parameters are station-
ary, and focus on the parametric variance that results
from estimating the model parameters from a finite
sample of data.

1.3. Overview
As far as we know, this is the first paper to study
parametric bias and variance in MDPs. It serves two
purposes: First, to illustrate the potential for error in
value function estimates and to highlight the poten-
tial magnitude of these errors; second, to provide for-
mulas and a methodology for estimating the bias and
variance in value function estimates, which can then
be used to construct confidence intervals around the
value function estimates.
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We begin with some notations and background
material in §2. In §3, we illustrate the relationship
between errors in the model parameters and the accu-
racy of value function estimates, using actual data
from a catalog mailing context. In §4, we present a
methodology for estimating the bias and variance in
the value function estimates. In §5, we validate our
methodology using the catalog mailing data. We con-
clude in §6 with a review of the findings and a dis-
cussion of opportunities for future research.

2. A Formal Description of
the Problem

We consider a finite-state, finite-action, infinite-hori-
zon, discounted reward MDP, where S denotes the set
of states of cardinality m, A is the set of actions, � ∈
�0�1� is the discount factor, and Pa

ij and Ra
ij �i� j ∈ S�

a ∈ A� denote transition probabilities and the condi-
tional expected rewards. The scalars Pa

ij and Ra
ij are

interpreted as follows: if the current state is i and
action a is applied, then the next state is j with prob-
ability Pa

ij ; furthermore, given that a transition from
i to j occurs following an action equal to a, a ran-
dom reward is obtained, whose conditional expecta-
tion is equal to Ra

ij . Note that if action a is applied at
state i, the expected reward, denoted by Ra

i , is equal
to

∑
j P

a
ijR

a
ij .

We are interested in the value function associated
with a stationary, Markovian, possibly randomized,
fixed policy . The assumption that the policy is fixed
allows us to initially abstract away from the control
problem. As we discuss in §4.2, the impact of parame-
ter uncertainty on the solution to the control problem
raises additional issues. We use �a � i� to denote the
conditional probability of applying action a when at
state i. Let P

ij =∑
a �a � i�P a

ij , which is the transition
probability from i to j . The superscript  here is a
slight abuse of notation. It will be clear from the con-
text that the Greek letter  as a superscript indicates
that the parameter is a function with a policy as an
argument. Similarly, denote

R
i =∑

a

�a � i�Ra
i =

∑
a

�a � i�∑
j

P a
ijR

a
ij � (1)

which is the expected reward at state i, under the pol-
icy . We use P to denote the m × m matrix with
entries P

ij , and R to denote the m-dimensional vec-
tor with components R

i .
Define the value function associated with policy 

to be the m-dimensional vector given by

Y  =
�∑

k=0
�k�P�kR = �I −�P�−1R�

In our setting, the true model parameters, Pa
ij and

Ra
ij , are not known. Instead, we have access to a

finite sample of data from which these parameters
can be estimated. Specifically, assume that for every i
and a, we have a record of Na

i transitions out of
state i, under action a, and the associated rewards.
We treat the numbers Na

i as fixed (not as random
variables), and assume that Na

i > 0 for every i and
a. This last assumption restricts attention to actions
that have been tried before. For at least two rea-
sons, we anticipate that this will be a relatively weak
assumption in practice. First, the inability to evalu-
ate actions in one state does not restrict our ability
to evaluate the same action in other states because
we can still evaluate an action at any state where
the action has been tried before. Thus, the restric-
tion only applies to states in which there is no past
information about the outcome. Second, there is a
tremendous amount of variation in historical policies
in many real-world applications. This variation may
arise for a lot of reasons including experimentation,
implementation errors, or nonstationarity in the pol-
icy. If there is interest in untried actions and there are
priors available to help predict the outcome, then a
Bayesian approach can be used. For completeness, we
detail such an approach in Appendix D (provided in
the e-companion).1

Furthermore, we do not assume any relation be-
tween the sampling process and the policy  of inter-
est; in particular, the Na

i for different a need not be
proportional to �a � i�, and the number Ni =

∑
a N

a
i

of transitions out of state i need not be related to the
steady-state probability of state i under policy .
For the Na

i transitions out of state i under action a
in the sample data, let Na

ij be the number of transitions
that lead to state j . Furthermore, let Ca

ij be the sum of
the rewards associated with these Na

ij transitions (for
completeness, we define Ca

ij = 0 if Na
ij = 0). We define

�Pa
ij =

Na
ij

N a
i

� �Ra
ij =

Ca
ij

N a
ij

�

which will be our estimates of Pa
ij and Ra

ij , respectively.
When Na

ij = 0, we define �Ra
ij = 0. The possibility of

Na
ij being zero for feasible transitions introduces some
additional bias, which will not be accounted for. How-
ever, in our analysis, we will assume that any transi-
tion with Na

ij = 0 is infeasible. In addition, we define
�P
ij =

∑
a

�a � i� �Pa
ij �

and

�Ra
i =

∑
j

�Pa
ij
�Ra
ij =

∑
j C

a
ij

N a
i

� �R
i =∑

a

�a � i� �Ra
i � (2)

1 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
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which will be our estimates of P
ij , R

a
i , and R

i , respec-
tively. We finally define a matrix �P and a vector �R ,
with entries �P

ij and �R
i , respectively, which will be

our estimates of P and R . Based on these estimates,
we obtain an estimated value function �Y  , given by

�Y  = �I −� �P�−1 �R� (3)

We assume that the sample data reflect the true pro-
cess in the following sense. The vector �N a

i1� � � � �N
a
im�

follows a multinomial distribution with parameters
�N a

i � P
a
i1� � � � � P

a
im�. Let Ɛ denote expectation under the

true model. We then have Ɛ�N a
ij � = Na

i P
a
ij . A last

assumption that reflects our earlier assumptions that
Na

i is fixed and that each sample reward is condition-
ally independent from the past, is that Ɛ�Ca

ij � Na
ij � =

Na
ijR

a
ij . Under these assumptions, it is easily verified

that �P and �R are unbiased estimates of P and R.
Based on Equation (3), we can anticipate the impact

of errors in �P and �R on �Y  . Note first that �Y  is lin-
ear in �R , so that if P were observed without error
(i.e., if �P = P), the variance of �R would lead to
variance in �Y  but not to bias (because �R is unbi-
ased). In contrast, �Y  is nonlinear in �P , so that errors
in �P lead to both bias and variance in �Y  . Moreover,
due to the matrix inversion the nonlinearity is sub-
stantial, so that any error in �P can translate to a large
error in �Y  . This is particularly true when � is close
to one. Furthermore, if the errors in �P and �R are
correlated, the nonlinearity implies that errors in �R

will also lead to bias in �Y  .

