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1. Introduction. We consider a Markov decision process (MDP) that satisfies a weak
communication assumption and describe a polytope of possible state-action frequency vec-
tors. We show that for every point in the polytope, there exists a policy that gets “very
close” to that point. More accurately, for every point in the polytope, we specify a policy
that guarantees that the empirical state-action frequency vector converges to that point, with
probability one. Moreover, we show that under the prescribed policy, the probability of
a large distance between the point and the empirical state-action frequency vector decays
exponentially with time. On the other hand, we show that no policy can “get far” from this
polytope even without the weak communication assumption. Specifically, we show that the
probability of a large distance between the empirical state-action frequency vector and the
polytope decays exponentially with time, uniformly over all admissible policies.
While the emphasis of this work is on bounds on the empirical frequencies, we also

derive some apparently new results on state-action frequency polytopes. Under the weak
communication assumption, our results establish that the polytope we consider is the same as
the set of possible limits (both in expectation and almost surely) of the empirical frequency
vector under different policies. This extends results in Derman [7] and Puterman [15],
which assumed a unichain structure. These references also showed that every point in the
polytope can be achieved by a stationary policy. In contrast, for the more general case that
we consider, nonstationary policies may be necessary. We note that in Kallenberg [12], a
related polytope was defined for everyMarkov decision process, without any communication
assumptions. However, the framework of Kallenberg [12] is too general to be useful for our
purposes. In particular, some communication assumption is necessary in order to establish
that every point in the polytope is a possible limit of the empirical frequency vector.
The primary motivation for this work arises in the fields of adaptive control and rein-

forcement learning (e.g., Kumar and Varaiya [13], Bertsekas and Tsitsiklis [4], Sutton
and Barto [17]). The policies used by learning algorithms are typically nonstationary. For
this reason, it is useful to have a complete characterization of the possible behaviors of
empirical state-action frequencies under general (not necessarily stationary) policies. For
instance, there are certain bounds on the probability of a large distance between the empir-
ical frequencies and their limit, under the assumption that such a limit exists (Altman and
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Zeitouni [2]). Our results indicate that similar bounds apply to the case of general, nonsta-
tionary policies.
Another motivation comes from the context of exploration in dynamic environments.

Suppose that we wish to visit at least k times every state of a controlled Markov chain
with known transition probabilities, where k is a large number. This may be the case if we
desire to take a large number of measurements at each state, or in a “needle in a haystack”
problem, where each state needs to be examined several times in order to identify whether
something unique happens at that state. Under an appropriate accessibility assumption, it
can be shown that the best possible expected time for achieving this goal is of the form
�k+ o�k�, where � is a positive constant that can be computed in terms of the transition
probabilities. Using the results in this paper, a stronger property is obtained, namely, that
there exists a policy under which the time it takes, Tk, satisfies P�Tk ≥ k�1+����≤ ce−d�2k,
for every � > 0, where c and d are some positive constants. Moreover, for every policy,
P�Tk ≤ k�1− ����≤ ce−d�2k, that is, no policy can sample more efficiently.
Yet another motivation arises from the connection between the average rewards per unit

time in finite and infinite horizon problems. An important question, for a finite-horizon prob-
lem, is whether one can gain substantially by using a time-dependent policy rather than a
stationary one. Our results indicate that the probability of a substantial gain is exponentially
small in the time horizon.
Regarding related research, let us mention that there are large deviations results for the

empirical state-action frequency vector in finite-state Markov processes (see, e.g., Dembo
and Zeitouni [6]). These results were extended to Markov decision processes in Altman
and Zeitouni [2], which obtained uniform convergence rates over the class of stationary
policies. The case of nonstationary policies that have a limit was also considered to some
extent in Altman and Zeitouni [2].
The question of achievable rates of convergence for controlled processes was considered

in Shimkin [16]. The model therein is essentially a single-state decision process in which a
decision maker may choose between sampling several stationary reward populations. Lower
and upper bounds were provided on the probabilities of rare events under arbitrary policies.
Of a somewhat different flavor is a Hoeffding-type inequality for bounded functions of
uniformly ergodic Markov chains, which was derived in Glynn and Ormoneit [9]. We note
that this reference provides an error exponent that is tighter than ours, but these results are
essentially dependent on the stationary nature of the underlying policy.
The rest of the paper is organized as follows. In §2, we start by defining the model of

interest. In §3, we introduce state-action frequency polytopes. In §4, we show that for every
element of the polytope, there exists a policy under which the empirical state-action fre-
quency vector converges to that point, in a strong sense. In §5, we derive a large deviations
bound for the distance of the empirical state-action frequency vector from the polytope.
In §6, we generalize and obtain bounds on the probability of large deviations of an empiri-
cal vector-valued reward. In §7, we provide some brief concluding remarks. The appendix
contains the proofs of some of lemmas used in our development.

2. Problem definition. We consider a Markov decision process (MDP) with finite state
and action spaces. The MDP is formally defined by a triplet �� ��� P�, where
(a) � = �1� � � � � S� is a finite set of states.
(b) �= �1� � � � �A� is a finite set of actions which is assumed, for simplicity, to be the

same for all states.
(c) P is the conditional probability law. Namely, P�s′ � s� a� is the probability that the

next state is s′, given that the current state is s and that action a was taken.
At every time epoch t, the decision maker observes the current state st and chooses an

action at . Then the next state st+1 is chosen, according to P�· � st� at�. For a finite set �, we
will use ���� to denote the set of all probability distributions on �. A policy is a mapping
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from the set of possible past histories to the set ����, which prescribes the probability of
any particular action for every given history. A stationary policy is a policy that depends
only on the current state.
Given a history1 �s1� a1� s2� a2� � � � � st� at� st+1�, we define the empirical state-action-state

frequencies by

	qt�s� a� s′�=
1
t

t∑
�=1
I�s�=s� a�=a� s�+1=s′�� (1)

where IE stands for the indicator function of an event E. Note that the empirical frequency
vector 	qt , with components 	qt�s� a� s′�, is a vector in ��� ×�×� �.
Without any stationarity assumption on the underlying policy, we cannot expect 	qt to

have a limit. Our main objective is to show that 	qt has to be close (with high probability)
to the set of expected frequency vectors that can be attained using stationary policies. We
will therefore start by characterizing the latter set, which is the subject of the next section.