3. An Illustration
To illustrate the bias and variance that can be intro-
duced to value function estimates by errors in the
model parameters, we use real data from a mail-order
catalog company. While this application serves as a
useful case study, our findings are not limited to this
application.
Deciding who should receive a catalog is amongst

the most important decisions that mail-order compa-
nies must address. Yet, identifying an optimal mailing
policy is a difficult task. Customer response functions
are highly stochastic, reflecting in part the relative
paucity of information that firms have about each cus-
tomer. Moreover, the problem is a dynamic one. Pur-
chasing decisions are influenced not just by the firm’s
most recent mailing decision, but also by prior mail-
ing decisions. As a result, the optimal mailing deci-
sion depends on past and future mailing decisions.
A typical catalog company might mail 25 catalogs

per year. The number of catalogs, the dates that they
are mailed, and the content of the catalogs are deter-
mined up to a year before the firm decides to whom
each catalog will be mailed. For this reason, these
decisions are typically treated as fixed when decid-
ing who to mail to. Accordingly, the firm only needs

to decide which customers to mail to, on each exoge-
nously determined mailing date (a discrete infinite-
horizon problem).
The firm’s objective is to maximize its expected

total discounted profits. Rewards (profits) in each
period are calculated as the revenue earned from cus-
tomer purchases (if any) less the cost of the goods
sold and the mailing costs (approximately 65 cents
per catalog mailed). To support their mailing deci-
sions, catalog firms typically maintain large databases
describing the individual purchase and mailing histo-
ries for each customer. We are fortunate to have access
to a large database describing the transaction and
mailing histories for the women’s apparel division
of a moderately large catalog company. This data is
described in detail in Simester et al. (2006). It includes
the complete transaction histories for approximately
1.72 million customers. The mailing histories are com-
plete for the six-year period from 1996 through 2002
(the company did not maintain a record of the mailing
history prior to 1996). Catalogs were mailed on 133
occasions in this six-year period, so that on average a
mailing decision occurred every two to three weeks.
The catalog mailing problem can be modelled as an

MDP (as in Gönül and Shi 1998), where the state is a
summary of the customer’s history, and the action at
each period is to either mail or not mail. The construc-
tion of the state space is an interesting problem that
we will not consider here. We will instead follow a
standard industry approach to this problem that uses
three state variables, the so-called “RFM” measures
(e.g., Bult and Wansbeek 1995, Bitran and Mondschein
1996). These measures describe the recency, frequency,
and monetary value of customers’ prior purchases.
“Recency” is measured as the number of days (in hun-
dreds) since a customer’s last purchase. “Frequency”
measures the number of items that customers pre-
viously purchased. “Monetary value” measures the
average price (in dollars) of the items ordered by each
customer.
For the purposes of this illustration, we constructed

a state space by quantizing each of the RFM variables
to four discrete levels, yielding a state space with �S� =
43 = 64 states. At each historical mailing epoch, we
evaluate the RFM variables of each customer (regard-
less of whether the customer received a catalog or
made a purchase) and characterize him/her into one
of the 64 states. We also treat the purchase amount
(zero if no purchase in the epoch) less the mailing cost
as a reward sample. Therefore, each customer’s his-
torical data over time serves as a sample trajectory.
Following the procedure described in the previous
section, we may then estimate the model parameters
�P and �R and calculate �Y for the current policy embed-
ded in data.
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Because the firm is interested in the average profit
per customer rather than the profit earned from an
individual customer, internal variance averages out.
However, parametric variance is of interest because it
affects the comparison of different policies. In particu-
lar, when evaluating a new policy, the firm would like
both a prediction of the expected profits from adopt-
ing the new policy, together with confidence bounds
around that prediction.
To illustrate the impact of parametric variance,

we randomly divided the 1.72 million customers
and 164 million observations into 250 equally-sized
subsamples, each containing approximately 657,000
observations. By “observation,” we mean a mailing
period and an associated state transition in the his-
tory of a customer, irrespective of whether a cata-
log was mailed or a purchase was made during that
time period. We then separately estimated the model
parameters �P and �R following §2 using the obser-
vations from each of these subsamples. Here, we con-
sidered the policy  to be the same as the sampling
policy that generated the data. Using Equation (3), we
calculated 250 estimates of the value function. As a
benchmark, we also estimated the model parameters
using the full sample of 1.72 million customers. For
the purposes of this illustration, we will interpret the
model estimated using the full sample as the “true”
model, which is essentially equivalent to assuming
that the 1.72 million customers are the full popula-
tion. Thus, within a typical subsample, the expected
reward in each state �R was estimated using an aver-
age of approximately 10,000 observations (Ni), while
the transition matrix �P was estimated using an aver-
age of 160 observations per transition. In practice,
most of the transitions are infeasible; for example,
a customer cannot transition from having three prior
purchases to only having two prior purchases. When
limiting attention to only those transitions that are
feasible, the average number of observations per tran-
sition was approximately 1,400. (The average of the
positive Na

ij s is around 1,400.)
In Figure 1, we report the empirical distribution

(histogram) of the value function �Y  across all 250
subsamples under the historical policy used by the
firm (as calculated using the whole sample). To sum-
marize an estimated value function with a single
number, we average the estimates across states for
each subsample, weighing each state equally. We will
refer to this measure as the average value function
(AVF). We use equal weights to increase the clar-
ity of illustration. By using equal weights (as with
any fixed weights), we avoid potentially introducing
an additional source of variance due to the weights
themselves being random variables. The true AVF,
computed from the parameters estimated for the full
sample, is $28�54. In comparison, the average of the

Figure 1 Mail Catalog Problem: A Histogram of the AVF of the
Historical Policy for a Partition of the Customers to
250 Subsamples
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Note. The discount factor per period is � = 0�98. The policy used is the
historical (mixed) policy used by the firm, and the value function is weighted
uniformly across states. The AVF obtained from the full data is $28�54, and
is plotted as a vertical line. The empirical standard deviation is $0�97.

250 estimates is $28�65, with an empirical standard
deviation of $0�97. The difference between $28�54
and $28�65 is not statistically significant and is of
seemingly little managerial importance. However, the
variance is potentially very important. The 95% con-
fidence interval around the 250 AVF estimates ranges
from $26�59 to $30�49, or roughly 14% of the true
mean. Of course, we were able to estimate the $0�97
standard deviation only because we had access to
many subsamples. In a real-world setting, where only
a single sample is available, the researcher gener-
ally relies on simulations or jack-knifing techniques to
estimate the standard deviation. In this paper, we will
present a procedure for deriving closed-form approx-
imations of the standard deviation directly from the
data.
We can demonstrate the robustness of the above

described results by varying both the size of the
subsamples and the discount factor. In Table 1, we
present the empirical bias and standard deviation
for different discount factors (averaged over 10 rep-
etitions). In each repetition, we divide the data set
into 100 subsamples and compute the AVF for each
subsample. We calculate the average absolute value
of the bias and the empirical standard deviation of
the AVF estimates across subsamples. It can be seen
that the average bias is small for discount factors that
are not too close to one. For discount factors that
are close to one, the bias becomes more meaning-
ful but still remains much smaller than the standard
deviation. In another experiment, we varied the pre-
cision of the estimates by changing the size of the
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Table 1 Bias and Variance as a Function of the Discount
Factor

� Bias/AVF (%) STD/AVF (%)

0.500 0.12 3.57
0.900 0.14 3.37
0.925 0.15 3.32
0.950 0.19 3.26
0.980 0.42 3.33
0.991 0.99 3.88
0.996 2.38 5.26

Note. For each discount factor, we partition the data 10 times,
with each partition resulting in 100 subsamples (each with
roughly 1.6 million observations). In the table, we present the
mean absolute value of the bias and the mean empirical stan-
dard deviation each averaged across the 10 repetitions. Both of
these means are standardized by dividing by the AVF associated
with the historical policy (as measured on the whole data set).

subsamples and repeated the analysis using sub-
samples with a different number of observations. In
Figure 2, we report empirical standard deviations
of the AVF estimates under the different-sized sub-
samples. Each cross in Figure 2 represents a ran-
dom assignment of the observations to subsamples
(the different assignments led to variation in the sub-
samples between repetitions). While increasing the
size of the subsamples increases the accuracy of the
model parameters, and in turn reduces the variance
in the AVF estimates, the rate at which the vari-
ance approaches zero slows down as the subsamples
increase in size. It seems that even when estimat-
ing the model parameters with very large amounts of
data, parametric variance leads to nonnegligible vari-
ance in the value function estimates.

Figure 2 Mail Catalog Problem: The Empirical Standard Deviation of
the AVF as a Function of the Sample Size
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Note. Each cross represents a single (random) partition of the observations
into subsamples.

4. Analysis
In this section, we provide closed-form approxima-
tions for the bias and variance of the estimated value
function using second-order approximations. We then
briefly discuss the control problem where in addition
to the estimation process, we look for an optimal pol-
icy. In §4.1, we will drop the superscript  because
we consider a fixed policy .

4.1. Approximations for Bias and Variance in
the Estimated Value Function

We now derive closed-form approximations for the
(parametric) bias and variance of �Y . The analysis
follows a classical (non-Bayesian) approach, where
the bias and variance are expressed in terms of the
(unknown) true parameters. Because the true model
parameters are unknown, we substitute the estimated
parameters, which is a standard practice. However, as
a result of this substitution, the values obtained for
the bias and variance are themselves estimates.
For completeness, we also provide in Appendix D

a Bayesian analysis. Under the Bayesian approach, P
and R are treated as random variables with known
prior distributions, and we deduce approximations
for the conditional bias and variance, given the val-
ues of �P and �R. The expressions obtained using the
Bayesian approach are almost identical to the ones in
the classical approach (unless an informative prior is
available).
Our goal is to calculate Ɛ��Y � and the covariance

matrix for �Y , defined by
cov��Y �= Ɛ��Y �Y 	�− Ɛ��Y �Ɛ��Y �	�

We define a random m×m matrix 
P = �P − P and
a random m-vector 
R = �R − R. Note that 
P and 
R
are zero mean random variables that represent the
difference between the true model and the estimated
model.
To help interpret some of the later analysis, it will

be helpful to have a sense of the magnitudes of 
P and

R. Because the transition probabilities are bounded by
zero and one, the errors in these probabilities are also
bounded between zero and one. The transition prob-
abilities themselves will tend to be smaller the larger
the number of states to which transitions are feasible,
while the errors in these probabilities will be smaller
the more observations there are relative to the number
of feasible transitions. In the example discussed in §3
and Figure 1, the maximum error in the transition
probabilities in a subsample (maxij � 
Pij �) has a mean
of 0.011 and a standard deviation of 0.004. Further-
more, the average (averaged over all pairs �i� j� with
a nonzero transition probability) absolute error in the
transition probability estimates, � 
Pij �, has a mean of
6�3 × 10−4 and an empirical standard deviation of
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0.001. Note that in that example, the feasible tran-
sitions consist of less than 10% of the 642 entries
in P . The expected rewards are not bounded a priori
and so the errors are also unbounded. In the cata-
log example, the average absolute error in the reward
estimates, � 
Rij �, has a mean of $4.25 and a standard
deviation of $1.82. The maximal error in the reward
estimates, maxij � 
Rij �, has a mean of $56.3 and a stan-
dard deviation of $43.2.
We now write the expectation of �Y (cf. Equation

(3)) as

Ɛ��Y � = Ɛ��I −��P + 
P��−1�R+ 
R��

= Ɛ

[ �∑
k=0

�k�P + 
P�k�R+ 
R�

]
� (4)

where the geometric series expansion of �I−��P+ 
P��−1

was used to obtain the second equality. We use
the notation X = �I − �P�−1 and fk� 
P� = X

( 
PX
)k =(

X 
P)kX. The following lemma will be useful.
Lemma 4.1.

∑�
l=0�

l�P + 
P�l =∑�
k=0�

kfk� 
P�.

Proof.
�∑

k=0
�kfk� 
P� =

�∑
k=0

�k�X 
P�kX = �I −�X 
P�−1X

= �X−1−X−1�X 
P�−1 = �I −�P −� 
P�−1

=
�∑
l=0

�l�P + 
P�l�

where we repeatedly used the definition of X and the
fact that X is invertible. �

Using Lemma 4.1 in Equation (4), we obtain

Ɛ��Y � = �I −�P�−1R+
( �∑

k=1
�kƐ�fk� 
P��

)
R

+
�∑

k=0
�kƐ�fk� 
P� 
R�� (5)

There are three terms on the right-hand side of
Equation (5). The first term is the value function for
the true model. The second term reflects the bias
introduced by the uncertainty in �P alone, and the
third term represents the bias introduced by the cor-
relation between the errors in �P and �R.
Equation (5) provides a series expansion of the error

in terms of high-order moments and cross moments
of the errors in �P and �R. The calculation of the bias is
tedious because the term Ɛ�fk� 
P�� involves kth-order
moments of multinomial distributions. But because
� 
Pij � is typically small, 
Pk is generally close to zero for
large k. For this reason, we limit our attention to a
second-order approximation and we will assume that
Ɛ�fk� 
P��≈ 0 for k > 2, and that Ɛ�fk� 
P� 
R�≈ 0 for k > 1.
We use the catalog data to investigate the appropri-
ateness of this assumption in §5. Therefore, we can

write Equation (5) as

Ɛ��Y � = �I −�P�−1R+�Ɛ�f1� 
P��R+�2Ɛ�f2� 
P��R

+XƐ� 
R�+�Ɛ�f1� 
P� 
R�+Lexp� (6)

where we represent all the terms of order greater than
two in

Lexp =
�∑

k=3
�kƐ�fk� 
P��R+

�∑
k=2

�kƐ�fk� 
P� 
R�� (7)

Given that we will be using second-order approxi-
mations, we expect that the mean and variance of �Y
can be calculated as long as we are able to compute
the covariance between various entries of 
R and 
P .
We start with 
P . First, we introduce some notation.

We use the notation Ai· and A·i to denote the ith row
and column, respectively, of a matrix A, and diag�Ai·�
to denote a diagonal matrix with the entries of Ai·
along the diagonal. We note that 
Pi· and 
Pj· are inde-
pendent when i �= j . To find the covariance matrix
of 
Pi·, we consider the row vectors �Pa

i· and Pa
i· with the

estimated and true transition probabilities, and define

Pa
i· to be their difference. Note that

Pi· =
∑
a

�a � i�P a
i·�

For each state-action pair �i� a�, we define

Ma
i = diag�P a

i·�− �P a
i·�	Pa

i·�
which is a symmetric positive semidefinite matrix.
Recall that for each �i� a�, we have �Pa

ij =Na
ij /N

a
i , where

the Na
ij are drawn from a multinomial distribution.