3. State-action polytopes. In this section, we introduce a polytope and characterize it
as the set of feasible limiting expected state-action-state frequencies. This characterization
is used in §4 to show that the elements of this polytope are feasible empirical frequencies
in a rather strong sense.
Given an MDP, the state-action polytope, X, is defined as the set of vectors x in ���×��

that satisfy ∑
s

∑
a

P�s′ � s� a�x�s�a�=∑
a′
x�s′� a′�� ∀ s′� (2)

We let (as in Puterman [15]) x��� ∈��� ×�� be the limiting expected state-action frequency
vector, if it exists, under policy �, starting from an initial state distribution � ∈��� �, under a
general policy � (possibly randomized, nonstationary, or non-Markovian). That is, we define

x����s� a�� lim
t→�Ɛ���

[
1
t

t∑
�=1
I�s�=s� a�=a�

]
� (3)

if the limit exists, and let X� be the set

X� � �x ∈��� ×��! there exists a policy � s.t. the limit (3) exists and x= x�����
It is known (see Puterman [15]) that under a unichain assumption, we have X� =X. We

will show (Theorem 3.1) that the same is true under a less restrictive weak communication
assumption. For a different approach that works under any assumptions but is less useful
for our purposes, see Kallenberg [12]. The following proposition holds for every MDP.

Proposition 3.1. For every MDP, and every � ∈��� �, we have X� ⊆X.
Proof. Let  D denote the set of stationary deterministic policies. Using Theorem 8.9.3

from Puterman [15], we know that X� equals the convex hull of the limiting expected
state-action frequency vectors associated with stationary deterministic policies. That is,

X� = co��x��� �� ∈ D���
where co�B� stands for the convex hull of a finite set B. Now, fix a stationary and deter-
ministic policy �, specified in terms of a function $! � �→ �, and consider the resulting
Markov chain, with transition probabilities P�s′ � s�= P�s′ � s�$�s��. Because the resulting
chain is stationary, the limits x����s� a� exist and satisfy the balance equations∑

s

P�s′ � s�$�s��x����s�$�s��= x����s′�$�s′��� ∀ s′�

Because, in addition, x����s� a�= 0 for a �=$�s�, we see that the vector x��� satisfies (2),
so that x��� ∈X. The result follows from the convexity of X. �

1 Note that, to streamline notation, we include st+1 in the history.



Mannor and Tsitsiklis: Empirical State-Action Frequencies in Markov Decision Processes
548 Mathematics of Operations Research 30(3), pp. 545–561, © 2005 INFORMS

We now recall a definition used in Puterman [15]. An MDP is called weakly communi-
cating if the set of states can be partitioned into a set of states that are accessible from each
other (i.e., for any two states s and s′ in that set, there exists a policy under which there
is a positive probability path from s to s′), and a set of states that are transient under all
policies.

Theorem 3.1. If the MDP is weakly communicating, then X = X� for all � ∈ ��� �.
Furthermore, for every x ∈X, there exists some z ∈��� � and a stationary policy �, such
that x��z = x.
Proof. Using Proposition 3.1, is suffices to prove that X ⊆X� for all �. We first show

that X� is independent of �. For any given r ∈��×�, consider an average reward MDP with
reward r�s� a� at state s and action a, and initial state distribution �. The corresponding
optimal average reward is given by maxz∈X� r

�z. Because the optimal average reward in a
weakly communicating MDP is independent of the initial state (Puterman [15], p. 352), it
follows that for every r the quantity maxz∈X� r

�z is the same for all �. This implies that the
polytopes X� are the same for all �. Indeed, if there existed some x such that x ∈X�1 and
x �X�2 , we could use the separating hyperplane theorem to obtain a vector r for which

max
z∈X�1 

r�z≥ r�x > max
z∈X�2 

r�z�

which is a contradiction.
Let us now fix some x ∈ X. We proceed to show that x ∈ X� for some initial state

distribution �. Let z ∈��� � denote the state frequency vector associated with x, i.e., z�s�=∑
a x�s� a�. One can rewrite Equation (2) in terms of the state frequency vector in the form∑

s

Px�s
′ � s�z�s�= z�s′�� (4)

where

Px�s
′ � s�=



∑
a P�s

′ � s� a�x�s�a�∑
a x�s� a�

� if z�s� > 0�

P�s′ � s�1�� if z�s�= 0�

Note that Px corresponds to the transition probabilities for our MDP under a particular
policy �: It is the policy that always chooses action 1 at states s for which z�s�= 0, while
at other states s chooses action a with probability x�s�a�/z�s�. Equation (4) shows that z
solves the balance equations for the Markov process governed by Px. In particular, if this
Markov process starts with z as the initial state distribution, then the state at any future time
is also distributed according to z. It follows that the limiting expected state-action frequency
vector under that policy, x��z, is equal to x, so that x ∈Xz . The result follows because X� 
is independent of �. �

Remark 3.1. In the absence of the weak communication assumption, X� may be a
proper subset of X. This can be seen from a simple example involving two disconnected ab-
sorbing states and no control. Here, X = ��(�1−(� � 0≤ (≤ 1�, while for every ( ∈ )0�1*,
we have X( = ��(�1−(��.

Remark 3.2. For weakly communicating MDPs, the relative interior of X can be
attained by randomized stationary policies, and the extreme points of X can be attained
by deterministic stationary policies, but some boundary points of X may require either
nonstationary policies or a random initial state, as the next example demonstrates.
Example 3.1. Consider a deterministic MDP with two states �� = �1�2�) and two

actions �� = �1�2�), in which the action determines the next state. In particular, the
transition probabilities satisfy P�1 � 1�1� = P�1 � 2�1� = P�2 � 1�2� = P�2 � 2�2� = 1.
The state-action polytope X includes a point x∗ satisfying x∗�1�1� = x∗�2�2� = 1/2 and
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x∗�1�2�= x∗�2�1�= 0. However, starting from an initial state distribution � = �1�0�, no
stationary policy can have x∗ as a limit point. The point x∗ can be attained either by using the
initial distribution �= �1/2�1/2�, or starting from �= �1�0� by using a nonstationary pol-
icy like �a1� a2� � � � � = �1�2�2�1�1�1�2�2�2�2� � � � �, under which the switches between
the states become less frequent with time while the expected frequency of each of the states
approaches 1/2. Furthermore, note that even when �= �1/2�1/2�, a stationary policy can
only make the expected frequencies converge to x∗. However, there is no stationary policy
that results in almost sure convergence of the empirical frequencies to x∗.
Because we will be interested in the empirical frequencies of the various possible tran-

sitions, we also define the state-action-state frequency polytope, Q, as the set of vectors in
��� ×�×� � that satisfy

q�s�a� s′�= P�s′ � s� a�∑
s′′
q�s�a� s′′�� ∀ s� a� s′� (5)

∑
s

∑
a

q�s� a� s′�=∑
a′

∑
s′′
q�s′� a′� s′′�� ∀ s′� (6)

For a loose interpretation, think of x�s�a� as the frequency with which state s is visited and
action a is applied, and think of q�s�a� s′� as the frequency with which state s is visited,
action a is applied, and the next state is s′. Equation (5) requires the relative frequencies
of the various transitions to conform to the transition probabilities, whereas Equation (6) is
a flow conservation requirement. Equation (2) combines these two requirements in a single
equation. As expected, these two polytopes, X and Q, are closely related.