The covariance matrix of �Pa
i· isMa

i /N
a
i , and the covari-

ance matrix of �Pi· is

cov�i� = Ɛ� 
P	
i· 
Pi·�=

∑
a

�a � i�2
Na

i

Ma
i �

Now we consider 
R. Because Cij is independent of
Ckl whenever i �= k, we have Ɛ� 
Ri


Rk� = 0 for i �= k.
Furthermore,

Ɛ� 
R2i �=
∑
a

�a � i�2Ɛ�� 
Ra
i �
2��

In the following, we use Na
i· to represent the vector

with components Na
ij , j = 1� � � � �m, and Ra

i· to rep-
resent the vector with components Ra

ij , j = 1� � � � �m.
Note that Cij and Cik are independent given Nij and
Nik, so that

Ɛ�� 
Ra
i �
2� = var

[∑
j C

a
ij

N a
i

]
= 1

�N a
i �
2
var

[∑
j

Ca
ij

]

= 1
�N a

i �
2

{
var

(
Ɛ

[∑
j

Ca
ij �Na

i·
])

+ Ɛ

(
var

[∑
j

Ca
ij �Na

i·
])}
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= 1
�N a

i �
2

{
var

(∑
j

Ra
ijN

a
ij

)
+ Ɛ

[∑
j

V a
ij N

a
ij

]}

= 1
�N a

i �
2

{
�N a

i �
2 var�Ra

i·� �Pa
i·�	�+Na

i

∑
j

V a
ij P

a
ij

}

= 1
Na

i

�Ra
i·Ma

i R
a
i·	 +V a

i·Pa
i·	�� (8)

Here, V a
ij is the variance of the rewards associated

with a transition from i to j , under action a.
To account for the correlation between 
P and 
Ri, we

use Equation (2) to obtain

�Ri =
∑
a

�a � i�∑
j

�Ra
ij
�Pa
ij

= ∑
a

�a � i�∑
j

�Ra
ijP

a
ij +Ra

ij

Pa
ij + 
Ra

ijP
a
ij + 
Ra

ij

Pa
ij �� (9)

where 
Ra
ij = �Ra

ij − Ra
ij . Comparing with Equation (1),

we have


Ri= �Ri−Ri=
∑
a

�a � i�∑
j

�Ra
ij

Pa
ij + 
Ra

ijP
a
ij + 
Ra

ij

Pa
ij �� (10)

We use � to denote Hadamard multiplication: for
any two matrices A and B with the same dimensions,
�A � B� is a matrix (again with the same dimensions)
with entries �A � B�ij =AijBij . We also use e to denote
the m-dimensional vector with all components equal
to one, and we use a to denote the m-dimensional
vector with the ith component being �a � i�. With this
notation, Equation (10) becomes


R=
(∑

a

a � �� 
Pa �Ra + 
Ra � Pa + 
Ra � 
Pa�e�

)
� (11)

We define an m×m matrix Q with entries

Qij = cov�i�
j· X·i � (12)

(Recall the definition X = �I −�P�−1, and that Y =XR
is the true value function.) We define an m-dimen-
sional vector B with its ith component defined as

Bi =
∑
a

�a � i�2
Na

i

Ra
i·Ma

i X·i �

The following proposition quantifies the bias under
the second-order approximation assumption. The
proof is given in Appendix A.

Proposition 4.1. The expectation of the estimated
value function �Y satisfies

Ɛ��Y �= Y +�2XQY +�XB+Lexp�

where Lexp is defined in Equation (7) and

Lexp = o

(
1

Na∗
i∗

)
�

where Na∗
i∗ =min�i� a�#�a � i�>0Na

i and the term o�·� satisfies
limN→� o�1/N�·N = 0.

In the above proposition, �i∗� a∗� represents the least
sampled state-action pair that is used by the pol-
icy. The term Lexp decreases to zero faster that 1/N a∗

i∗ ,
whereas Q and B can be shown to decrease like 1/N a∗

i∗ .
Therefore, our approximation for the bias in the value
function estimates will be

�2XQY +�XB�

For the purposes of the next proposition, we intro-
duce more notation. We define the diagonal matrixW ,
whose diagonal entries are given by

Wii =
∑
a

�a � i�2
Na

i

���Y 	 +Ra
i·�

·Ma
i ��Y +Ra

i·	�+V a
i·	Pa

i·�� (13)

The next proposition provides an expression for the
second moment, Ɛ�Y �Y 	�. Together with the expres-
sion for Ɛ��Y � in the preceding proposition, it leads to
an approximation for the covariance matrix of �Y . The
proof is given in Appendix B.

Proposition 4.2. The second moment of �Y satisfies

Ɛ��Y �Y 	� = YY 	+X
{
�2�QYR	+RY 	Q	�

+��BR	+RB	�+W
}
X	+Lvar�

where Lvar is given by

Lvar =
∑

k� l# k+l>2

�k+lƐ�fk� 
P��RR	 + � 
R�� 
R�	�fl� 
P�	�

+�Ɛ�X� 
R�� 
R�	f1� 
P�	�+�Ɛ�f1� 
P�� 
R�� 
R�	X	�

= o

(
1

Na∗
i∗

)
�

By taking the difference between Ɛ��Y �Y 	�, as given
by Proposition 4.2, and Ɛ��Y �Ɛ��Y 	�, as prescribed
by Proposition 4.1, the following corollary is easily
derived.

Corollary 4.1. The covariance matrix of the estimated
value function satisfies

cov��Y �=XWX	 + o

(
1

Na∗
i∗

)
�

The expressions in Propositions 4.1 and 4.2 and
Corollary 4.1 yield several insights. First, as the counts
Na

i increase to infinity, cov�i� approaches zero, and
thus all the terms involving the matrices Q, B, and W
converge to zero. As expected, this implies that as
the sample size increases and the accuracy of the esti-
mated parameters improves, both the bias and the
variance decrease to zero. Second, the expressions for
the bias and variance rely on the true model param-
eters, which are unknown. As discussed in the intro-
duction, to obtain computable approximations of the
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bias and variance, we will use instead �P , �R, and
the empirical variance of each Ra

ik. In principle, we
could also estimate the bias and variance due to this
approximation, but this is tedious and, as suggested
by the experimental results in the next section, gen-
erally unnecessary. Third, when mini� a N

a
i is large,

it follows that the nonzero entries of B, W , and Q
decrease to zero like 1/N a∗

i∗ . Therefore, the standard
deviation decreases to zero like 1/

√
Na∗

i∗ , which is the
usual behavior of empirical estimates.
The expressions in Proposition 4.1 and Corollary 4.1

allow us to qualitatively compare the magnitude of
the bias and variance. According to Corollary 4.1, the
standard deviation of �Yi can be approximately esti-
mated as

%��Yi�=
√
Xi·WX	

i· � (14)

The next proposition, proved in Appendix C, quan-
tifies the ratio between the standard deviation and
the bias. Recall that for two positive functions f
and g (defined on the real numbers), we write f �n�=
(�g�n�� if there exist constants N0 and C > 0 such that
f �n�≥Cg�n� for n≥N0.

Proposition 4.3. Suppose that %��Yi� > 0 and Na∗
i∗ /

N a
i > c > 0 for all a and i. Then,

%��Yi�

�Ɛ��Yi�−Yi�
=(

(√
Na∗

i∗

)
for all i�

Proposition 4.3 implies that the errors introduced
by the parametric variance will generally be much
larger than the bias. Note that because W is a positive
semidefinite matrix, %��Yi� > 0 is a very weak nonde-
generacy assumption. The condition Na∗

i∗ /N
a
i > c > 0

requires that sample sizes increase “uniformly.”
While the expression in Corollary 4.1 allows us to

approximate the covariance matrix of the estimated
value function, the findings on their own do not allow
us to calculate confidence intervals around these esti-
mates. Calculating a confidence interval requires that
we know the distribution of the value function esti-
mates. A central limit theorem (Serfling 1980, p. 122,
Theorem A) speaks to this issue.

Theorem 4.1 (Serfling 1980). Suppose that a se-
quence of random vectors *Xn #= �Xn1� � � � �Xnk�+ is
�� �,� b2n�� (asymptotically normal, that is, �Xn − ,�/

bn
d→ � �0���); and the sequence of scalars bn converges

to 0. Let g�x�= �g1�x�� � � � � gm�x��, x= �x1� � � � � xk�, be a
vector-valued function for which each component function
gi�x� is a real-valued function and has a nonzero gradient
at x=,. Let

D=
[
0gi

0xj

∣∣∣∣
x=,

]
m×k

�

Then, g�Xn� is �� �g�,�� b2nD�D	�.

Because �Pa
ij and �Ra

ij are all estimators that asymptot-
ically follow normal distributions, we may consider
�Y as the function g in the above theorem and con-
clude that �Y is asymptotically normal. We further
investigate this issue using catalog mailing data in
§5, where we report that a Kolmogorov-Smirnov test
cannot reject the hypothesis that �Y is normally dis-
tributed.
Readers may wonder whether we could have used

Serfling’s (1980) result to derive our earlier findings.
It is technically possible to do so. Indeed, under the
assumption that all of the Na

i s are identical, we were
able to show that the two approaches yield the same
result, and observed that the two derivations were of
comparable length and complexity. However, if sam-
pling occurs at different rates in different states, the
rate at which the Na

i s approach infinity will gener-
ally vary. In this case, use of the Serfling theorem,
or any related central limit theorem, requires exten-
sive additional derivation. Moreover, these theorems
do not address the issue of bias.
The same approach can be used for infinite-horizon

average reward MDPs. Under mild assumptions on
the structure of the Markov chain, we get similar
approximations to the bias and variance for the aver-
age reward. The idea can also be extended to semi-
Markov processes, where the transition times between
time epochs are random and estimated from sampled
data.

4.2. The Control Problem
To this point, we have focused on the value func-
tion under a fixed policy. In many applications, we
are interested in comparing an existing policy with an
alternative policy, possibly derived through a policy
optimization process. We know from the MDP theory
that there exists an optimal policy ∗ such that Y ∗

i ≥
Y 

i for all admissible policies  and all states i ∈ S. An
optimal policy may be obtained using value iteration,
policy iteration, or linear programming algorithms.
See, for example, Bertsekas (2000).
Because we do not have access to the true model

parameters P and R, optimization based on the esti-
mated parameters �P and �R produces an “optimal”
policy � such that �Y � ≥ �Y  for all admissible poli-
cies . In general, policy � is different from ∗.
Moreover, because the policy � is obtained through
an optimization process, the estimates of the model
parameters for that policy ( �P � and �R�) will no longer
be unbiased estimates of the true model parameters
(P � and R�). Therefore, we cannot use the approxima-
tion derived in Proposition 4.1 (for a fixed policy) to
evaluate the bias in the optimal value function—nor
can we use the approximations in Proposition 4.2 and
Corollary 4.1 to estimate the covariance matrix.
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We can illustrate the problem through a sim-
ple example. Consider a single-state MDP with two
actions, that is, S = *1+ and A = *0�1+. Both actions
yield identical zero-mean random rewards. Clearly, in
such a problem ∗ could be either action 0 or 1, with
value functions

Y ∗ = Y � = 0�
Now assume that we have n samples to estimate

the expected reward �Ra for either action. Indeed,
both �Ra follow (approximately) a normal distribution
� �0�1/n�. The policy optimization procedure chooses
the action with the largest �Ra. If we use �R∗ to denote
the maximum of �R0 and �R1, we know from Jensen’s
inequality that Ɛ� �R∗� > 0, and so the value function
estimated for the chosen policy will on average be
positively biased:

Ɛ��Y �� = Ɛ� �R∗�= Ɛ�max* �R0� �R1+�
> max*Ɛ� �R0��Ɛ� �R1�+= 0�

The magnitude of Ɛ��Y ��, and therefore the bias in
this example, is studied in the order statistics litera-
ture (Leadbetter et al. 1983). We also refer readers to
Clark (1961), which presents a procedure to approxi-
mate moments of the maximum of a finite number of
correlated Gaussian random variables.
This problem raises two issues. First, how can we

de-bias the estimates of �P � and �R� so that we can use
our earlier results to estimate the bias and covariance
matrix of a value function when the policy is derived
from an optimization procedure? Second, because
the optimization procedures themselves rely on esti-
mates �P and �R , the policies derived from standard
dynamic programming algorithms will generally not
be truly optimal (� �= ∗). In the remainder of this
section, we propose a cross-validation approach that
can help to address the first issue. Unfortunately, we
do not have a solution to the second issue. Indeed, it
seems unlikely that a general procedure can be found
that resolves the second issue as the suboptimality
reflects the absence of complete information in the
training data.
The bias in the estimates of �P � and �R� arises be-

cause optimization methods tend to favor actions for
which the estimation errors in �P and �R lead to
inflated estimates of the value function. As long as the
errors in �P and �R are independent across samples, we
can derive unbiased estimates of P and R if we use a
different sample of data to evaluate the policy � than
the sample we used to design the policy. In particu-
lar, consider the following approach: Start by dividing
the training data into two subsamples—a calibration
sample and a validation sample. Use the calibration

sample to estimate the model parameters �Pcal and �Rcal
and obtain the “optimal” policy

�cal = argmax


�I −� �P
cal�

−1 �R
cal�

Then, estimate model parameters �Pval and �Rval from
the validation sample and (following Equation (3))
evaluate the policy using these new parameters:

�Y �cal
val = (

I −� �P �cal
val

)−1 �R�cal
val �

Through this procedure, we can de-bias the value
function estimates by reporting �Y �cal

val instead of �Y �cal
cal ,

where �Y �cal
cal = �I −� �P �cal

cal �
−1 �R�cal

cal . Accordingly, we may
also approximate the bias and variance and therefore
the confidence bounds of �Y �cal

val following Proposition
4.1 and Corollary 4.1.
The assumption that the estimation errors in �P and

�R are independent across the calibration and valida-
tion subsamples is obviously critical. In this paper,
we have assumed that estimates �P and �R are derived
from straightforward nonparametric aggregates of the
available data. Under this approach, the estimation
errors are independent across the subsamples as long
as any measurement errors are independent across
observations. However, in some settings, it is com-
mon to estimate the model parameters frommaximum
likelihood estimates that require functional form and
distribution assumptions (this is particularly common
in the economics literature). Under this alternative
approach, any errors introduced by the functional
form and distribution assumptions will be correlated
across the subsamples. As a result, the cross-validation
procedure that we have proposed will not de-bias
the estimates of �P � and �R� , even if the measurement
errors are independent across the observations.