Lemma 3.1. If x ∈X and if we let q�s�a� s′�= x�s�a�P�s′ � s� a�, then q ∈Q. Further-
more, every element of Q can be generated in this manner from some element of X.

Proof. Suppose that x ∈ X and that q�s�a� s′�= x�s�a�P�s′ � s� a�. We will show that
q ∈Q. Because x ∈��� ×��, it is easily verified that q ∈��� ×�×� �. Furthermore,

q�s�a� s′� = x�s�a�P�s′ � s� a�
= x�s�a�

(∑
s′′
P�s′′ � s� a�

)
P�s′ � s� a�

= P�s′ � s� a�∑
s′′
q�s�a� s′′��

so that Equation (5) is satisfied. It remains to verify Equation (6). Indeed, for any s′, we have∑
a

∑
s

q�s� a� s′� = ∑
s

∑
a

x�s� a�P�s′ � a� s�

= ∑
a′
x�s′� a′�

= ∑
a′
x�s′� a′�

∑
s′′
P�s′′ � s′� a′�

= ∑
a′

∑
s′′
q�s′� a′� s′′��

as desired. Here, the first equality uses our assumption that q�s�a� s′�= x�s�a�P�s′ � s� a�,
the second equality comes from Equation (2), the third uses the fact that transition prob-
abilities sum to one, and the fourth uses once more the assumption q�s�a� s′� = x�s�a� ·
P�s′ � s� a�.
To prove the second statement, consider an element of Q, and define x by letting x�s�a�=∑
s′ q�s�a� s

′�. Because q ∈ Q, Equation (5) implies that q�s�a� s′� = x�s�a�P�s′ � s� a�,
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so that q can be indeed generated from some x. It remains to show that x ∈ X. The fact
x ∈��� ×�� is an immediate consequence of q belonging to ��� ×�×� �. Finally,∑

s

∑
a

P�s′ � s� a�x�s�a� = ∑
s

∑
a

q�s� a� s′�

= ∑
a′

∑
s′′
q�s′� a′� s′′�

= ∑
a′
x�s′� a′��

where the second equality follows from Equation (6). Thus, Equation (2) is satisfied and
x ∈X, as desired. �

We now turn our attention to the feasible limiting expected frequencies. We let q��� ∈
��� ×�×� � be the limiting expected state-action-state frequency vector, if it exists, under
policy �, starting from an initial state distribution � ∈ ��� �, under a general policy �
(possibly randomized, nonstationary, or non-Markovian). That is,

q����s� a� s′�= lim
t→�Ɛ���

[
1
t

t∑
�=1
I�s�=s� a�=a� s�+1=s′�

]
� (7)

where Ɛ��� is the expectation under policy �, given that the initial state is distributed
according to �. For every � ∈��� �, we let Q� be the set
Q� � �q ∈��� ×�×� �! there exists a policy � s.t. the limit (7) exists and q = q�����
We note an elementary counterpart of Lemma 3.1.

Lemma 3.2. If x ∈ X� and if we let q�s�a� s′�= x�s�a�P�s′ � s� a�, then q ∈Q� . Fur-
thermore, every element of Q� can be generated in this manner from some element of X� .

Proof. Fix some policy � and some � ∈��� �. We have
Ɛ���

[
I�s�=s� a�=a� s�+1=s′�

]= P�s′ � s� a�Ɛ���[I�s�=s� a�=a�]�
from which it follows that the limit in the definition of q��� exists if and only if the limit
in the definition of x��� exists, and in that case, q����s� a� s′�= x����s� a�P�s′ � s� a�. �

Our results so far refer to the state-action polytope X and its relation with X� . We
now extend the results to the state-action-state polytope Q, and the corresponding sets Q� 
of limiting expected state-action-state frequencies. Once more, the containment Q� ⊆ Q
holds for every MDP. However, the inclusion might be proper in the absence of some
communication assumptions.

Proposition 3.2. If the MDP is weakly communicating, then for every initial state
distribution � we have Q=Q� . Furthermore, for every q ∈Q, there exists some z ∈��� �
and a stationary policy �, such that q��z = q.

Proof. By Lemmas 3.1 and 3.2, the set Q� can be constructed from the set X� using
the same formula as in the construction of the set Q from the set X. Because X = X� ,
it follows that Q = Q� . Furthermore, given some q ∈ Q, Lemma 3.1 and Theorem 3.1
imply that there exists some z ∈��S� and some stationary policy � such that q�s�a� s′�=
x��z�s� a�P�s′ � s� a�, for all �s� a� s′�. It then follows that q = q��z. �

In the next two sections, we relate Q to the possible limits of the empirical frequency
vector. We start in §4 with a positive result that states that for every q ∈Q, there is a policy
under which 	qt converges to q almost surely. Moreover, the probability of a large distance
between 	qt and q decays exponentially. In §5 we provide a converse result: We show that
for every policy, the probability of a large distance between 	qt and Q decays exponentially.
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4. Convergence to feasible points. In this section, we show that for every q ∈Q, there
exists a policy under which 	qt converges to q. Moreover, the probability of a given positive
distance between 	qt and q decays exponentially. The proof is constructive and provides a
specific policy with these properties. If q belongs to the relative interior of Q, the existence
of a stationary policy with the required properties is straightforward (following Miller [14]
or Glynn and Ormoneit [9]). The difficult case is when q is on the boundary of Q and
the MDP has a multichain structure. In that case, there need not exist a stationary policy
that guarantees convergence of 	qt to q; see, e.g., Example 3.1. For this reason, we have to
introduce an appropriate nonstationary policy. In the sequel, we will use �·� to denote the
Euclidean norm in ��×�×� .

Theorem 4.1. Suppose that the MDP is weakly communicating. Then, for every initial
state and for every q ∈ Q, there exists a policy �∗, and positive constants c0, c1, under
which

P�� 	qt − q� ≥ ��≤ c0e−c1�2t� ∀ t ≥ 1� ∀�> 0�
Furthermore, 	qt converges to q, with probability 1.