5. Experiments
The reliance on a second-order expansion in deriving
the approximations for the bias and variance pre-
sumes that higher-order terms are relatively unim-
portant. We now examine this assumption in further
detail by using the catalog mailing data to validate
the findings. These data also enable us to investigate
the impact (if any) of using estimates of the model
parameters in these expressions (in the absence of the
true model parameters).
If the value function estimates follow a normal dis-

tribution, the variance and bias expressions derived
in the previous section facilitate calculation of confi-
dence intervals around the de-biased value function
estimates. We can investigate the accuracy of these
confidence intervals by comparing how frequently the
“true” value function falls within the confidence inter-
vals. We would expect that on average the true value
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will fall within one standard deviation of the unbi-
ased mean 68% of the time and within two standard
deviations 95% of the time.
We begin by investigating whether the value func-

tion estimates follow a normal distribution. We do so
by using a Kolmogorov-Smirnov test on each of the
data points reported in §3. The hypothesis that the
reward is a two-sided Gaussian could not be rejected
with confidence 0.05 at any instance. The average
p-value was 0.612 with a minimum of 0.061 and a
maximum of 0.991. This indicates that it cannot be
determined that the data do not follow a Gaussian
rule.
We use the same partitions of the data as in §2.

In Figure 3, the percentage of times that the true
value function was within one standard deviation is
denoted by a “+” and within two standard devia-
tions by an “�.” For example, for the 250 subsam-
ples (with about 657,000 observations each), we report
the percentage of the 250 estimates in which the true
AVF (as estimated on the full sample) was within
the estimated confidence interval. By redrawing the
250 subsamples 10 times, we report 10 instances of
this percentage. An analogous process was used with
other choices of the subsample size. The findings in
Figure 3 confirm that the percentage of estimates that
fall within one and two standard deviations of the
true AVF are close to the targets of 68% and 95%,
respectively.
We next consider the importance of the second-

order approximations. We do so by taking advantage
of the role played by the discount factor �. The impor-
tance of higher-order terms in the series expansions

Figure 3 The Percentage of the AVF Estimates that Fall Within One
�“+”� and Two �“�”� Standard Deviations from the Value
Calculated Based on the Full Data Set

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100

Observations per subsample (millions)

P
er

ce
nt

ag
e 

be
lo

w
 1

 (
+

) 
or

 2
 (

+
) 

S
T

D
s

Note. Each “+” and “�” represents a random partition of the full data to
subsamples. The discount factor is �= 0�98.

Table 2 Percentage of the AVF Estimates that Fall Within One
and Two Standard Deviations

Samples with Samples with
� one STD (%) two STDs (%)

0.500 67.68 (63.2-73.6) 95.44 (93.2-98.0)
0.900 69.12 (64.8-72.0) 94.84 (93.6-96.0)
0.925 68.12 (60.8-73.6) 95.08 (93.2-96.8)
0.950 67.88 (64.0-70.4) 94.76 (92.0-96.8)
0.980 68.84 (61.2-72.4) 95.52 (94.0-97.2)
0.991 66.60 (64.0-70.0) 94.92 (92.0-97.6)
0.996 63.04 (58.8-68.4) 92.20 (89.6-93.2)

Note. We randomly partitioned the data while varying the discount
factor. For each discount factor, we performed the partition 10 times;
each partition was to 250 subsamples (each with roughly 657,000
million observations). We present the percentage of samples in which
the estimated AVF is within one standard deviation (as predicted by
Proposition 4.2) of the value as measured on all the data; the min-
imum and maximum percentages over the 10 runs are provided in
parentheses. The same statistics are presented for two standard devi-
ations.

increases as the discount factor approaches one. In
Table 2, we repeat the analysis for 250 subsamples of a
fixed size, but for different discount factors (same set-
tings as in Table 1). As expected, as � approaches one,
the accuracy of the confidence intervals degrades. We
attribute this to the error introduced by the second-
order approximation.

5.1. The Control Problem
As discussed in §4.2, an obvious application of our
analysis is the comparison of a current policy with a
new policy generated through some optimization pro-
cess. We cautioned that before applying the expres-
sions for the bias and the variance to a policy derived
from such a process, we should first obtain unbiased
estimates of the model parameters, using an indepen-
dent validation sample. We will use the catalog mail-
ing data to illustrate the importance of this first step.
We begin by randomly selecting a portion of the

available data to be used as a calibration sample, and
retain the remaining data as a validation sample. To
demonstrate how the size of the calibration sample
affects the findings, we repeat this process for calibra-
tion samples of different sizes. The calibration sample
is used to estimate model parameters �Pcal and �Rcal.
Then, we run a policy iteration algorithm to identify
an “optimal” policy �cal from �Pcal and �Rcal. We will
compare two AVF estimates for this policy: the AVF
calculated on the basis of the model estimated using
the calibration sample (denoted by Ycal), and the AVF
of that policy as estimated using the validation sam-
ple (denoted by Yval). The difference between the two
estimates represents the bias introduced by the error
in the model parameters (the errors no longer have
zero expectation due to the optimization process).
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Figure 4 The Differences (Marked by “+”) Between the AVF Estimates
(in Dollars, and Averaged Over All States) Based on the
Calibration Sample and the Validation Sample for the
Policy Identified Through an Optimization Process
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Note. Each “+” was generated by randomly partitioning the data to a cali-
bration and a validation sample. The horizontal axis corresponds to the size
of the calibration sample, as a percentage of the full data sample. Here, �=
0�98 for which the true optimal AVF is approximately $33.59.

This bias is illustrated in Figure 4 for calibration sam-
ples of varying sizes. It can be seen that value func-
tion estimates from the calibration sample are almost
uniformly greater than the estimates from the valida-
tion sample. This bias is statistically significant. It is
also managerially relevant, averaging around 6.3% of
the true optimal AVF ($33.59) for a calibration sam-
ple that consists of approximately 1.6 million observa-
tions (1% of the data). In addition, the $33.59 AVF for
the optimal policy can be compared with the $28.54
AVF for the historical policy (reported in Figure 1).
These results indicate that the optimal policy offers a
potential profit improvement of approximately 17%.
We can also use the catalog data to investigate the

extent to which parametric variance leads to subop-
timal policies. To do so, we compared the “optimal”
policy derived using each subsample, with the true
optimal policy derived using the entire data set. Both
policies are evaluated on the validation sample. We
use Y ∗ to denote the AVF for the optimal policy found
by optimizing on the entire data set. The findings are
reported in Figure 5. As expected, the optimal pol-
icy always outperforms the policy derived from the
calibration subsample. The differences are again sta-
tistically significant. Note that the computation of Y ∗

and Yval uses the same data, which may introduce
correlation between the two quantities. This will tend
to diminish our estimates of the “suboptimality.” We
also computed Y ∗

val, the optimal AVF over the valida-
tion set, in place of Y ∗ for Table 3 and Figures 4 and 5.
The results are similar.

Figure 5 The Differences (Marked by “+”) Between the AVF Estimates
(in Dollars) of the Optimal Policy Based on the Calibration
Sample and the AVF of the Optimal Policy Found by
Optimizing on the Validation Sample
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Note. Each “+” was generated by randomly partitioning the data to a cali-
bration and a validation sample. The horizontal axis corresponds to the size
of the calibration sample, as a percentage of the full data sample. Here, �=
0�98 for which the true optimal AVF is approximately $33.59.