Proof. Let us fix some q ∈Q. Then, by Proposition 3.2, there exists a stationary pol-
icy � and some z ∈ ��� � such that q��z = q. Consider the resulting stationary Markov
chain. The standard “ergodic decomposition” (see, e.g., Puterman [15]) shows that the state
space � can be partitioned into disjoint sets �0� � � � ��l, where �0 is the set of states that
are transient under � and where each �i, for i �= 0 is an irreducible class of recurrent states
under �. For i �= 0, let �i =∑

s∈�i z�s�, and let q
i�s� a� s′� be the steady-state probability of

a transition from s to s′ under action a, if the chain is initialized within the class �i. We
then have

q =
l∑
i=1
�iqi� (8)

We assume without loss of generality that �i > 0 for all i, and define � = mini �
i. (If

�i = 0 for some i, we can work with a reduced chain from which the irreducible class
�i has been eliminated.) For every i �= 0, let us fix a special “starting” state si1 ∈ �i, and
let 	qit be the resulting empirical frequency vector if the stationary policy � is used for t
consecutive transitions. We will be using the following result, which is a special case of the
results in Glynn and Ormoneit [9]. (The ergodicity conditions in that reference are satisfied
because the Markov chain is confined to the single recurrent class �i.)

Lemma 4.1. There exist positive constants c2 and c3, such that for i= 1� � � � � l,

P�� 	qit − qi� ≥ ��≤ c2e−c3�2t� ∀ t ≥ 1� ∀�> 0�
The main idea in the rest of the proof is as follows. For each i ∈ �1� � � � � l�, we consider

the infinite trajectory in �i obtained by starting at s
i
1 and using the stationary policy �.

We break these trajectories into intervals and interleave them so that the resulting process
mimics the ith trajectory for a fraction �i of the time. This will result in

	qt ≈
l∑
i=1

	qi��it� →
l∑
i=1
�iqi = q�

An exponential bound will be obtained by applying Lemma 4.1. However, such an interleav-
ing requires that some time be spent switching from one subset �i to another. To facilitate
the analysis, the interleaving is arranged so that the last state of the kth interval in �i is the
same as the first state of the �k+1�st interval in �i. We start by characterizing the statistics
of the required switching, we continue with a precise description of the interleaving, and
we conclude with a rigorous version of the above outlined heuristic argument.
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Consider a state s′ ∈ �i, for some i �= 0. We have assumed that the MDP is weakly
communicating. In particular, there is a set of states that are transient under every policy.
The latter states are transient under the policy �, and therefore belong to �0. Because
the state s′ is not transient under �, the weak communication assumption implies that
there exists a policy under which state s′ is eventually reached. Let .s′ be a policy with
this property, under which the expected time to reach s′ is minimized, for every initial
state. Standard dynamic programming results imply that .s′ can be taken stationary and
deterministic. Furthermore, the probability that state s′ is not reached within t time steps
decays exponentially with t. Let �s� s′ be the time to reach s

′ starting from s. That is,

�s� s′ = inf�t > 0! st = s′��
We summarize this discussion in the following result.

Lemma 4.2. There are positive constants c and ( such that for every s′ � �0, there
exists a stationary policy .s′ under which the random time �s� s′ it takes for s

′ to be reached,
starting from s, satisfies

P��s� s′ ≥ t�≤ ce−(t� ∀ t ≥ 1� ∀ s ∈� �

An immediate consequence of Lemma 4.2, which will be used later, is the following. For
every s ∈� and s′ ��0, we have

P��s� s′ ≥ t�≤min�1� ce−(t�=min�1� e−(�t−c4��= P�Z+ c4 ≥ t�� (9)

where c4 is such that c= (ec4 , and where Z is an exponentially distributed random variable
with parameter (.
We now specify the interleaved policy �∗. The policy starts in an arbitrary state s0 and

proceeds in rounds. For each round k and for each i �= 0, there is a time interval consisting of

tik = ��ik�k+ 1��− ��i�k− 1�k�
transitions during which the state lies in �i and policy � is followed. (Note that tik is
approximately equal to 2�ik.) For any i �= 0, the initial state of the ith interval in the �k+1�st
round, denoted by sik+1, will be set to be the same as the final state of the ith interval in the
kth round.
A precise description is as follows.

1. Initialization: k= 1; initial state s0 ∈� ; states si1 ∈ Si, for i= 1� � � � � l.
For every round k= 1�2� � � � , do the following.

2. Let s∗k be the state at the end of the previous round. (For k=1, let s∗1 be the initial state s0.)
3. Use policy .s1k , until state s

1
k ∈�1 is reached.

4. Use policy � for t1k transitions. Let s
1
k+1 be the final state.

5. For i= 2 to l, do the following.
5a. Use policy .sik , until state s

i
k ∈�i is reached.

5b. Use policy � for tik transitions. Let s
i
k+1 be the final state.

For any t ≥ 1, consider the first t transitions under policy �∗. Out of these, there is
a (random) number �0�t� of transitions during which some policy .s′ is used (i.e., time
spent in steps 3 or 5a). Furthermore, for i= 1� � � � � l, there is a (random) number �i�t� of
transitions, during which the policy � is used within the set �i (in steps 4 or 5b). Note
that, by definition,

∑l
i=0 �

i�t� = t. We have the following lemma, which is proved in the
appendix.

Lemma 4.3. There exist constants c5, c6, and c7 such that:
(a) For every t ≥ 1 and i ∈ �1� � � � � l�,

�i�t− �0�t��− c5
√
t ≤ �i�t�≤ �it+ c5

√
t�
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(b) For every t ≥ 1 and �> 0,

P��0�t�≥ �t�≤ P
(
�0�t�+ c5

√
t+ 1≥ �t)≤ c6e−c7�2t �

Let us consider the first t transitions. Out of these, there are �i�t� transitions that occur
while using policy � within the set �i. The number of such transitions that involve a
particular triplet �s� a� s′� has the same distribution as the number of such transitions that
would be observed if we were using this policy for a number �i�t� of contiguous time
steps. The latter number equals �i�t� 	qi

�i�t�
�s� a� s′�, where 	qit�s� a� s′� is a component of the

empirical frequency vector 	qit in Lemma 4.1. In addition, there is a number n�0�t��s� a� s′� of
such transitions that occur while using one of the switching policies. Let n�0�t� be the vector
with components n�0�t��s� a� s