To demonstrate the robustness of the findings, we
performed an experiment similar to the one reported
in Table 2. In Table 3, we present the bias and sub-
optimality introduced by the optimization process for
different values of �. Specifically, the bias was calcu-
lated as �Ycal − Yval�/Y

∗; the suboptimality was calcu-
lated as �Yval − Y ∗�/Y ∗. From Table 3, we can easily
obtain the mean standard errors as the sample stan-
dard deviations divided by 10 (the square root of the
sample size, 100). It is clear that both the bias and the
suboptimality are generally significantly greater than
zero, with the bias averaging around 2% of the AVF
and the suboptimality averaging around 1%.

Table 3 Optimization Bias for Different Values of �

Suboptimality
Bias in percent in percent

� Mean STD Mean STD

0.500 1.19 1.45 −0�64 0.58
0.900 1.66 1.25 −0�84 0.61
0.925 1.59 1.45 −0�77 0.63
0.950 1.83 1.44 −0�96 0.70
0.980 1.59 1.42 −0�87 0.54
0.991 1.14 1.66 −0�69 0.63
0.996 0.42 1.85 −0�38 0.41

Note. For each discount factor, we performed a random sampling of the data
100 times. Each time we use a random calibration sample of 20% of the
entire data set (each with roughly eight million observations) and the other
80% as a validation sample. We found the optimal policy in each such MDP
and present in the table the bias, Ycal−Yval, normalized by Y ∗. We also present
the suboptimality, Yval − Y ∗, normalized similarly. The means of the biases
are significantly greater than zero.
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We conclude that parametric variance introduces
two issues in policy optimization. First, the estimates
of the transition probabilities and the rewards for the
“optimal” policy are biased, leading to positive bias
in the value function estimates. This problem can be
remedied relatively easily by evaluating the policy on
a separate validation sample. The second problem is
more difficult to resolve: errors in the model param-
eters also lead to suboptimal policies. As we dis-
cussed in §4.2, this second problem is at least to some
extent inevitable in the absence of the true model
parameters.
There is an interesting question raised by a referee:

Given a fixed amount of data, how do we divide it
into the calibration and validation samples? Includ-
ing more data in the calibration sample potentially
leads to a better policy, while more data in the valida-
tion sample means a tighter confidence interval when
we evaluate the policy. This trade-off can often be
resolved empirically.

6. Concluding Remarks
We have provided closed-form approximations for
the bias and variance of estimated value functions
caused by uncertainty in the true model parameters.
For small and mid-sized MDP models, the expres-
sions can be easily calculated and used to evalu-
ate existing policies or to compare new polices with
existing ones. For the case where a new policy is
derived through a policy optimization process, we
also demonstrated how to remove the additional bias
introduced by the optimization process, by using a
validation sample.
The expressions are based on second-order approx-

imations. Moreover, in the absence of the true model
parameters, the expressions are evaluated by relying
on estimates of the model parameters and are there-
fore themselves estimates, subject to parametric vari-
ance. We used a large sample of data from a catalog
mailing company to investigate the impact of these
approximations. The findings indicate that the confi-
dence intervals obtained on the basis of the bias and
variance expressions are reassuringly accurate.
Both the catalog mailing data and our theoret-

ical analysis provide a comparison of the relative
magnitude of the variance and the different biases.
The variance introduced by parametric uncertainty is
considerable, suggesting both practical and statistical
importance. Of the two biases, only the bias in “opti-
mal” policies introduced by the optimization process
is significant. For a fixed policy, the bias introduced
by parametric uncertainty will generally be negligible
when compared to the variance.
While we report the average of the value functions

(averaged over all states), the disaggregate results

may also be of interest. In particular, the variance of
the value functions for alternative policies could be
used to guide future experimentation. Future experi-
mentation may favor actions that might have a large
effect on the variance of the value function esti-
mate. In this manner, the findings may contribute to
our understanding of the trade-off between explo-
ration and exploitation. The findings may also help to
improve the policy optimization process. The policy
improvement portions of standard algorithms focus
on point estimates of the value functions and over-
look the variance around these estimates.
Finally, we caution that, as with all analyses of

MDPs, our findings rely on an assumption that the
data are sampled from a Markov process. In our
experiments, we ensured satisfaction of this condi-
tion by sampling observations rather than trajectories
(a trajectory here would be the complete history of a
customer).

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix A
Proof of Proposition 4.1.

Lemma A.1. For any action a, we have Ɛ� 
Pa� = 0, Ɛ� 
Ra� =
0, and furthermore, 
Ra is uncorrelated with any function of

P 1� � � � � 
P �A�, in which �A� is the cardinality of the action space A.

Proof. The property Ɛ� 
Pa�= 0 is obvious. Let N stand for
the collection of random variables Nb

jk for every j , k, and b.
We have Ɛ� �Ra

ij − Ra
ij � N� = 0. The fact Ɛ� 
Ra� = 0 follows by

taking the unconditional expectation. Furthermore, because
any 
Pa′ is completely determined by N, it follows that for
any function g, we have

Ɛ�g� 
P 1� � � � � 
P �A�� 
Ra
ij �N�= g� 
P 1� � � � � 
P �A��Ɛ� 
Ra

ij �N�= 0�
By taking unconditional expectations, we obtain the last

part of the lemma. �

For the proof of Proposition 4.1, we start from Equation
(5) and substitute the expression from Equation (11) for 
R,
to obtain

Ɛ��Y � = �I −�P�−1R+
( �∑

k=1
�kƐ�fk� 
P��

)
R
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+
�∑

k=0
�kƐ

[
fk� 
P�

(∑
a

a � �� 
Ra � 
Pa�e�

)]

+
�∑

k=0
�kƐ

[
fk� 
P�

(∑
a

a � �� 
Pa �Ra�e�

)]

+
�∑

k=0
�kƐ

[
fk� 
P�

(∑
a

a � �� 
Ra � Pa�e�

)]
�

From Lemma A.1, terms that are linear in 
Pa or 
Ra, as well
as terms that involve products of entries of 
Pa and 
Ra′ , van-
ish. That is,

�Ɛ�f1� 
P��R+ Ɛ

[
X

(∑
a

a � �� 
Pa �Ra�e�

)]

+
�∑

k=0
�kƐ

[
fk� 
P�

(∑
a

a � �� 
Ra � Pa�e�

)]

+
�∑

k=0
�kƐ

[
fk� 
P�

(∑
a

a � �� 
Ra � 
Pa�e�

)]
= 0�

We then consider a second-order approximation. This
leaves us with

Ɛ��Y � = �I −�P�−1R+�2Ɛ�f2� 
P��R

+�XƐ

[

PX

(∑
a

a � ��Ra � 
Pa�e�

)]
+Lexp� (A1)

The proof is completed by using the definition of f2� 
P�,
which yields Ɛ�f2� 
P��R=XƐ� 
PX 
P�XR=XƐ� 
PX 
P�Y , and the
lemma follows. �

Lemma A.2. We have Ɛ� 
PX 
P�=Q and

Ɛ

[

PX

(∑
a

a � ��Ra � 
Pa�e�

)]
= B�

Proof. We first observe that the errors in the transition
probabilities from two different states ( 
Pi· and 
Pj·) are inde-
pendent. Thus, Ɛ� 
Pik


Plj �= Ɛ� 
Pik�Ɛ� 
Plj �= 0 for i �= l.
For the first assertion, we note that the ijth entry of