′�. Then, using vector notation and omitting the �s� a� s′� index,
	qt has the same distribution as

n�0�t�+
∑l
i=1 �

i�t� 	qi
�i�t�

t
�

Using the representation q =∑l
i=1�

iqi (cf. Equation (8)), we see that 	qt − q has the same
distribution as

n�0�t�

t
+

l∑
i=1

( 	qi
�i�t�
� i�t�− 	qi��it���it�

t

)
+

l∑
i=1

( 	qi��it���it�
t

−�i 	qi��it�
)
+

l∑
i=1

(
�i 	qi��it� −�iqi

)
�

(10)

We will now bound the tail probabilities of the norm of each one of the terms in
Equation (10).
Note that the sum of the components of n�0�t� is �

0�t�, so that �n�0�t�� ≤ �0�t�. Thus,
using Lemma 4.3(b),

P��n�0�t�/t� ≥ �/4�≤ P��0�t�≥ �t/4�≤ c6e−c7�2t/16� ∀ t ≥ 1� ∀�> 0�
We now consider the second term in Equation (10). We note that the �s� a� s′� compo-

nent of the summand qi
�i�t�
� i�t�− 	qi��it���it� counts the number of times that a particular

transition �s� a� s′� is observed at times between ��it� and �i�t�. Thus,∥∥qi�i�t�� i�t�− 	qi��it���it�
∥∥≤ ��i�t�−��it�� ≤ �i�0�t�+ c5

√
t+ 1≤ �0�t�+ c5

√
t+ 1�

where the second inequality follows from Lemma 4.3(a). Therefore, using Lemma 4.3(b),

P
(∥∥qi�i�t�� i�t�− 	qi��it���it�

∥∥≥ �t/4l) ≤ P
(
�0�t�+ c5

√
t+ 1≥ �t/4l)

≤ c6e−c7�2t/16l2� ∀ t ≥ 1� ∀�> 0�
The third term in Equation (10) can be bounded by noticing that∥∥∥∥

l∑
i=1

(
q̂i��it���it�

t
−�i 	qi��it�

)∥∥∥∥≤
l∑
i=1

∥∥ 	qi��it�
∥∥(��it�

t
−�i

)
≤ l
t
�

It follows that

P
(∥∥∥∥

l∑
i=1

(
q̂i��it���it�

t
−�i 	qi��it�

)∥∥∥∥≥ �
4

)
≤ e · e−�t/4l

Because P�� 	qt − q�>��= 0 for �> 2, we can assume that �≤ 2, and we have

P
(∥∥∥∥

l∑
i=1

( 	qi��it���it�
t

−�i 	qi��it�
)∥∥∥∥≥ �

4

)
≤ e · e−�2t/16l� ∀ t ≥ 1� ∀� ∈ �0�2*�
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As for the last term in Equation (10), because
∑l
i=1�

i = 1, its norm will exceed �/4 only
if the norm of 	qi��it� −qi exceeds �/4 for some i. The probability of this event is bounded by

l∑
i=1

P
(∥∥ 	qi��it� − qi

∥∥≥ �/4)≤ lc2e−c3�2�t/16� ∀ t ≥ 1� ∀�> 0�

where we have made use of Lemma 4.1.
Putting all the above bounds together, we obtain the desired probability bound, with

c0 = c6+ lc6+e+ lc2, and c1 =min�c7/16� c7/16l
2�1/16l� c3/16�. Using the Borel-Cantelli

lemma, the event �� 	qit − qi� ≥ �� can occur only a finite number of times, which implies
that 	qt converges to q, with probability 1. �

5. A bound on the large deviation probabilities of empirical frequencies. We saw in
the last section that for weakly communicating MDPs, every element of Q is a possible limit
point of the empirical frequency vector. In this section, we prove a converse result, namely,
that the probability that 	qt is at a given positive distance from Q decays exponentially. For
any y ∈�k and W ⊆�k, we will be using the notation �y−W� to denote the distance of y
from W , i.e., �y−W� = infw∈W �y−w�.

Theorem 5.1. For every MDP, there exist positive constants c0 and c1 such that under
any policy �,

P�� 	qt −Q� ≥ ��≤ c0e−c1�2t� ∀ t ≥ 1� ∀�> 0�
Proof. The proof relies on the following geometric lemma that relates the Euclidean

point-to-polytope distance with the amount by which the inequalities defining the polytope
are violated. Its proof is given in the appendix.

Lemma 5.1. Suppose that a nonempty set W ⊂�k is defined by a set of linear inequal-
ities, i.e., W = �w! Aw ≤ b� where A is an m× k matrix and b ∈�m. Then, there exists a
constant c such that for every y �W , we have �y−W� ≤ c��Ay− b�+��, where �y�+ is
the componentwise maximum of y and the zero vector, and �y�� =maxi �yi�.
We apply Lemma 5.1 to the polytope Q (in place of W ) and let c denote the value

of the constant whose existence is asserted by the lemma. Let us fix some � > 0 and
some t > c/� and suppose that the event � 	qt − Q� ≥ � has occurred. Then, Lemma 5.1
implies that at least one of the constraints that define Q is violated by at least �/c. Note
that the simplex constraints are automatically satisfied because 	qt ∈ ��� ×�×� �, with
probability 1, by construction. We also note that the constraints of the form (6) can be
violated by at most 1/t. Indeed, the number of times a state is entered can differ by at most
one from the number of times a state is exited, so that the corresponding frequencies can
differ by at most 1/t. Because 1/t < �/c, it must be that at least one of the constraints (5)
is violated by at least �/c. Using the union bound, we obtain

P�� 	qt −Q� ≥ �� ≤ ∑
s� a� s′

P
(
� 	qt�s� a� s′�− 	qt�s� a�P�s′ � s� a�� ≥

�

c

)

= ∑
s� a� s′

P
(
�nt�s� a� s′�− nt�s� a�P�s′ � s� a�� ≥

�t

c

)
� (11)

where 	qt�s� a�= nt�s� a�/t, and

nt�s� a�=
t∑
�=1
I�s�=s� a�=a�� nt�s� a� s

′�=
t∑
�=1
I�s�=s� a�=a� s�+1=s′�� (12)

We will now reason in terms of a single probability space on which the controlled process
can be defined under any policy. Such a probability space can involve a countable collection
of independent uniform random variables (that are used to generate actions under random-
ized policies), as well a collection of independent � -valued random variables h�s�a� �� (for
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s ∈� , a ∈�, � ≥ 1) that take the value s′ with probability P�s′ � s� a�. With these random
variables at hand, the process can be constructed as follows: If the state happens to be s
for the � th time, and the policy chooses action a, the random variable h�s�a� �� is used to
determine the next state.
Consider the first l transitions for which �s� � a�� = �s� a�, and let bl�s� a� s′� be the

number of these transitions that lead to s′. Formally, for every l ≥ 1, we define bl�s� a� s
′�

as the cardinality of the set �� � h�s�a� ��= s′� 1≤ � ≤ l�. We observe that bl�s� a� s′� is a
binomial random variable with parameters l and P�s′ � s� a�. Note also that if nt�s� a�= l,
then nt�s� a� s

′�= bl�s� a� s′�.
Let 8= �/c, and consider the events

E = ��nt�s� a� s′�− nt�s� a�P�s′ � s� a�� ≥ 8t��
B=

{
max
1≤l≤t

�bl�s� a� s′�− lP�s′ � s� a�� ≥ 8t
}
�

We observe that E ⊆ B, and P�E�≤ P�B�.
To bound the probability of B, we use the following lemma, which provides large devi-

ations bounds for the maximum of a random walk, and is in the same spirit as other large
deviations bounds that can be found in Hajek [10] or Gallager [8]. Related results that apply
to an asymptotic regime can be found in Hircsh [11] and references therein. The proof is
again deferred to the appendix.