Ɛ� 
PX 
P� is equal to

Ɛ

[∑
k� l

Xkl

Pik


Plj

]
=∑

k

XkiƐ� 
Pik

Pij �=

∑
k

Xkicov
�i�
jk = cov�i�

j· X·i�

which is the same as the ijth entry of Q (cf. Equation (12)).
For the second assertion, let

�B = Ɛ

[

PX

(∑
a

a � ��Ra � 
Pa�e�

)]

= Ɛ

[(∑
a

ae	 � 
Pa

)
X

(∑
a

a � ��Ra � 
Pa�e�

)]

= ∑
a

Ɛ��ae	 � 
Pa�X�a � ��Ra � 
Pa�e����

Then,

�Bi =
∑
a

Ɛ

[∑
k� l

�a � i� 
Pa
ikXkl�a � l�∑

j


Pa
ljR

a
lj

]

= ∑
a

Ɛ

[∑
k

�a � i� 
Pa
ikXki�a � i�∑

j


Pa
ijR

a
ij

]

= ∑
a�k� j

�a � i�2Ra
ijXkiƐ� 
Pa

ik

Pa
ij �=

∑
a�k� j

�a � i�2Ra
ijXki

�Ma
i �jk

N a
i

= ∑
a� j

�a � i�2
Na

i

Ra
ij �M

a
i �j·X·i =

∑
a

�a � i�2
Na

i

Ra
i·Ma

i X·i = Bi� �

Finally, we outline the idea that validates Lexp = o�1/N a∗
i∗ �.

From the expression of Lexp in the proposition, it is clear
that only third and higher moments of 
P are involved.
The above claim can be seen from the moment expressions
of the corresponding multinomial distributions. We omit a
detailed proof.

Appendix B
Proof of Proposition 4.2. The second moment of �Y is

Ɛ��Y �Y 	� = Ɛ

[( �∑
i=0

�i�P + 
P�i
)
�R+ 
R��R+ 
R�	

·
( �∑

i=0
�i��P + 
P�i�

)	]
�

Using Lemma 4.1, we have

Ɛ��Y �Y 	�=
�∑

k=0

�∑
l=0

�k+lƐ�fk� 
P��RR	+ 
RR	+R 
R	+ 
R 
R	�fl� 
P�	��

(B1)

Following Lemma A.1, we may drop the zero terms

Ɛ
[
X�R 
R	 + 
RR	�X	]+�Ɛ�XRR	f1� 
P�	�+�Ɛ

[
f1� 
P�RR	X	]

+
�∑

k=0

�∑
l=0

�k+lƐ
[
fk� 
P�� 
RR	 +R 
R	�fl� 
P�	

]= 0�
Taking the second-order approximation, we obtain

Ɛ��Y �Y 	� = �I−�P�−1RR	��I−�P�−1�	

+X
(
�2Ɛ� 
PXRR	X	 
P	�+�2Ɛ� 
PX 
P�XRR	

+�2RR	X	Ɛ� 
PX 
P�	+�Ɛ
[ 
PX� 
RR	+R 
R	�

]
+�Ɛ

[
� 
RR	+R 
R	�X	 
P	]+Ɛ� 
R 
R	�

)
X	+Lvar�

(B2)

Expanding the above terms, and keeping in mind Lemma
A.1 and Equation (11), we just need to calculate the follow-
ing terms:

VY1 #= Ɛ� 
PXRR	X	 
P	�+QXRR	 +RR	X	Q	�

VY2 #= Ɛ� 
PX� 
RR	 +R 
R	��

= Ɛ

[

PX

((∑
a

a � ��Ra � 
Pa�e�

)
R	

+R

(∑
a

a � ��Ra � 
Pa�e�

)	)]
�

VY3 #= VY 	
2 �

VY4 #= Ɛ� 
R 
R	��

To summarize, Equation (B2) can be written in terms of VY1,
VY2, VY3, and VY4 as

Ɛ��Y �Y 	� = YY 	 +X��2VY1+�VY2+�VY3+VY4�X
	 +Lvar�

We now provide expressions for VY1, VY2, VY3, and VY4.
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VY1: We have VY1 = Ɛ� 
PYY 	 
P	�+QYR	+RY 	Q	. If we
define Q�1� #= Ɛ� 
PYY 	 
P	�, then Q

�1�
ij = Ɛ� 
Pi·YY 	 
P	

j· �. Thus,
Q

�1�
ij = 0 for i �= j and

Q
�1�
ii = Ɛ�� 
Pi·Y �2�= Y 	Ɛ� 
Pi· 
P	

i· �Y = Y 	cov�i�Y �

VY2: We have

VY2 = Ɛ

[

PX

(∑
a

a � ��Ra � 
Pa�e�

)]
R	

+ Ɛ

[

PY

(∑
a

a � ��Ra � 
Pa�e�

)	]
�

Following Lemma A.2, Ɛ� 
PX�
∑

a 
a � ��Ra � 
Pa�e���= B. If

we define Q�2� #= Ɛ� 
PY �
∑

a 
a � ��Ra � 
Pa�e��	�, then

Q
�2�
ij = Ɛ

[
� 
Pi·Y �

(∑
a

a
j ��R

a
j· � 
Pa

j·�e�
)	]

= ∑
a

�a � i�a
j R

a
j·Ɛ�� 
Pa

j·�	 
Pa
i·�Y �

Thus, Q�2�
ij = 0 for i �= j and

Q
�2�
ii =∑

a

��a � i�2/N a
i �Y

	Ma
i R

a
i·�

VY4: We have �VY4�ij = Ɛ� 
Ri

Rj� = 0 for i �= j and with

Equation (8),

�VY4�ii = Ɛ� 
R2i �=
∑
a

�a � i�2Ɛ�� 
Ra
i �
2�

= ∑
a

�a � i�2
Na

i

�Ra
i·Ma

i R
a
i·	 +V a

i·	Pa
i·��

DefineW as in Equation (13). We haveW = �2Q�1�+��Q�2�+
�Q�2��	�+VY4. The result follows by collecting the different
terms. �

Appendix C
Proof of Proposition 4.3. For a fixed state i, we define

fr�a =X2
ir�a � r�2

[
��Y 	 +Ra

r·�Ma
r ��Y + �Ra

r·�	�+
∑
k

P a
rkV

a
rk

]
�

Also, we define F =∑
r� a�N

a∗
i∗ /N a

r �fr�a. Using Equation (14),
it can be easily verified that %��Yi� =

√
F /N a∗

i∗ . Because we
assume that %�Yi� > 0, there exists some �r� a� such that
fr�a > 0; fr�a does not depend on Na

ir . Then, the assumption
Na∗

i∗ /N a
r > c > 0 guarantees that F is bounded from below.

Similarly, Ɛ��Yi�−Yi =G/Na∗
i∗ , where

G=∑
r� a

�N a∗
i∗ /N a

r ���a � r�2Xir ��M
a
r X·rY +Ra

r·Ma
r X·i�

is bounded from above because Na∗
i∗ ≤Na

r and terms M
a
r , X,

Y , and �a � r� do not depend on Na
r .

Thus, the bias decreases like Na∗
i∗ , whereas the standard

deviation decreases no faster than
√
Na∗

i∗ , which yields the
desired result. �
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