Lemma 5.2. Let X1� � � � �Xt be independent identically distributed zero-mean random
variables. Assume that the log-moment generating function .�s�= logƐ)esX1 * is finite in a
neighborhood of zero. We define the rate function f �8�= sups�8s−.�s��. Let �Xi =

∑i
j=1Xj .

Then, for every 8 �= 0 we have f �8� > 0, and

P
(
max
1≤i≤t

� �Xi� ≥ 8t
)
≤ e−tf �8�+ e−tf �−8�� (13)

Let X1� � � � �Xt be independent identically distributed Bernoulli random variables with
mean p; then Equation (13) becomes

P
(
max
1≤i≤t

� �Xi− ip� ≥ 8t
)
≤ 2e−2t8

2
� (14)

We apply Lemma 5.2 by identifying Xi with the shifted Bernoulli random variable
bi�s� a� s

′�−bi−1�s� a� s′�−P�s′ � s� a�, so that �Xi = bl�s� a� s′�− lP�s′ � s� a�. It follows that
P�E�≤ P�B�≤ 2e−28

2t �

Substituting in Equation (11), we obtain

P�� 	qt −Q� ≥ ��≤ 2S2Ae−2�
2t/c2 �

We have been assuming so far that t > c/�. We now verify that the result remains valid
without that assumption. Indeed, if � ≥ 2, we have P�� 	qt −Q� ≥ �� = 0. Furthermore, if
�≤ 2 and t ≤ c/�, we have 2t�2/c2 ≤ 4/c, so that

P�� 	qt −Q� ≥ ��≤ 1≤ e4/ce−2�2t/c2 �
This establishes the desired result with c0 =max�2S2A�e4/c� and c1 = 2/c2. �

6. A bound on the large deviation probabilities of the average reward. In this sec-
tion, instead of the empirical frequencies, we focus on a vector-valued reward and show
that with high probability the empirical average reward is close to a polytope of achievable
limiting expected reward vectors. The motivation behind this setting comes from multicrit-
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era MDPs in which one is interested in the simultaneous control of several performance
measures.
We start by describing the model for the rewards. For every state-action-state frequency

triplet �s� a� s′�, we assume that there is a corresponding reward process, i.e., a sequence
of k-dimensional random vectors m�s�a� s′ , � = 1�2� � � � , and that the reward vector m�s�a� s′ is
realized when a transition from s to s′, under action a, occurs for the � th time. We assume
that the reward processes are independent from the state processes. This model includes the
standard case, where the random variables m�s�a� s′ are all independent, and for any given
triplet �s� a� s′�, identically distributed. But it also allows for more general reward process
m�s�a� s′ , possibly driven by additional (possibly Markov) exogenous dynamics, as long as
they obey the large deviations bounds in the assumption that follows.

Assumption 6.1. For every �s� a� s′�, the limit

lim
t→�Ɛ

[
1
t

t∑
�=1
m�s�a� s′

]

exists and will be denoted by m�s�a� s′�. Also, there exists a function f ! �0��� �→ �0��*
and positive constants c1, c2, such that

P
(∥∥∥∥1t

t∑
�=1
m�s�a� s′ −m�s�a� s′�

∥∥∥∥>�
)

≤ c1e−c2f ���t� ∀�> 0� ∀ t ≥ 1�

Finally, there exist positive constants c, �, and �0, such that f ���≥ c�� for all � ∈ �0� �0�.
We introduce some more notation. Under a given policy and initial state distribution, we

use mt to denote the reward vector obtained at time t, and �mt to denote the corresponding
empirical average reward �1/t�

∑t
�=1m� . We also define a polytope M by

M =
{
m ∈�k! ∃q ∈Q such that m= ∑

s� a� s′
m�s�a� s′�q�s�a� s′�

}
�

which is the image of Q under a linear mapping. It can be shown that for weakly com-
municating MDPs, under Assumption 6.1, no matter what the initial state distribution is
and for every point in M , there is a policy under which the sequence of empirical average
rewards �mt converges to that point (cf. Theorem 4.1). The result that follows provides a con-
verse, namely, that the probability of a substantial deviation from M decays exponentially
with time.

Theorem 6.1. Suppose that Assumption 6.1 holds. Then there exist positive con-
stants c1, c2, and �0, such that under every policy �,

P���mt −M� ≥ ��≤ c1t exp
(−c2tmin�1���min��2� ���)� ∀ t ≥ 1� ∀� ∈ �0� �0��

Proof. Let �mt =
∑
s� a� s′ m�s�a� s

′� 	qt�s� a� s′�. It follows that
P���mt −M� ≥ ��≤ P���mt − �mt� ≥ �/2�+P���mt −M� ≥ �/2�� (15)

We now proceed to bound the two terms in Equation (15), starting with the first one.
We have

�mt − �mt =
1
t

∑
s� a� s′

t∑
�=1
I�s�=s� a�=a� s�+1=s′��m� −m�s�a� s′��

= ∑
s� a� s′

1
t

nt�s� a� s
′�∑

�=1

(
m�s�a� s′ −m�s�a� s′�

)
�

where nt�s� a� s
′� is defined in Equation (12). Thus,

P���mt − �mt� ≥ �/2�≤ ∑
s� a� s′

P
(∥∥∥∥

nt�s� a� s
′�∑

�=1

(
m�s�a� s′ −m�s�a� s′�

)∥∥∥∥≥ �t

2S2A

)
� (16)
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Let 8= �/2S2A, and note that the event

E =
{∥∥∥∥

nt�s� a� s
′�∑

�=1

(
m�s�a� s′ −m�s�a� s′�

)∥∥∥∥≥ 8t
}

(17)

is a subset of the event
⋃t
j=0 Bj , where

Bj =
{∥∥∥∥

j∑
�=1

(
m�s�a� s′ −m�s�a� s′�

)∥∥∥∥≥ 8t
}
�

From Assumption 6.1, we obtain

P�Bj�≤ c1e−c2f �8t/j�j �
Using the union bound, we obtain

P�E� ≤
t∑
j=0

P�Bj�

≤ c1
t∑
j=1
exp�−c2f �8t/j�j�

≤ c1
t∑
j=1
exp�−c2c8�t�j1−���

where the first inequality follows from the union bound and the third one from Assump-
tion 6.1. If �≥ 1, we have t�j1−� ≥ t; and if � < 1, we have t�j1−� ≥ t�. Thus,

P�E�≤ c1t exp
(−c2c8�tmin�1���)�

Substituting in Equation (16) and using the definition 8= �/2S2A, we obtain
P���mt − �mt� ≥ �/2�≤ c′1t exp

(−c′2��tmin�1���)�
for some new constants c′1, c

′
2.

We now obtain a bound on the second term in Equation (15). According to our definitions,
there is a linear transformation that maps 	qt to �mt and Q to M . It follows that ��mt−M� ≤
c3� 	qt − Q�, for some constant c3, so that P���mt −M� ≥ �/2� ≤ P�� 	qt − Q� ≥ �/2c3�.
Using Theorem 5.1, we obtain P���mt−M� ≥ �/2�≤ c′′1 exp�−c′′2�2t�, for some new positive
constants c′′1 and c

′′
2 . The result follows. �

Our last result is similar to Theorem 6.1 but pertains to the standard case of i.i.d. reward
processes. The detailed proof is omitted because it is virtually identical to the proof of
Theorem 6.1. For the purposes of the theorem, recall that the moment generating function
of a vector-valued random variable Z taking values in �m is defined to be Ɛ)e s�Z!*, where
 ·� ·! is the inner product in �m.

Theorem 6.2. Suppose that for every state-action-state triplet �s� a� s′�, the correspond-
ing rewards m�s�a� s′ are independent and identically distributed, and that the corresponding
moment generating function is finite in a neigborhood of the origin. Then there exists a
function =! �0��� �→ �0��* and a positive constant c0, such that under any policy �,

P���mt −M� ≥ ��≤ c0e−=���t� ∀ t ≥ 1� ∀�> 0�
Proof. (Outline) The only difference from the proof of Theorem 6.1 is in the bounds

for P�E�, where E is the event defined in Equation (17). Instead of using the union bound,
one resorts to Lemma 5.2, as in the proof of Theorem 5.1, suitably modified to cover the
vector case. �

7. Conclusions and future directions. We have provided a comprehensive character-
ization of the behavior of the empirical state-action frequency vectors in Markov decision
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processes. We have specified a polytope of state-action frequency vectors, and we have
shown that, under weak communicating assumptions, every point in the polytope is the
(almost sure) limit of the empirical state-action frequency vector under some policy. We
have further shown that, regardless of structural assumptions, the empirical state-action fre-
quency vector converges to the polytope under every policy. Similar results were provided
for the vector-valued reward case under some rather broad assumptions. We also note that
the results of §3 are of independent interest because the available results of this type were
limited to the unichain case.
There are several issues that call for further study. First, this work concerns only finite

state and action spaces. It would be interesting to extend the results to the infinite case, under
some strong ergodicity assumptions, as in Balaji and Meyn [3] and Glynn and Ormoneit [9],
using, perhaps, ideas from Altman and Shwartz [1]. Second, the bounds in §4 involve a
different exponent for every q ∈Q. It should be possible to show that the exponent can be
bounded away from zero, uniformly over all q ∈ Q, although the argument may become
overly involved. Third, we did not make an attempt to optimize the exponents. It seems
that optimizing the exponents (and making sure that the exponents in Theorems 5.1 and 4.1
match) is a difficult technical task.

Appendix
Proof of Lemma 4.3. (a) Let tk be the time at the end of the kth round. By that time,

there is a total of �i�tk�= ��ik�k+1�� transitions according to policy �, within each set �i,
and �0�tk� transitions according to the various switching policies .s′ . It follows that

�i�tk− �0�tk��− l≤ �i�tk�≤ �i�tk− �0�tk��+ 1�

Suppose that tk ≤ t < tk+1. By our choice of the interval lengths, we have
tk+1 − �0�tk+1�≤ tk− �0�tk�+ c′

√
t�

for some constant c′. It follows that

�i�t�≤ �i�tk+1�≤ �i�tk+1 − �0�tk+1��+ 1≤ �i(tk− �0�tk�+ c′′√t )
for some new constant c′′. Because tk ≤ t, we obtain �i�t� ≤ �it + �ic′′

√
t, which proves

the upper bound as long as c5 ≥ �ic′′.
For the lower bound, note that

�i�t�≥ �i�tk�≥ �i�tk− �0�tk��− l≥ �i
(
tk+1 − �0�tk+1�− c′′′

√
t
)

for some new constant c′′′. Because t− �0�t� is nondecreasing in t, it follows that �i�t�≥
�i�t− �0�t�− c′′′√t�, which is of the desired form, as long as c5 ≥ �i�1+ c′′′�.
(b) Let c′5 = c5 + 1. Suppose that �> c′5 + 1. Then, the fact �0�t�≤ t implies that

P
(
�0�t�+ c5

√
t+ 1≥ �t)≤ P

(
�0�t�+ c′5

√
t ≥ �t)≤ P��0�t� > t�= 0�

Thus, we need only to consider the case �≤ c′5 + 1.
It is easily checked that tk ≥ k2. Thus, in t time steps, there can be at most �

√
t� com-

pleted rounds. Thus, the total time �0�t� spent in switching from one set �i to another con-
sists of at most l�√t�+ l≤ l′�√t� switching times, for a new constant l′. Using Lemma 4.2
and Equation (9), �0�t� is stochastically dominated by the sum of l′�√t� random vari-
ables of the form Zj + c4, where the Zj are independent exponentially distributed random
variables with parameter (. Thus,

P
(
�0�t�+ c′5

√
t ≥ �t)≤ P

(l′�√t�∑
j=1
�Zj + c4 + c′5�≥ �t

)
�

Suppose first that

�t ≥
(
c4 + c′5 +

1
(

)
l′�√t�+ �

2
t� (18)



Mannor and Tsitsiklis: Empirical State-Action Frequencies in Markov Decision Processes
Mathematics of Operations Research 30(3), pp. 545–561, © 2005 INFORMS 559

The Chernoff bound yields

P
(l′�√t�∑
j=1
�Zj + c4 + c′5�≥ �t

)
≤ P

(l′�√t�∑
j=1

(
Zj −

1
(

)
≥ �t
2

)

≤ e−l′�√t�f ��t/�2l′�√t����
Here, f ��� = sups��s − .�s��, where .�s� = logƐ)esZj−�s/(�*. We have f ��� = (� −
log�1+(��. Now, f �0�= 0 and f is convex, so that f �ax�≥ af �x� for a≥ 1, and we get

P
(l′�√t�∑
j=1
�Zj + c4 + c′5�≥ �t

)
≤ e−l′tf ��/2l′�

≤ e−c7�2t� ∀ t ≥ 1� ∀� ∈ )0� c′5 + 1*�

The last inequality follows since the second derivative of f ��/2l′� is (2/��2l′��1 +
(�/2l′�2�, and is bounded from below for � ∈ )0� c′5 + 1*.
Finally, if Equation (18) does not hold, we have c7�

2t ≤ c, for some constant c, so that
P
(
�0�t�+ c′5

√
t ≥ �t)≤ 1≤ c8e−c7�2t�

where c8 = ec. �

Proof of Lemma 5.1. Fix a point y �W . We have

�y−W� = inf
z∈�k

( k∑
i=1
z2i

)1/2

s.t. A�y+ z�≤ b�
It follows that

�y−W� ≤ min
z∈�k

k∑
i=1

�zi�

s.t. A�y+ z�≤ b
= min

z+� z−∈�k
e�z+ + e�z−

s.t. Az+ −Az− ≤ b−Ay
z+ ≥ 0
z− ≥ 0�

where e ∈�k is a vector with all components equal to 1, and where we rewrote z as a sum
of positive and negative elements, that is, z= z+ − z−, where z+ = �z�+ and z− = �−z�+.
Note that the right-hand side is the optimal cost in a linear programming problem. The
optimal cost is finite (because it is bounded below by zero), and is attained. By the duality
theorem for linear programming (Bertsimas and Tsitsiklis [5]) we can replace with the dual
problem and obtain

�y−W� ≤ max
p∈�m

p��b−Ay�
s.t. p≤ 0

p�A≤ e�
−p�A≤ e��

where the right-hand side is again finite. Let P denote the feasible set of the dual problem,
i.e., P = �p ∈ �m � p ≤ 0� −e� ≤ p�A ≤ e��. The polyhedron P has at least one extreme
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point (the point 0). Let p1� � � � � pl be the finite and nonempty set of extreme points of P .
By the fundamental theorem of linear programming [5], the maximum over P is attained at
some extreme point, so that

�y−W� ≤max
1≤i≤l

p�
i �b−Ay�=max

1≤i≤l
�−pi���Ay− b�≤max

1≤i≤l
�−pi���Ay− b�+�

where the last inequality follows because −pi ≥ 0. Let 8 be a positive vector such that
−pi ≤ 8 for all i, which exists because there are only finitely many vectors pi. It follows that

�y−W� ≤ 8��Ay− b�+ ≤ c��Ay− b�+���

where c=m�8��. �

Proof of Lemma 5.2. Fix 8 > 0 and consider the sequence of random variables
defined by

Sk+1 =
{
Sk+Xk+1� if Sk < 8t�

Sk� if Sk ≥ 8t�
Note that the following two events are identical:{

max
1≤i≤t

�Xi ≥ 8t
}
= �St ≥ 8t��

We will bound the probability of the second event.
Note that .�0�= 0. Using Jensen’s inequality, we have Ɛ)esX1 *≥ 1 and therefore, .�s�≥ 0

for every s �= 0. Let us fix some s for which .�s� is finite, and consider the random variable

Yk = exp�sSk−min�k�N �.�s���

where N is the stopping time defined by

N =
{
t� if �Xn < 8t for all n= 1� � � � � t�

min�n! �Xn ≥ 8t�� otherwise�

We claim that Yk is a martingale. Indeed, if k≥N , then Yk+1 = Yk. If N > k, then
Ɛ)Yk+1 �X1� � � � �Xk* = Ɛ)exp�sSk+1 − �k+ 1�.�s�� �X1� � � � �Xk*

= exp�s �Xk− k.�s�� · Ɛ)exp�sXk+1 −.�s��*
= exp�s �Xk− k.�s��
= Yk�

It follows that Ɛ)Yt*= 1. Because N ≤ t and .�s�≥ 0, we have

Ɛ)exp�sSt − t.�s��*≤ Ɛ)exp�sSt −min�t�N �.�s��*= Ɛ)Yt*= 1� (19)

From the Markov inequality, we obtain

P�St ≥ 8t�= P�esSt ≥ es8t�≤ Ɛ)esSt *

es8t
�

and Equation (19) leads to
P�St ≥ 8t�≤ e−�s8−.�s��t �

Because this is true for every s for which .�s� is finite, we can take the infimum of the
right-hand side over all s, which yields

P�St ≥ 8t�≤ e−f �8�t �
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(The last step rests on the observation that sups�8s − .�s�� is not affected by restricting
to those s for which .�s� is finite.) Using a symmetrical argument, we also obtain that
P�St ≤ −8t�≤ e−f �−8�t . The fact that f �8� > 0 for 8 �= 0, under our assumptions on .�s�,
is well-known (see, e.g., Dembo and Zeitouni [6]).
We now consider the case of Bernoulli random variables. Assume that X1� � � � �Xt

are independent Bernoulli random variables with common mean p. Let f �8@p� =
sups�8s−.�s��, where .�s�= logƐ)es�X1−p�*. It suffices to prove that f �8@p�≥ 282, for all
8 and p. Indeed, a straightforward calculation shows that the rate function f �8@p� is given
by (see, e.g., Dembo and Zeitouni [6], p. 35):

f �8@p�=



�p+ 8� log

(
p+ 8
p

)
+ �1−p− 8� log

(
1−p− 8
1−p

)
� if 0≤ 8+p≤ 1�

�� otherwise�

with the convention that 0 log0 = 0 log� = 0. Let f ′�8@p� and f ′′�8@p� be the first
and second derivative, respectively, of f �8@p�, with respect to 8. We have f �0@p� =
f ′�0@p�= 0, and

f ′′�8@p�= 1
p+ 8 + 1

1−p− 8 ≥ 4� if 8 ∈ �−p�1−p��

It follows that f �8@p�≥ 282, for 8 ∈ )−p�1−p*. Outside that range, we have f �8@p�=�,
which completes the proof of the claim. �
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